On the Capacity of MIMO Optical Wireless Channels

Longguang Li*, Stefan M. Moser†‡, Ligong Wang§, and Michèle Wigger*

†LTCI, Telecom ParisTech, Université Paris-Saclay, 75013 Paris, France
‡Signal and Information Processing Lab, ETH Zürich, Switzerland
§Institute of Communications Engineering, National Chiao Tung University, Hsinchu, Taiwan

Abstract—This paper investigates the capacity of the multiple-input multiple-output free-space optical intensity channel under a per-input-antenna peak-power constraint and a total average-power constraint over all input antennas. Our work considers the setup with more transmit than receive antennas, and characterizes capacity as an alternative optimization problem over the distribution of the input vector times the channel matrix. This alternative capacity expression is then used to obtain upper and lower bounds on the capacity, which match asymptotically in the high signal-to-noise ratio regime.

I. INTRODUCTION AND CHANNEL MODEL

Consider a wireless optical intensity-modulation direct-detection (IM-DD) system where the transmitter is equipped with \(n_T \) light-emitting diodes (LEDs) and the receiver with \(n_R \) photodetectors. The photodetectors receive a superposition of the signals sent by the LEDs, and we assume that the crosstalk between the LEDs is constant. Hence, the channel output is

\[
Y = Hx + Z, \tag{1}
\]

where \(x = (x_1, \ldots, x_{n_T})^T \) denotes the \(n_T \)-dimensional channel input vector, \(Z \) the \(n_R \)-dimensional noise vector with independent standard Gaussian entries, and \(H \) the deterministic \(n_R \)-by-\(n_T \) channel matrix with nonnegative entries, which we also write in the form

\[
H = [h_1, h_2, \ldots, h_{n_T}]. \tag{2}
\]

The channel inputs correspond to optical intensities sent by the LEDs, hence they are nonnegative:

\[
x_k \in \mathbb{R}_+^{n_T}, \quad k = 1, \ldots, n_T. \tag{3}
\]

We assume the inputs are subject to a peak-power (peak-intensity) and an average-power (average-intensity) constraint:

\[
\begin{align}
\Pr[X_k > A] &= 0, \quad \forall k \in \{1, \ldots, n_T\}, \tag{4a} \\
E[\|X\|_1] &\leq E \tag{4b}
\end{align}
\]

for some fixed parameters \(A, E > 0 \), where \(\| \cdot \|_1 \) denotes the \(L_1 \)-norm. Note that the average-power constraint is on the expectation of the channel input and not on its square. Also note that \(A \) describes the maximum power of each single LED, while \(E \) describes the allowed total average power of all LEDs together. We denote the ratio between the allowed average power and the allowed peak power by \(\alpha \):

\[
\alpha \triangleq \frac{E}{A}. \tag{5}
\]

where \(0 < \alpha \leq n_T \). For \(\alpha \geq \frac{n_T}{2} \), by symmetry of the setup, the average-power constraint is inactive. Thus, when \(\alpha \geq \frac{n_T}{2} \), the channel essentially reduces to the case where there is only a peak-power constraint.

In previous works, bounds on the capacity of the above-described wireless optical channel were derived for the single-antenna case \(n_T = n_R = 1 \) [1]–[4], the no-crosstalk case \((H \) is diagonal) [5], the multiple-input single-output (MISO) case \((n_T > 1 \) and \(n_R = 1 \) [6], [7], the case with a full-rank square \(H (n_T = n_R > 1) \) [8], [9], and the case with a full-column-rank \(H \) [8].

In this paper we focus on the multiple-input multiple-output (MIMO) setup with more transmit than receive antennas:

\[
n_T > n_R > 1. \tag{6}
\]

Inspired by our results on the MISO channel [7], we find the most energy-efficient signaling method for the setup (6) (Lemma 1 ahead). In the MISO case, antennas can be ordered according to decreasing channel gains, and the optimal signaling strategy is to rely as much as possible on stronger antennas. In other words, if an antenna is used for active signaling in a channel use, then all stronger antennas should transmit at full power \(A \) and all weaker antennas should be silenced. In the MIMO case, there is no clear order for the transmit antennas. Nevertheless, we show that it is optimal to restrict to signaling methods that, for each channel use, choose \(n_R \) transmit antennas as “active” signaling antennas, and set the remaining antennas to either full power \(A \) or to 0 according to a given rule. The “active” antennas can then be used in the same way as suggested in earlier works for MIMO channels that have a square full-rank channel matrix [8].

