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ABSTRACT

Biorthogonal wavelets have been used with great success
in most of the recent transform image coders. By using
the new balanced multiwavelets, one can now easily design
fully orthogonal linear phase FIR transform schemes. The
aim of our work is to assess whether the added orthogo-
nality yields a performance gain compared to traditional
biorthogonal transforms. As comparison platform we use
the well-known SPIHT codec, which is based on the signi�-
cance tree quantization (STQ) principle. Without any par-
ticular �ne-tuning the multiwavelet codec performs within
0.5 dB of SPIHT. A closer inspection shows however that it
is hard to improve on this, therefore re-establishing the rule
of thumb that strict orthogonality is not a key factor in im-
age transform coding. More details can be obtained on the
[WEB] at http://lcavwww.epfl.ch/~weidmann/mwcoder

1. INTRODUCTION

In this paper, we want to study the application of the re-
cently presented balanced multiwavelets [6, 7, 8] to image
transform coding. Wavelet based methods, as pioneered in
[1], have become a standard and successful way of imple-
menting transform coding. The underlying �lter banks are
now well studied, and thus the design procedure is well un-
derstood. By the structure of the problem, certain issues
are ruled out: e.g. impossibility of constructing orthogonal
FIR linear phase �lter banks. This is a serious drawback
since in many applications, and especially image coding,
the following three properties are important: (1) FIR for
obvious computational reasons, (2) linear phase to work on
�nite length signals without redundancy and artifacts, and
(3) orthogonality as a necessary condition for the decor-
relation of subband coe�cients. However, by relaxing the
time-invariance constraint, it has been proved recently that
new solutions are possible: with multiwavelets, one is �-
nally able to construct [4] an orthogonal linear phase FIR
transform system.

Most lossy transform coders can be split into three dis-
tinct stages: transform, quantization and entropy coding.
While some of these might be combined, their separation
not only helps the implementation, but it also enables a
clean analysis of the performance impact of di�erent design
choices for each stage. In the light of this, we thus decided
to modify an existing transform coder (SPIHT [9]) | based
on the classic 9/7 biorthogonal wavelet | by replacing the

transform stage with one based on balanced multiwavelets,
that are specially designed for signal compression. There-
fore we get a quite fair comparison of the compression per-
formance of the two wavelets, since the complexity of the
other stages remains the same.

The organization of this paper is as follows: �rst we
give a short introduction to the theory and construction
of balanced multiwavelets. Then we brie
y describe the
SPIHT coder, which we used as our comparison platform.
We also overview some implementation details which are
peculiar to the multiwavelet (MW) transform. Finally, we
discuss the achieved results.

2. MULTIWAVELETS

Generalizing the wavelet case, one can allow a multires-
olution analysis fVngn2Z of L2(R) to be generated by a
�nite number of scaling functions �0(t); �1(t); : : : ; �r�1(t)
and their integer translates. Then, the multiscaling func-
tion �(t) := [�0(t); : : : ; �r�1(t)]

> veri�es a 2-scale equation

�(t) =
X
k

M[k]�(2t� k) (1)

where now fM[k]gk is a sequence of r � r matrices of real
coe�cients. The multiresolution analysis structure gives
V1 = V0 � W0 where W0 is the orthogonal complement
of V0 in V1. We can construct an orthonormal basis of
W0 generated by  0(t);  1(t); : : : ;  r�1(t) and their integer

translates with  (t) := [ 0(t); : : : ;  r�1(t)]
> derived by

 (t) :=
X
k

N[k]�(2t� k) (2)

where fN[k]gk is a sequence of r � r matrices of real co-
e�cients obtained by completion of fM[k]gk. Introducing
the re�nement masksM(z) := 1

2

P
n
M[n]z�n and N(z) :=

1

2

P
n
N[n]z�n, the equations (1) and (2) translate in Fourier

domain into

�(2!) =M(ej!)�(!) and 	(2!) = N(ej!)�(!): (3)

For simplicity and without loss of generality, we restrict
ourselves to the case r = 2. Furthermore, we will assume
that the sequences fM[k]gk and fN[k]gk are �nite and thus
that �(t) and  (t) have compact support. We assume also
that M(z) veri�es a matrix Smith-Barnwell orthogonality
condition [6] so that the scaling functions and their integer



translates form an orthonormal basis of V0. Thus, for s(t) 2
V0, we have

s(t) =
X
n

s
>

0 [n]�(t� n) (4)

then from V0 = V�1 �W�1, we get

s(t) =
X
n

s
>

�1[n]�(
t

2
� n) + d

>

�1[n] (
t

2
� n) (5)

and we derive the well known relations between the coe�-
cients at the analysis step

s�1[n] =
X
k

M[k � 2n]s0[k] (6)

d�1[n] =
X
k

N[k � 2n]s0[k] (7)

and for the synthesis, we get

s0[n] =
X
k

M
>[n� 2k]s�1[k] +N

>[n� 2k]d�1[k] (8)

