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posteriori (MAP) equalizer and a MAP decoder is used. At each iteration of the receiver, the channel is estimated using the hard
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maximizing an effective signal-to-noise ratio (SNR) taking into account the data throughput loss due to the use of pilot symbols.
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1. Introduction

To combat the effects of intersymbol interference (ISI) due
to the frequency selectivity of mobile radio channels, an
equalizer has to be used. In order to efficiently detect the
transmitted symbols, the equalizer needs a good estimate
of the channel. The channel is classically estimated by
using a training sequence (TS) known at the receiver [1].
When the length of the TS increases, the channel estimate
becomes more reliable. However, this leads to a loss in
terms of data throughput. Thus, instead of using the training
sequence only, the information carried by the observations
corresponding to the data symbols can also be used to
improve iteratively the channel estimation. At each iteration,
the channel estimator refines its estimation by using the hard
or soft decisions on the data symbols at the output of the data
detector or the channel decoder [2–4].

A question that one can ask concerns the length of
the TS to choose in order to obtain a satisfactory initial
channel estimate without decreasing significantly the data
throughput. Several methods have been proposed to answer
this question. In [5], a solution based on the maximization
of a lower bound of the capacity of the training-based
scheme was proposed for a transmission over a frequency
selective channel. In [6], we considered the case where a

maximum a posteriori (MAP) equalizer is used. We proposed
to maximize an effective signal-to-noise ratio (SNR) taking
into account the loss in terms of data throughput due
to the use of the pilot symbols. These studies have been
performed for a noniterative receiver. In [2], an iterative data
detection and channel estimation scheme was considered for
a transmission over a flat fading channel. The TS length
optimization was performed by minimizing the ratio of the
channel estimation mean square error (MSE) to the data
throughput.

In this letter, we consider a coded transmission over
a frequency selective channel. At the receiver, a turbo-
detector composed of a MAP equalizer and a MAP decoder
is used. The channel is iteratively estimated by using hard
decisions on the coded bits at the output of the decoder.
This estimation strategy is usually referred to as decision-
directed or bootstrap estimation. We derive the expression
of the equivalent SNR at the output of the MAP equalizer
fed with the a priori information (from the decoder) and
the channel estimate. We define, based on this expression, an
effective SNR taking into account the loss in terms of data
throughput due to the use of the TS. We propose to find
the length of the TS maximizing this expression. We show
that when the decisions provided by the decoder are enough
reliable, the optimal TS length is equal to its minimum value
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2L− 1, where L is the channel memory. Notice that a similar
result was found in [5] by maximizing a lower bound on the
training-based channel capacity when the training and data
powers are allowed to vary.

Throughout this letter, scalars and matrices are lower and
upper case, respectively, and vectors are underlined lower
case. The operator (·)T denotes the transposition.

2. Transmission System Model

As shown in Figure 1, the input information bit sequence is
encoded with a convolutional code, interleaved and mapped
to the symbol alphabet A. In this letter, we consider the
BPSK modulation (A = {−1, 1}). The symbols are then
transmitted over a multipath channel. We assume that
transmissions are organized into bursts of T symbols. The
channel is assumed to be invariant during the transmission.
The received baseband signal sampled at the symbol rate at
time k is

yk =
L−1∑

l=0

hlxk−l + nk, (1)

where L is the channel memory and xk are the transmitted
symbols. In this expression, nk are modeled as independent
and identically distributed (iid) samples from a random
variable with normal probability density function (pdf)
N (0, σ2), where N (α, σ2) denotes a Gaussian distribution
with mean α and variance σ2. The term hl is the lth tap gain
of the channel.

The initial channel estimate is provided to the receiver by
a least square estimator using Tp training symbols with 2L−
1 ≤ Tp ≤ T [1], where Tp is the parameter to be optimized.

3. Decision-Directed Channel Estimation

As shown in Figure 2, we consider a turbo-detector com-
posed of a MAP equalizer and a MAP decoder. At each
iteration, the equalizer and the decoder compute a posteriori
probabilities (APPs) and extrinsic probabilities on the coded
bits [7]. They exchange the extrinsic probabilities which will
be used as a priori probabilities, to improve iteratively their
performance. In order to refine the channel estimate, the
channel estimator uses the hard decisions on the transmitted
coded symbols based on the APPs at the output of the
decoder. Indeed, the channel estimator is fed with Tp pilot
symbols and δT estimates of the coded symbols coming from
the decoder. Let x = (xTp+δT−1, . . . , x0)T be the sequence

containing the Tp training symbols (xTp−1, . . . , x0)T and the

δT data symbols (xTp+δT−1, . . . , xTp)
T . The output of the

channel corresponding to the vector x is given by

y = Xh + n, (2)

where h = (h0, . . . ,hL−1)T is the vector of channel taps, X
is the (Tp − L + 1 + δT) × L Hankel matrix having the first

column (xTp+δT−1, . . . , xL−1)T and the last row (xL−1, . . . , x0);
and n is the corresponding noise vector.
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Figure 1: Transmitter structure.