We introduce some further notation. We define

\[
U \triangleq \{ I \subseteq \{1, \ldots, n_T\} : |I| = n_R \}, \tag{7}
\]

and for every \(I = \{i_1, \ldots, i_{n_R}\} \in U \) with \(i_1 < \cdots < i_{n_R} \), we define

\[
H_I \triangleq [h_{i_1}, \ldots, h_{i_{n_R}}]. \tag{8}
\]

Throughout this paper, we assume that every \(H_I, I \in U \), is of full rank \(n_R \), i.e., that any \(n_R \) column vectors in \(H \) are linearly independent. To simplify derivations, we further assume that for all \(I \in U \) and \(j \in \{1, \ldots, n_T\} \setminus I \),

\[
1^T_{n_R} H_I^{-1} h_j \neq 1, \tag{9}
\]
where 1_n denotes the n-dimensional vector $(1, \ldots, 1)^T$.\footnote{In the full version of this paper, which is under preparation, we show that the condition (9) can be dropped.}

II. CAPACITY AND MINIMUM-ENERGY SIGNALING

The capacity of the channel (1) is \[C_H(A, \alpha A) = \sup_{Q_X} I(X; Y) \] \hspace{1cm} (10)
where the supremum is over all distributions Q_X on X satisfying (3) and (4). Define \hspace{1cm} (11)

and notice that X takes value in the zonotope \hspace{1cm} (12)

which has volume \hspace{1cm} (13)

Define for each $I \in \mathcal{U}$ the parallelepiped \hspace{1cm} (14)

the coefficient \hspace{1cm} (15)

and the vector \hspace{1cm} (16)

where $I \subseteq \{1, \ldots, n_t\}$ denotes the indicator function.

Lemma 1:

1) For any $I, J \in \mathcal{U}$, $I \neq J$, the intersection of $v_I + D_I$ and $v_J + D_J$ has Lebesgue measure zero.

2) The image set $\mathcal{R}(H)$ is covered by the parallelepipeds \hspace{1cm} (17)

3) For any $I \in \mathcal{U}$, any point in $v_I + D_I$ is achieved with minimum total input power by an input vector x satisfying, for every $j \in \{1, \ldots, n_t\} \setminus I$, \hspace{1cm} (18)

Proof: Omitted. \hfill \blacksquare

Figure 1 shows the partitions of $\mathcal{R}(H)$ into the union (17) for two examples of channel matrices H.

Using the above lemma, we can characterize the capacity $C_H(A, E)$ as an optimization problem over X.

Proposition 2: The capacity of the MIMO optical intensity channel is given by

\[C_H(A, \alpha A) = \sup_{Q_X} I(\tilde{X}; Y), \] \hspace{1cm} (19)

where the supremum is over all distributions Q_X over $\mathcal{R}(H)$ subject to the power constraint

\[E_U [A_{SU} + \|H_2^{-1}(E[X] - v_U)\|_1] \leq \alpha A, \] \hspace{1cm} (20)

where U is a random variable taking value in \mathcal{U} such that $U = I$ if, and only if, X lies in the interior of $v_I + D_I$.\footnote{To make the statement simpler, here we require that \tilde{X} be in the interior of some $v_I + D_I$. By the supremum in (19), this restriction causes no loss of optimality.}

Proof: Notice that X is a function of \bar{X} and that the Markov chain $X \leftrightarrow X \leftrightarrow Y$ holds. Therefore, $I(X; Y) = I(\bar{X}; Y)$. By Lemma 1, $\mathcal{R}(H)$ can be decomposed into the shifted parallelepipeds $\{v_I + D_I\}$ and the minimum energy required to achieve an image point $x \in v_I + D_I$ is

\[A_{SU} + \|H_2^{-1}(x - v_I)\|_1. \] \hspace{1cm} (21)

The proposition follows by taking expectation over (21).