These relations enable us to construct a multi-input multi-
output �lter bank (multi�lter bank [7]). In case of a one-
dimensional signal, it then requires vectorization of this in-
put signal to produce an input signal which is 2-dimensional.
A simple way to do that is to split a one-dimensional signal
into its polyphase components. Introducing�

m0(z)
m1(z)

�
:=M(z2)

�
1
z�1

�
(9)

and in the same way n0(z) and n1(z), the system can then
be seen as a 4 channel time-varying �lter bank (Fig. 1).

In [6, 7, 8], we showed that if the components m0(z)
and m1(z) of the lowpass branch have di�erent spectral
behavior, e.g. lowpass behavior for one, highpass for the
other, it then leads to unbalanced channels that mix the
coarse resolution and details coe�cients and create strong
oscillations. One expect then some class of smooth signals
to be preserved by the lowpass branch and cancelled by the
highpass. Therefore, we de�ne a multiwavelet system to be
balanced of order p if the polynomial structure of an input
signal is captured up to degree p� 1 by the lowpass branch
coe�cients.

Using equivalence results proved in [8], we have designed
a Daubechies like family of balanced multiwavelets (named
BAT). With a Gr�obner basis approach [5], we have been
able to construct all the multiwavelets of minimal com-
pact support with 
ipped scaling functions (i.e. m1(z) =
z�2L+1m0(z

�1)) and symmetric / antisymmetric wavelets
for order 1, 2 and 3 of balancing. Fig. 2 and 3 show exam-
ples of high order balanced multiwavelets with these prop-
erties. Fig. 4 gives an example of another family (inspired
by the DGHMmultiwavelet [4]) of fully symmetric balanced
orthogonal multiwavelets constructed by Selesnick in [10].

3. SPIHT WITH MULTIWAVELETS

This section gives a very short overview of SPIHT and then
details some implementation aspects that are peculiar to
multiwavelet transforms.
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Figure 1: Multi�lter bank seen as a time-varying �lter bank.
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Figure 2: Order 2 balanced orthogonal (BAT) multiwavelet:
the scaling functions are 
ipped around 2, the wavelets are
symmetric/antisymmetric, the length of the �lters is 8 taps.
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Figure 3: Order 3 balanced orthogonal (BAT) multiwave-
let: the scaling functions are 
ipped around 3, the wavelets
are symmetric/antisymmetric, the length of the �lters is 12
taps.
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Figure 4: Order 1 balanced DGHM multiwavelet: the scal-
ing functions and wavelets are symmetric/antisymmetric,
the length of the �lters are resp. 3,7,7,7 taps.



3.1. SPIHT

SPIHT belongs to a class of embedded transform coders
which originated with Shapiro's embedded zerotree wavelet
scheme (EZW [11]). Here, we describe only its main op-
erating principles. First, the image is transformed into its
dyadic (pyramid) wavelet decomposition. The coe�cients
are then assigned to the nodes of a hierarchical tree, such
that the coe�cients in the parent nodes are representative

(in terms of energy) for their o�spring nodes. The coder
output is generated by successively re�ning the (quantized)
coe�cients in order of decreasing magnitude (concept of
signi�cance [3]). This can be done very e�ciently, since the
tree structure exploits the self-similarity across scales of the
wavelet transform. Finally, an arithmetic coding stage re-
moves the remaining redundancy.

3.2. Multiwavelet Transform

Since multiwavelets are de�ned for vector-valued signals,
one might be tempted to vectorize an image signal by group-
ing pairs of rows or columns together. But besides introduc-
ing a fundamental asymmetry, this approach also doesn't
�t the notion that the LL-subband represents a coarse ap-
proximation of the original image.1 The latter is a key to
the performance of SPIHT, and consequently we decided
that no vectorization should be used. This is in fact pos-
sible by viewing the MW transform as a time-varying �l-
ter bank (see Fig. 1). The coe�cients of the two lowpass
(highpass) �lters are simply interleaved at the output, e.g.
in the one-dimensional case we get the following lowpass
signal: [: : : ; L0[0]; L1[0]; L0[4]; L1[4]; : : : ]. A separable 2-D
transform can now be de�ned in the usual way as the ten-
sor product of two 1-D transforms. Obviously this approach
is symmetric in the coordinates, i.e. every combination of
horizontal and vertical �lters appears at the output. But
now we get 16 subbands, instead of the usual 4 with scalar
wavelet transforms. The question is how this �ts into the
pyramid decomposition scheme required by SPIHT.

