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Abstract—We study coding schemes for theq-ary symmetric
channel with moderate alphabet sizesq that are much smaller
than the q = 2256 considered as “entry level” in some recently
proposed packet-based schemes. First, we show theoretical opti-
mality of a simple layered scheme, then we propose a practical
coding scheme based on a simple modification of standard binary
LDPC decoding.

I. I NTRODUCTION

The q-ary symmetric channel (q-SC) with error probability
p takes aq-ary symbol at its input and outputs either the
unchanged input symbol, with probability1−p, or any of the
otherq−1 symbols, with probabilityp/(q−1). It has attracted
some attention recently as a more general channel model for
packet-based error correction. For very largeq, its normalized
capacity approaches that of an erasure (packet loss) channel.
In the following, we will only consider channel alphabets of
sizeq = 2m with m ∈ N.

The capacity of theq-SC with error probabilityp is

Cq-SC = m− h(p)− p log(2m − 1) (1)

bits per channel use, whereh(p) = −p log p−(1−p) log(1−p)
is the binary entropy function. (All logarithms in this paper are
to the base 2.) Asymptotically inm, the normalized capacity
Cq-SC/m thus approaches1− p, which is the capacity of the
binary erasure channel (BEC) with erasure probabilityp.
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Fig. 1. Capacity ofq-SC vs. marginal BSC (error probabilityp = 0.1).

Recent work [1], [2], [3], [4] has shown that it is possible
to approachCq-SC for very large alphabet sizesq = 2m, with
symbols of hundreds to thousands of bits. The focus of the
present work is on smallq, with symbols of tens of bits at
most, for which different coding techniques are needed.

The q-ary channel input and output symbols will be rep-
resented by binary vectorsx = [x1, x2, . . . , xm]T and y =
[y1, y2, . . . , ym]T , respectively. A simplistic coding approach
consists in decomposing theq-SC into m binary symmetric
channels (BSC) with crossover probability

pm =
pq

2(q − 1)
=

p

2(1− 2−m)
, (2)

which have capacityCBSC = 1− h(pm) each.
We briefly study the normalized capacity loss∆ =

Cq-SC/m − CBSC. For fixed m, we havelimp→0 ∆ = 0; so
using binary codes with independent decoders on them-fold
BSC decomposition might be good enough for smallp (e.g.
p < 10−4). However, forp fixed, we havelimm→∞∆ =
h(p/2) − p, which can be a substantial fraction of the nor-
malizedq-SC capacity (e.g., forp = 0.1, h(p/2)− p = 0.19).
Figure 1 shows that already for smallm, theq-SC capacity is
substantially larger than what can be achieved with the BSC
decomposition. Clearly, there is a need for coding schemes for
“large” p (sayp > 10−2), but moderatem (say2 ≤ m < 20).
Figure 2 presents a different comparison, this time with fixed
m = 4 and variable error probabilityp. The capacity gap in
Figure 2 will widen with growingm, increasing the range of
p for which specificq-SC coding is of interest .

II. L AYERED CODING SCHEME

It is possible to build practical codes suited for iterative
decoding that operate directly in theq-ary alphabet (e.g.,
LDPC codes over GF(q), [5]), but the decoder will in general
suffer from an exponential increase (inm) of the size of the
messages that need to be passed between stages. Thus even
moderatem may be beyond reach of practical implementa-
tions with existing low-complexity decoding algorithms (e.g.,
[6]). As an alternative, we will study the following layered
coding scheme based on binary codes. Blocks ofk symbols
[x1,x2, . . . ,xk] are split intom bit layers[xi,1, xi,2, . . . , xi,k]
and each layer is independently encoded with a code for
a binary symmetric erasure channel (BSEC) with erasure
probability δi and crossover probabilityεi, to be specified



below. The key idea is to decode the layers in a fixed order and
to declarebit erasuresat those symbol positions in which a
bit error occurred in a previously decoded layer. This saves on
the code redundancy needed in the later layers, since erasures
can be corrected with less redundancy than bit errors.

The decoder performs successive decoding of them layers,
starting from layer 1. All errors corrected at layeri and
below are forwarded to layeri + 1 as erasures, that is all
bit error positions found in layers 1 up toi will be marked
as erased in layeri + 1, even though the channel provides
a (possibly correct) binary output for those positions. Letεi

be the probability that the channel outputy is equal to the
input x in positions 1 toi − 1 and differs in positioni (i.e.,
[y1, y2, . . . , yi−1] = [x1, x2, . . . , xi−1] andyi 6= xi). A simple
counting argument shows that there are2m−i such vectorsy
(6= x), out of a total2m − 1. The i-th virtual subchannel is
thus characterized by

εi =
2m−i

2m − 1
p, (3)

δi =
i−1∑

j=1

εj =
2m − 2m−i+1

2m − 1
p. (4)

Theorem 1:The layered scheme achievesq-SC capacity.
Proof: We assume an ideal scheme, in which all layers

operate at their respective BSEC capacities and correct all
errors and erasures. The BSEC(δ, ε) capacity is

CBSEC = (1− δ)
(

1− h

(
ε

1− δ

))
. (5)

Hence the sum of the layer rates becomes
m∑

i=1

Ri =
m∑

i=1

(1− δi)
(

1− h

(
εi

1− δi

))
(6)

= m +
m∑

i=1

{
− δi − (1− δi) log(1− δi)

+ εi log εi + (1− δi+1) log(1− δi+1)
}

(7)
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Fig. 2. Capacity ofq-SC vs. marginal BSC (alphabet sizeq = 24).