III. CAPACITY RESULTS

This section presents bounds on capacity, as well as asymptotic expressions at high signal-to-noise ratios (SNR). Let q be a probability vector on \mathcal{U} with entries

\[q_I = \frac{|\det H_I|}{V_H}, \quad I \in \mathcal{U}. \] \hspace{1cm} (22)

Further define

\[\alpha_{th} = \frac{n_g}{2} + \sum_{I \in \mathcal{U}} s_I q_I. \] \hspace{1cm} (23)

We shall see that the threshold α_{th} determines whether \tilde{X} can be made uniform over $\mathcal{R}(H)$ or not.

A. Lower Bounds

Theorem 3: For $\alpha \geq \alpha_{th}$,

\[C_H(A, \alpha A) \geq \frac{1}{2} \log \left(1 + \frac{A^{2n_g} V_H^2}{(2\pi e)^{n_g}} \right). \] \hspace{1cm} (24)

For $\alpha < \alpha_{th}$,

\[C_H(A, \alpha A) \geq \frac{1}{2} \log \left(1 + \frac{A^{2n_g} V_H^2}{(2\pi e)^{n_g}} e^{2V}. \right) \] \hspace{1cm} (25)
where
\[\nu \triangleq \sup_{\lambda \in \{\max(0, \frac{\mu}{1 - e^{-\mu}}, \min(\frac{\mu}{1 - e^{-\mu}})\}} \left\{ n_R \left(1 - \log \frac{\mu}{1 - e^{-\mu}} - \frac{\mu e^{-\mu}}{1 - e^{-\mu}} \right) - \inf_p D(p||q) \right\} \] (26)
where \(\mu \) is the unique solution to the following equation:
\[\frac{1}{\mu} - \frac{e^{-\mu}}{1 - e^{-\mu}} = \frac{\lambda}{n_R}, \] (27)
and where the infimum is over all probability vectors \(p \) on \(\mathcal{U} \) such that
\[\sum_{I \in \mathcal{U}} p_I s_I = \alpha - \lambda. \] (28)

B. Upper Bounds

For each \(I \in \mathcal{U} \) and \(\ell \in \{1, \ldots, n_R\} \), let \(\sigma_{I, \ell} \) be the square root of the \(\ell \)-th diagonal entry of the matrix \(H_{I, I}^{-1} H_{I, \ell}^T \). Define
\[\sigma_{\max} \triangleq \max_{I \in \mathcal{U}, \ell \in \{1, \ldots, n_R\}} \sigma_{I, \ell}, \quad \sigma_{\min} \triangleq \min_{I \in \mathcal{U}, \ell \in \{1, \ldots, n_R\}} \sigma_{I, \ell}. \] (29)

Theorem 4: For an arbitrary \(\alpha \),
\[C_H(A, \alpha A) \leq n_R \log \left(\sigma_{\max} + \frac{A}{\sqrt{2\pi e}} \right) + \log V_H. \] (30)

Theorem 5: For \(\alpha < \alpha_{th} \),
\[C_H(A, \alpha A) \leq \sup_p \inf_{\mu > 0} \left\{ n_R \log \left(\sigma_{\max} + \frac{A}{\sqrt{2\pi e}} \frac{1 - e^{-\mu}}{\mu} \right) + \log V_H + n_R \mathcal{Q}\left(\frac{\delta}{\sigma_{\max}} \right) + \frac{\delta}{\sigma_{\max}^2} e^{-\frac{\pi^2}{\sigma_{\min}^2}} + \frac{\mu n_R \sigma_{\max}}{A \sqrt{2\pi}} e^{-\frac{\pi^2}{\sigma_{\min}^2}} + \frac{\mu}{A} \left(\alpha - \sum_{I \in \mathcal{U}} p_I s_I \right) - D(p||q) \right\}, \] (31)
where the supremum is over all probability vectors \(p \) on \(\mathcal{U} \).