Let us �rst observe that the lowpass image, correspond-
ing to the classic LL subband, contains the four lowpass-
only bands and will be composed of 2x2 blocks as follows:

L0L0[x; y] L0L1[x; y]
L1L0[x; y] L1L1[x; y]

Since this lowpass image undergoes further decomposition,
we have to verify that it is a coarse approximation of the
original. And it is indeed: as we can see in Fig. 3, the
two lowpass �lters (scaling functions) are 
ipped version
of each other (mutual symmetry) with a group delay of 2.
Thus our lowpass image closely resembles the output of a
classic biorthogonal wavelet transform. Since the compres-
sion performance depends critically on this approximation
behavior, we can say that our experimental results clearly
con�rm these arguments. This no surprise since these ar-
guments were the starting point of the balancing concept
(i.e. the preservation/cancelation of discrete-time polyno-
mial signals by the lowpass/highpass branches of the time-
varying �lter bank in Fig. 1).

1
The main hurdle is that SPIHT cannot handle vector-valued

coe�cients without undergoing a major revision of the partition-

ing and quantization mechanisms.

Another implementation aspect which di�erentiates mul-
tiwavelets from their biorthogonal cousins is the handling of
boundary conditions. That is, the extension of a �nite sup-
port input signal such that the transform coe�cients have
speci�c symmetry properties. The goal is to get a non-
expansive transform, i.e. input and output dimensionality
should be the same. For multirate linear phase FIR �lter
banks this problem has been treated extensively in [2]. But
our lowpass �lters are only mutually symmetric and thus
we had to develop speci�c methods of signal extension. In
the following we limit ourselves to 1-D transforms, as the
extension to 2-D is implicit for separable transforms. Fur-
ther we assume that the signal has length N , a multiple
of 4, and that N is larger than the �lter size K (to avoid
wrap-around conditions).

With anN -periodic signal extension the coe�cients obey
the trivial symmetry condition C[i] = C[i mod N ]. But
this simple periodic approach may introduce discontinu-
ities and hence add energy to the high frequency bands.
Therefore it should be avoided in coding applications, as
con�rmed by our compression tests. The method of choice
is a symmetric extension (with period 2N), whereby the
signal [x0; : : : ; xN�1] is extended to [: : : ; x1; x0; x0; x1; : : :
xN�2; xN�1; xN�1; xN�2; : : : ] The boundary points have to
be doubled due to the even �lter support K. To make sure
that only N coe�cients are needed to reconstruct [x0; : : : ;
xN�1], we have to exploit the following �lter symmetries:

m0[i] = m1[K � 1� i]

n0[i] = n0[K � 1� i]

n1[i] = �n1[K � 1� i]

where i = 0; : : : ; K � 1. These equations yield di�erent
symmetries for the coe�cients C[n] =

PK�1

i=0
h[i]x[n�i��],

depending on the �lter shift � (h stands for any of the four
�lters). The natural choice � = K=2 does not work, since
then there are no symmetries to compute the coe�cients
C[N ]. We have determined the values � = 0 for order 1
balancing (with K = 4), � = 2 for order 2 (with K = 8),
and � = 4 for order 3 (K = 12). Then one gets the following
coe�cient symmetries:

L0[�i] = L1[i� 4] L0[N + i] = L1[N � i� 4]

L1[�i] = L0[i� 4] L1[N + i] = L0[N � i� 4]

H0[�i] = H0[i� 4] H0[N + i] = H0[N � i� 4]

H1[�i] = �H1[i� 4] H1[N + i] = �H1[N � i� 4]

for i = 0; 4; 8; : : : ; 4bN=8c. Hence N coe�cients su�ce to
represent the input signal.