Equalizer Deinterleaver Decoder

Data
estimate

InterleaverChannel
estimator

Training

sequence x̂k

yk
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Figure 2: Receiver structure.

In order to estimate the channel, the observation vector
y is approximated as follows:

y ≈ X̂h + n, (3)

where X̂ is the estimated version of the matrix X containing
the hard decisions on the coded symbols at the output of the
decoder. The iteration process can be repeated several times
and here the matrix X̂ corresponds to the estimated symbols
at the last iteration.

The least square estimate ĥ = (ĥ0, . . . , ĥL−1)
T

of h is given
by [1]

ĥ = (X̂TX̂)
−1
X̂T y. (4)

In general, δT is chosen to give a good complex-
ity/performance trade-off. We suppose in the following that
δT is fixed such that δT � L. We also assume that the vector
of errors on the coded symbols at the output of the decoder
is independent of the noise vector. In average, the errors
are assumed to be uniformly distributed over the burst. The
channel estimation mean square error (MSE) is given by [3]

E(‖δh‖2) = σ2L

Tp − L + 1 + δT
+ 4

E(n2) + (L− 1)E(n)

(Tp − L + 1 + δT)2 ,

(5)

where E(·) is the mathematical expectation, n is the number
of erroneous hard decisions on the coded symbols at the
output of the decoder, used by the channel estimator.

Let β = E(n/δT) and β2 = E(n2/δT2). Hence, (5) can be
rewritten as

E(‖δh‖2) = σ2L

Tp − L + 1 + δT
+ 4

β2δT2 + (L− 1)βδT

(Tp − L + 1 + δT)2 .

(6)

4. Performance Analysis of the MAP Equalizer

We want now to study the impact of the a priori information
and the channel estimation errors on the MAP equalizer
performance.
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4.1. Equivalent SNR at the Output of
the Equalizer

We assume that the a priori (extrinsic) log likelihood ratios
(LLRs) at the input of the equalizer, fed back from the
decoder, are iid samples from a random variable with
the conditional pdf N (±2/σ2

a , 4/σ2
a ) [8–10]. The equivalent

signal-to-noise ratio at the output of the MAP equalizer fed
with the a priori LLRs from the decoder and the channel
estimate (from the decision-directed channel estimator) can
be approximated at high SNR by

SNReq,DD =
(
d′2 + 4m′μ2

4σ2

)(
1 +

1
σ2

E
(‖δh‖2

)

1 + 4m′μ2/d′2

)−1

,

(7)

where μ = σ/σa and E(‖δh‖2) is the channel estimation MSE
given in (6). The quantities m′ and d′ are defined as

(m′,d′) = arg min
m(e),‖d(e)‖

√
‖d(e)‖2 + 4m(e)μ2

2σ

×
(

1 +
E(‖δh‖2)

1 + 4m(e)μ2/‖d(e)‖2

)−1/2

,

(8)

where e ∈ E,E is the set of all nonzero error events [11],
m(e) is the number of decision errors in e, and d(e) is the
convolution of e with the channel.

Remark 1. We prove the result given in (7) similarly to [12,
Proposition 1]. However, in [12], we assumed that the chan-
nel was estimated by using a perfect training sequence and
the covariance matrix of the channel estimation error was
then diagonal. When a decision-directed channel estimator
is used, as it is the case in this work, this covariance matrix is
not diagonal which makes the proof more complicated. We
omit here the proof for the sake of space.

4.2. Simulation Results

In our simulations, we consider the channel with impulse
response (0.37; 0.6; 0.6; 0.37). The transmissions are orga-
nized into bursts of 256 symbols. The modulation used is the
BPSK. We do not consider the channel coding and the turbo-
detector yet. Figure 3 shows the bit error rate (BER) curves
with respect to the SNR at the input of the MAP equalizer
when the channel is estimated by the decision-directed
channel estimator using Tp = 15 pilot symbols and δT = 30
estimates of the data symbols. The δT estimates of the data
information symbols at the input of the channel estimator
are generated by making hard decisions on artificial LLRs
modeled as iid samples from a random variable with pdf
N (±2/σ2

x , 4/σ2
x ) [8–10]. We consider two reliability levels of

a posteriori information: σ2
x = 0.5 and σ2

x = 0.2 and two
reliability levels of a priori information: μ = 0.1 and μ =
0.5. The solid lines indicate the theoretical MAP equalizer
performance. The dotted ones are obtained by simulations.
We note that the theoretical curves approximate well the
curves obtained by simulations.
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Figure 3: Comparison of the equalizer performance (dotted curves)
and the theoretical performance (solid curves) when the channel
estimate is provided by the decision-directed channel estimator.
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Figure 4: SNReff,eq,DD versus Tp for Channel 3 and Channel 4,
SNR = 9 dB, T = 512, and δT = 100.

In the following, we propose to optimize the training
sequence length by maximizing an effective signal-to-noise
ratio that we will define taking into account the data
throughput loss due to the use of the pilot symbols.