Theorem 6: For \(\alpha < \alpha_{th} \),
\[C_H(A, \alpha A) \leq \sup_p \inf_{\delta, \mu > 0} \left\{ n_R \log \left(\frac{A}{\sigma_{\min}} \left(e^{\frac{\delta}{\sigma_{\min}}} - e^{-\mu(1 + \frac{\delta}{\sigma_{\min}})} \right) \right) + \log V_H + n_R \mathcal{Q}\left(\frac{\delta}{\sigma_{\max}} \right) + \frac{\delta}{\sigma_{\max}^2} e^{-\frac{\pi^2}{\sigma_{\min}^2}} + \frac{\mu n_R \sigma_{\max}}{A \sqrt{2\pi}} e^{-\frac{\pi^2}{\sigma_{\min}^2}} + \mu \left(\alpha - \sum_{I \in \mathcal{U}} p_I s_I \right) - D(p||q) \right\}, \] (32)
where \(\mathcal{Q}(\cdot) \) denotes the Q-function associated with the standard Gaussian distribution, and the supremum is over all probability vectors \(p \) on \(\mathcal{U} \).

C. Asymptotic High-SNR Capacity Expressions

Theorem 7: For \(\alpha \geq \alpha_{th} \),
\[\lim_{A \to \infty} \left\{ C_H(A, \alpha A) - n_R \log A \right\} = \frac{1}{2} \log \left(\frac{V_H^2}{(2\pi e)^{n_R}} \right), \] (33)
for \(\alpha < \alpha_{th} \),
\[\lim_{A \to \infty} \left\{ C_H(A, \alpha A) - n_R \log A \right\} = \frac{1}{2} \log \left(\frac{V_H^2}{(2\pi e)^{n_R}} \right) + \sup_{\lambda \in \{\max(0, \frac{\mu}{1 - e^{-\mu}}, \min(\frac{\mu}{1 - e^{-\mu}})\}} \left\{ n_R \left(1 - \log \frac{\mu}{1 - e^{-\mu}} - \frac{\mu e^{-\mu}}{1 - e^{-\mu}} \right) - \inf_p D(p||q) \right\}. \] (34)

where \(\mu \) and \(p \) are the same as in Theorem 3.

Figure 2 depicts the derived lower and upper bounds for an example with \(\alpha < \alpha_{th} \). The bounds match asymptotically at high SNR. For this example, upper bound (31) is always tighter than (32). That this does not hold in general can be seen in [12, Examples 2 and 3], which compare the two bounds in some single-input single-output and MISO special cases.

![Figure 2](image)

Fig. 2. Bounds on capacity of 3 × 2 MIMO channel with channel matrix \(H = [1, 1.5, 3, 2, 2] \), and average-to-peak power ratio \(\alpha = 0.9 \). Note that the threshold of the channel is \(\alpha_{th} = 1.476 \).

IV. PROOFS

A. Derivation of Lower Bounds

For any choice of the random vector \(X \) over \(\mathcal{R}(H) \) that satisfies (20), the following holds:
\[C_H(A, \alpha A) \geq I(X; X + Z) \]
\[= h(X + Z) - h(Z) \] (35)
\[\geq \frac{1}{2} \log \left(e^{2h(X)} + e^{2h(Z)} \right) - h(Z) \] (36)
\[= \frac{1}{2} \log \left(1 + e^{2h(X)} \right) - h(Z), \] (37)
where
\[h(X) = \frac{1}{2} \log \left(\frac{V_H^2}{(2\pi e)^{n_R}} \right) \] (38)
where (37) holds by the Entropy Power Inequality [13].

The lower bound (24) follows from (38) and by choosing \(\mathbf{X} \) to be uniform over \(R(H) \). It can be verified that this choice satisfies the power constraint whenever \(\alpha \geq \alpha_{th} \).

If \(\alpha < \alpha_{th} \), it can be shown that it is always possible to choose \(\lambda \in \left(\max \left\{ 0, \frac{\mu}{\alpha_{th}} - \alpha \right\}, \min \left\{ \frac{\mu}{\alpha_{th}}, \alpha \right\} \right) \), \(\mathbf{p} \) to satisfy (28), and \(\mu \) as the unique solution to (27). For each \(I \) we then pick the conditional probability density function \(f_{\mathbf{X}|U=I}(\mathbf{X}) = \frac{1}{A^{|n|}\det H_I} e^{-\mu\|X - \mu\|_2^2} \). \(^{(39)}\)

Note that this corresponds to the entropy-maximizing distribution under a total average-power constraint on \(H_I^{-1}\mathbf{X} \). The resulting expression is finally optimised over the distribution \(Q_U \).