3.3. Results and discussion

Fig. 5 shows that order 2 balanced multiwavelets achieve
fairly good results with PSNR values within 0.5 dB of the
original SPIHT with biorthogonal 9/7-tap �lters. This is
remarkable, since the signi�cance tree and arithmetic com-
pression stages have not been �ne-tuned to match the time-
varying nature of the MW transform. It also means an av-
erage of 5 dB improvement in PSNR for \Lena" compared
to previous multiwavelet based image coders (DGHM mul-
tiwavelet with pre/post �ltering [12]). This proves the su-
periority of the balanced multiwavelet approach over MW
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Figure 5: Multiwavelet performance comparison

systems requiring pre/post �ltering of the input data be-
cause of unbalanced lowpass �lters m0(z);m1(z). Namely,
with balancing one is able to take full advantage of the
interesting properties of multiwavelet systems. The balanc-
ing order 3 multiwavelets are slightly better than order 2
at rates below 0.2 bpp, above that, they are slightly worse.
We also implemented a coder with the new balanced DGHM
multiwavelets �rst introduced in [10]. The bad performance
can partly be explained by the fact that there is no easy way
to make the transform non-expansive. We had to interpo-
late a coe�cient to get that property. While the formula
is exact for real coe�cient values, the distortion introduced
by the quantization could have been ampli�ed.

On a more subjective level, a visual comparison (Fig. 6
and 7) reveals a disturbing tiling e�ect for balancing order 2
multiwavelets. If the order 3 MW is used instead, the more
familiar ringing artifacts almost \cover up" these tiling ef-
fects. We suspect two main reasons for these tiling e�ects:
�rst, the two lowpass �lters introduce a 0.5 pixel phase shift
at each iteration, due to their structure and the implemen-
tation constraints (border symmetrization). Thus high en-
ergy coe�cients at an image discontinuity will be less well
aligned across scales, hampering the e�ciency of the tree
prediction as illustrated in Fig. 8. Secondly, the two high-
pass �lters have very di�erent spectral characteristics, and
therefore their outputs should be treated separately in the
tree/entropy coding stages. Possibly some smoothing �lter
could be used to lessen the disturbing tiling e�ect.

Given the relatively small performance gap, the ques-
tion is whether balanced multiwavelets could outperform
biorthogonal wavelets. Fig. 9 shows that the MW trans-
form produces more high amplitude coe�cients then the
9/7-tap wavelets (at threshold 8, about 18(20) % of all co-
e�cients are signi�cant). This is a strong indication that
the MW transform is not suited for low bitrate compression.
Every improvement in successive stages (tree, entropy cod-
ing) could as well be applied to biorthogonal wavelets. It
is therefore the transform itself, or rather its implementa-
tion, which would have to be improved. But this proves
di�cult, since e.g. the constraints imposed by the down-

Figure 6: Lena at 0.1 bpp, from top to bottom: 9/7-tap
biorthogonal (30.23 dB PSNR), 8-tap multiwavelet (balanc-
ing order 2, 29.78 dB), 12-tap multiwavelet (balancing order
3, 29.83 dB)



Figure 7: Detail of Lena at 0.25 bpp: 8-tap multiwavelet
transform (left), original SPIHT with 9/7-tap �lters (right)

Figure 8: Tree decomposition of the horizontal subband
magnitudes: 9/7-tap biorthogonal wavelet (left), 8-tap mul-
tiwavelet (right). The latter has less well-localized high-
energy coe�cients.

sampling factor and the border symmetry conditions imply
that the mentioned lowpass phase shift cannot be avoided.
On the other hand, it is possible to construct a highpass �l-
ter pair with 
ip-symmetry as in the lowpass branch [WEB].
However the coding results are worse than for the symmet-
ric/antisymmetric highpass construction presented here.

4. CONCLUSION

In this paper, we implemented a balancedmultiwavelet trans-
form for a signi�cance tree quantization image coder (namely
SPIHT). With the introduction of the balancing concept,
it is possible to design general families of high order bal-
anced multiwavelets with the properties required for prac-
tical signal processing (preservation/cancelation of discrete-
time polynomial signals in the lowpass/highpass subbands,
FIR, linear phase and orthogonality). The results obtained
so far show that multiwavelets are �nally establishing them-
selves as a convincing alternative in DSP tools.

On the other hand, our results are also experimental
evidence for the well-known fact that strict orthogonality
plays a minor role in image transform coding. Design pa-
rameters such as �lter length, smoothness and regularity
have a much heavier impact on performance. The design
of non-expansive transforms, which are essential for image
coding, is harder in the multiwavelet case. In conclusion,
the multiwavelets known so far are still no plug-in replace-
ments for the more traditional scalar wavelets.
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