5. Optimization of the Training
Sequence Length

Increasing the training sequence length leads to an improve-
ment of the channel estimate quality but also to a loss in
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terms of data throughput. Thus, in order to take into account
this loss, we define, based on (7), an effective SNR at the
output of the MAP equalizer as

SNReff,eq,DD =
T − Tp
T

SNReq,DD

= T − Tp
T

(
d′2 + 4m′μ2

4σ2

)

×
(

1 +
1
σ2

E
(‖δh‖2

)

1 + 4m′μ2/d′2

)−1

.

(9)

Our aim is to find the TS length maximizing this quantity.
Hence, we define the following optimization problem

T∗p = arg max
2L−1≤Tp≤T−δT

SNReff,eq,DD. (10)

Let x ∈ R∗+ , x ≥ 2L− 1 and

f1(x) = T − x
T

(
d′2 + 4m′μ2

4σ2

)
(1 + g(x))−1, (11)

where g(x) = (1/σ2(1 + 4m′μ2/d′2))(σ2L/(x − L + 1 +
δT) + 4((β2δT2 + (L − 1)βδT)/(x − L + 1 + δT)2)). Thus,
SNReff,eq,DD = f1(Tp).

When g(x) 
 1, f1(x) can be approximated by

f1(x) ≈ T − x
T

(
d′2 + 4m′μ2

4σ2

)
(1− g(x)) (12)

which is a decreasing function.
When the δT decisions on the data symbols added to the

training sequence are reliable, g(Tp) 
 1. Thus, the optimal
length of the training sequence solution of (10) is

T∗p = 2L− 1. (13)

When the hard decisions used by the channel estimator
are not reliable, the approximation g(Tp) 
 1 becomes
inaccurate and the optimization problem cannot be solved
analytically.

6. Simulation Results

We first consider a MAP equalizer fed with the channel esti-
mate calculated by the decision-directed channel estimator
using Tp pilot symbols and δT estimates of the data symbols.
These estimates are obtained by making hard decisions on
artificial a posteriori LLRs modeled as iid samples from a
random variable with pdf N (±2/σ2

x , 4/σ2
x ). The equalizer

is also fed with artificial a priori LLRs modeled as iid
samples from a random variable with pdf N (±2/σ2

a , 4/σ2
a ).

Figure 4 shows the effective SNR given in (9) as a function
of the training sequence length for Channel 3 and Channel
4 with respective impulse responses (0.5; 0.71; 0.5) and
(0.37; 0.6; 0.37; 0.6), for SNR = 9 dB, T = 512, and δT =
100. We consider two values of σ2

x : σ2
x = 0.2 and σ2

x = 0.4;
and two values of σ2

a : σ2
a = 0.5 and σ2

a = 0.65. We note that
the training sequence length maximizing SNReff,eq,DD is equal

Tp = 7, 2nd iteration
Tp = 13, 2nd iteration
Tp = 30, 2nd iteration
Tp = 60, 2nd iteration

Tp = 7, 3rd iteration
Tp = 13, 3rd iteration
Tp = 30, 3rd iteration
Tp = 60, 3rd iteration
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Figure 5: MAP equalizer BER performance versus SNReff for
different values of the length of the training sequence after two and
three iterations of the iterative receiver for Channel 4, T = 512 and
δT = 100.

to 2L−1 when the decisions on the data symbols added to the
TS become reliable (σ2

x = 0.2 corresponding to β = 0.013).
We also note that the optimal choice of the training sequence
length can significantly improve the effective SNR.

Now, we consider the whole system with the channel
coding at the transmitter and the iterative receiver composed
of a MAP equalizer and a MAP decoder. We use Channel 4
with impulse response (0.37; 0.6; 0.6; 0.37). The information
data are encoded using the rate 1/2 convolutional code with
generator polynomials (7, 5) in octal. At the first iteration,
the channel is estimated by using the TS [1]. At the next
iterations, it is estimated by using the decision-directed
technique. Figure 5 shows the BER performance (on the
coded bits) at the output of the MAP equalizer after two
iterations of the iterative receiver and at the convergence
(after three iterations) with respect to SNReff = ((T −
Tp)/T)SNR, where SNR is the signal-to-noise ratio at the
input of the MAP equalizer, for T = 512, δT = 100
and for different values of the length Tp of the training
sequence. The δT estimates of the coded symbols at the
input of the channel estimator are obtained by making hard
decisions on the a posteriori LLRs at the output of the MAP
decoder. Simulations confirm that the MAP equalizer best
performance is achieved, at high SNR, when Tp = 2L− 1.

7. Conclusion

In this letter, we considered the problem of optimization
of the training sequence length for the iterative receiver
composed of a MAP equalizer, a MAP decoder and a
decision-directed channel estimator. We proved that the
training sequence length maximizing the effective SNR at



Research Letters in Communications 5

the output of the MAP equalizer is equal to its minimum
value 2L − 1 when the decisions provided by the decoder
are reliable. A future work will consider the case where
the channel estimator uses soft decisions provided by the
decoder on the coded symbols.
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