B. Derivation of Upper Bounds

For any \(\mathbf{X}^* \), we bound the mutual information in (19) as

\[
I(\mathbf{X}^*; \mathbf{Y}^*) = I(\mathbf{X}^*; \mathbf{X}^* + \mathbf{Z}) \leq I(\mathbf{X}^*; \mathbf{X}^* + \mathbf{Z}, \mathbf{U}^*) \leq H(\mathbf{U}^*) + I(\mathbf{X}^*; \mathbf{X}^* + \mathbf{Z}|\mathbf{U}^*). \] \(^{(40)}\)

Moreover, for each size-\(n_{th} \) subset \(I \in U \),

\[
I(\mathbf{X}^*; \mathbf{X}^* + \mathbf{Z}|\mathbf{U}^* = I) = I(\mathbf{X}^* - \mathbf{v}_I; \mathbf{X}^* - \mathbf{v}_I + \mathbf{Z}|\mathbf{U}^* = I) \leq I(\mathbf{H}_I^{-1}(\mathbf{X}^* - \mathbf{v}_I); \mathbf{H}_I^{-1}(\mathbf{X}^* - \mathbf{v}_I) + \mathbf{H}_I^{-1}\mathbf{Z}|\mathbf{U}^* = I) = I(\mathbf{X}^*_I; \mathbf{X}^*_I + \mathbf{Z}_I|\mathbf{U}^* = I), \] \(^{(41)}\)

where we defined

\[
\mathbf{Z}_I \triangleq \mathbf{H}_I^{-1}\mathbf{Z}, \quad \mathbf{X}^*_I \triangleq \mathbf{H}_I^{-1}(\mathbf{X}^* - \mathbf{v}_I). \] \(^{(42)}\)

To further bound the term in (45), we then use the duality upper-bounding technique with a product output distribution

\[
R_I(\mathbf{Y}_I) = \prod_{\ell=1}^{n_{th}} R_{I,\ell}(\mathbf{y}_{I,\ell}). \] \(^{(48)}\)

Denoting by \(W_I(\cdot|\mathbf{X}^*_I) \) the transition law of the MIMO channel \(\mathbf{X}^*_I \rightarrow \mathbf{Y}_I \triangleq (\mathbf{X}^*_I + \mathbf{Z}_I) \) and by \(W_{I,\ell}(\cdot|\mathbf{X}^*_{I,\ell}) \) the marginal transition law for its \(\ell \)-th component, we have:

\[
I(\mathbf{X}^*_I; \mathbf{Z}_I|\mathbf{U}^* = I) \leq \mathbb{E}_{\mathbf{X}_I^*|\mathbf{U}^* = I} \left[D(W_I(\cdot|\mathbf{X}^*_I)\|R_I(\cdot)) \right] \leq -\mathbb{H}(\mathbf{X}^*_I + \mathbf{Z}_I|\mathbf{X}^*_I, \mathbf{U}^* = I) - \mathbb{E}_{\mathbf{X}^*_I|\mathbf{U}^* = I} \left[\sum_{\ell=1}^{n_{th}} \mathbb{E}_{W_{I,\ell}(\cdot|\mathbf{X}^*_{I,\ell})} \left[\log R_{I,\ell}(\mathbf{y}_{I,\ell}) \right] \right] = -\frac{n_{th}}{2} \log 2\pi e + \log |\det \mathbf{H}_I| - \sum_{\ell=1}^{n_{th}} \mathbb{E}_{Q_{X^*_{I,\ell},U^* = I}} \left[\mathbb{E}_{W_{I,\ell}(\cdot|\mathbf{X}^*_I,\mathbf{U}^*_I)} \left[\log R_{I,\ell}(\mathbf{Y}_{I,\ell}) \right] \right], \] \(^{(50)}\)

where the last equality holds because

\[
h(\mathbf{X}^*_I + \mathbf{Z}_I|\mathbf{X}^*_I, \mathbf{U}^* = I) = h(\mathbf{Z}_I) = \frac{1}{2} \log(2\pi e \det H_I^{-1}H_I^{-1^T}). \] \(^{(52)}\)

The upper bounds in this paper are then obtained by combining (42) with (45) and (51), by optimizing over the probability vector \(\mathbf{p} \) on \(U \), and by picking appropriate choices for the output distribution \(R_{I,\ell}(\cdot) \).

To prove Theorem 4, we choose

\[
R_{I,\ell}(y) = \begin{cases}
\frac{1}{A + \sqrt{2\pi e\sigma_{I,\ell}}} e^{-\frac{y^2}{2\sigma_{I,\ell}}} & \text{if } y < 0, \\
\frac{1}{A + \sqrt{2\pi e\sigma_{I,\ell}}} e^{-\frac{(y-A)^2}{2\sigma_{I,\ell}}} & \text{if } y \in [0, A], \\
\frac{1}{A + \sqrt{2\pi e\sigma_{I,\ell}}} e^{-\frac{(y-A)^2}{2\sigma_{I,\ell}}} & \text{if } y > A.
\end{cases} \] \(^{(53)}\)

which yields, irrespectively of the value of \(x^*_I \),

\[
-\mathbb{E}_{W_{I,\ell}(\cdot|\mathbf{X}^*_I,\mathbf{U}^*_I)} \log R_{I,\ell}(\mathbf{Y}_{I,\ell}) \leq \log(A + \sqrt{2\pi e\sigma_{I,\ell}}). \] \(^{(54)}\)

To prove Theorem 5, we choose

\[
R_{I,\ell}(y) = \begin{cases}
\frac{1}{A + \sqrt{2\pi e\sigma_{I,\ell}}} e^{-\frac{y^2}{2\sigma_{I,\ell}}} & \text{if } y < 0, \\
\frac{1}{A + \sqrt{2\pi e\sigma_{I,\ell}}} e^{-\frac{(y-A)^2}{2\sigma_{I,\ell}}} & \text{if } y \in [0, A], \\
\frac{1}{A + \sqrt{2\pi e\sigma_{I,\ell}}} e^{-\frac{(y-A)^2}{2\sigma_{I,\ell}}} & \text{if } y > A.
\end{cases} \] \(^{(55)}\)

Following the steps in [12, Appendix B], we obtain:

\[
\mathbb{E}_{W_{I,\ell}(\cdot|\mathbf{X}^*_I,\mathbf{U}^*_I)} \left[\log R_{I,\ell}(\mathbf{Y}_{I,\ell}) \right] \leq \log \left(\sqrt{2\pi e\sigma_{I,\ell}} + \frac{1 - e^{-\mu}}{\mu} \right) + \frac{\mu\sigma_{I,\ell}}{A\sqrt{2\pi e}} \left(1 - e^{-\frac{A^2}{2\sigma_{I,\ell}}} \right) + \frac{\mu}{A} \bar{x}^*_{I,\ell}. \] \(^{(56)}\)

The proof is concluded by combining (56) with (42), (45), and (51), and by noting that

\[
\frac{\mu}{A} \mathbb{E}_{Q_{U^*}} \left[\sum_{\ell=1}^{n_{th}} \mathbb{E}_{Q_{X^*_{I,\ell},U^*_I}} \left[\log R_{I,\ell}(\mathbf{Y}_{I,\ell}) \right] \right] = \frac{\mu}{A} \mathbb{E}_{Q_{U^*}} \left[\sum_{\ell=1}^{n_{th}} \mathbb{E}_{Q_{X^*_{I,\ell},U^*_I}} \left[\log R_{I,\ell}(\mathbf{Y}_{I,\ell}) \right] \right] \leq \mu(\alpha - \mathbb{E}_{Q_{U^*}}[s(y)]), \] \(^{(57)}\)

where (57) follows by (47), and (58) by (20).

To prove Theorem 6, we choose

\[
R_{I,\ell}(y) = \begin{cases}
\frac{1}{\sqrt{2\pi e\sigma_{I,\ell}}} e^{-\frac{y^2}{2\sigma_{I,\ell}}} & y < -\delta, \\
\frac{1}{\sqrt{2\pi e\sigma_{I,\ell}}} e^{-\frac{(y-A)^2}{2\sigma_{I,\ell}}} & y \in [-\delta, A + \delta], \quad \text{if } y < A,
\end{cases} \] \(^{(59)}\)

\[
\frac{1}{\sqrt{2\pi e\sigma_{I,\ell}}} e^{-\frac{(y-A)^2}{2\sigma_{I,\ell}}} & y > A. \]
Following the steps in the proof of [3, Theorem 3], we obtain:

\[- \mathbb{E}_{W_{x,t}(Y_{x,t})|X_{x,t}}[\log R_{x,t}(Y_{x,t})] \]

\[\leq \log \left(\frac{A}{\sigma_{Z,t}} \cdot e^{\frac{\mu^2}{2\pi^2}} - e^{-\mu(1+\delta)} \right) + \mathcal{O} \left(\frac{\delta}{\sigma_{Z,t}} \right) + \frac{\delta}{\sqrt{2\pi\sigma_{Z,t}}} e^{\frac{\mu^2}{2\pi^2} + \mu^{\sigma_{Z,t}} e^{\frac{\mu^2}{2\pi^2}} - e^{\frac{\mu^2}{2\pi^2}} - \frac{(\lambda+1)^2}{2}} + \frac{\mu^* \sigma_{Z,t}}{A} \right]. \]

The proof is concluded by combining (60) with (42), (45), (51), and (58).

C. Derivation of Asymptotic High-SNR Capacity

The proof for the case \(\alpha \geq \alpha_0 \) is straightforward and omitted.

For \(\alpha < \alpha_0 \), the fact that the left-hand side of (34) cannot be smaller than its right-hand side follows directly from (25). To show the reverse direction, we rely on (31). The proof sketch is as follows. Let

\[\lambda = \alpha - \sum_{I \in \mathcal{U}} p_{\mathcal{Z},I}, \]

and choose \(\mu^* \) to be the unique solution of equation (27) in \(\mu \).

Then, proceeding from (31), we obtain:

\[C_H(A, \alpha A) - n_R \log A \]

\[\leq \sup_p \left\{ \frac{1}{2} \log \left(\frac{V_h}{(2\pi e)^n} \right) - D(p|q) \right\} + n_R \log \left(1 - e^{-\mu^*} \right) \]

\[\leq \sup_p \left\{ \frac{1}{2} \log \left(\frac{V_h}{(2\pi e)^n} \right) - D(p|q) \right\} + n_R \left(1 - \log \frac{\mu^*}{1 - e^{-\mu^*}} - \frac{\mu^* e^{-\mu^*}}{1 - e^{-\mu^*}} \right) + o(A). \]

The proof is concluded by taking \(A \to \infty \).

V. CONCLUSION

In this paper, we derive upper and lower bounds on the capacity of the MIMO free-space optical intensity channel when the transmitter has more antennas than the receiver \(n_T > n_R \). In our model, channel inputs are subject to a peak-power constraint for each antenna and an average-power constraint over all antennas. The bounds match asymptotically in the high-SNR regime and show that the high-SNR asymptotic capacity saturates in the total average power \(\alpha A \) for all \(\alpha \geq \alpha_0 \). The reason is that this threshold suffices to attain a uniform distribution over the image set \(\mathcal{R}(H) \) produced by the channel matrix \(H \).

To derive our capacity bounds, we provide an alternative expression for the capacity. It is based on the insight that the optimal (most energy-efficient) signaling strategy is to choose a set \(I \in \mathcal{U} \), set all inputs \(\{x_j : j \in \{1, \ldots, n_T\} \setminus I \} \) either to 0 or to full power \(A \) according to the rule in (18), and signal with the \(n_R \) antennas in \(D_Z \) as for a full-rank \(n_R \times n_R \) channel matrix \(H_2 \) [8]. In the MISO case, this means that, if a given antenna is used for signaling, all stronger antennas need to send at full power \(A \) [7].

ACKNOWLEDGMENT

The work of L. Li and M. Wigger was supported by the ERC under grant agreement 715111.

REFERENCES