= m +
m∑

i=1

{− (m− i)εi + εi log εi

}

+ (1− p) log(1− p) (8)

= m +
m∑

i=1

{− (m− i)εi + (m− i)εi

}
+ p log p

− p log(2m − 1) + (1− p) log(1− p) (9)

= m− h(p)− p log(2m − 1) = Cq-SC,

where (6) follows from (5) and the definition of the layered
scheme, (7) follows fromδi + εi = δi+1 (which holds up to
i = m, whenδm+1 = p), (8) follows from the evaluation of
the telescoping sum and

∑m
i=1 δi =

∑m
i=1(m − i)εi, and (9)

follows from substituting (3) forεi.
The intuition behind the optimality of this (seemingly

suboptimal) layered scheme is that once a bit error (and thus a
symbol error) has been detected, all the following layers have
bit error probability 1/2 in that position, since theq-SC assigns
uniform probabilities over the possible symbol error values.
Now the BSC(1/2) has zero capacity and so the concerned
bits can be treated as erasures with no loss.

In view of the incremental capacity gains that are dimin-
ishing in m, as can be seen in Figure 1, an interesting
variant of the layered scheme is to useµ < m BSEC
layers as above, followed by a single “thicker” layer, which
sends the remainingm − µ bits (per symbol) over the same
BSEC(δµ+1, εµ+1). In particular, this could even be beneficial
in practical schemes, due to the trade-off between block size
and capacity gap.

III. SYMMETRIC CODING SCHEME

The main disadvantage of the layered scheme is that in a
practical implementation, each layer will need a different code
that is tuned to the effective erasure and error probabilities re-
sulting from the layers preceding it. This makes it impractical
for hardware implementations, since the required silicon area
would necessarily grow with the number of layers.

Ideally, a coding scheme for theq-SC should be symmetric
in the bits composing a symbol, that is, no artificial hierarchy
among bit layers should be introduced (notice that the order
of the bit layers may be chosen arbitrarily). We propose to
encode all bits composing the symbols with one “big” binary
code, which needs to satisfy just slightly stricter constraints
than an ordinary code for the BSC, while the decoder alone
will exploit the knowledge about the underlyingq-SC. The
key concept from the layered scheme that should carry over is
that the decoder is able to declare erasures at certain symbol
positions and thus needs less error correction capability (for
part of the bits in erased symbols).

Our proposal for a practical symmetricq-SC coding scheme
is based on a binary low density parity check (LDPC) code
with source block sizeK = mk bits. We assume that the vari-
able nodes in the LDPC decoder receive virtually independent
extrinsic soft estimates ofXi,j (that is, biti of symbol/vector
j, j = 1, . . . , k) from the check nodes. These amount to



estimates ofP (Xi,j |Y[j] = y
[j]

) or the correspondinglog-
likelihood ratio (LLR), L(X) = log(Pr(X =1)/ Pr(X =0)).
Notice that this assumption does not actually hold, but it allows
one to derive e.g. the standard binary variable-node decoding
rule. As usual, the notationy

[j]
denotes the block consisting of

all symbols/vectorsyt except thej-th (the underline reminds
that this is a matrix form > 1). This notation also makes clear
what additional constraint the code should satisfy: we want an
extrinsic estimate ofXi,j that is independent of the other bits
Xs 6=i,j of the same symbol, so that in particular we may write
P (Xi,j |X1,j , . . . , Xi−1,j ,Y[j] = y

[j]
) = P (Xi,j |Y[j] = y

[j]
).

A necessary condition for this is that the parity checks
containingXi,j do not involve any of the bitsXs 6=i,j ; this
can be achieved by using an appropriate edge interleaver in
the LDPC construction.

It turns out that the properties of theq-SC can be taken
into account via a simple modification of the variable node
computation in the message-passing decoding algorithm for
binary LDPC codes. We factor thea posteriori probability
(APP) of symbolXj as follows:

P (Xj |Y = y) .= P (Yj = yj |Xj)P (Xj |Y[j] = y
[j]

) (10)

= P (Yj = yj |Xj)
m∏

i=1

P (Xi,j |Y[j] = y
[j]

),

(11)

where the factorization in (11) is made possible by the above
independence assumption (the symbol

.= denotes equality up
to a positive normalization constant). Using the definition of
the q-SC, this becomes

P (Xj = xj |Y = y)

.=

{
(1− p)

∏m
i=1 P (Xi,j = xi,j |Y[j] = y

[j]
), xj = yj ,

p
2m−1

∏m
i=1 P (Xi,j = xi,j |Y[j] = y

[j]
), xj 6= yj .

(12)

We define the extrinsic probability thatXj = yj as

βj =
m∏

i=1

P (Xi,j = yi,j |Y[j] = y
[j]

) =
m∏

i=1

pi,j , (13)

where we introducedpi,j = P (Xi,j = yi,j |Y[j] = y
[j]

) for
convenience. The normalization constant in (12) thus becomes

γj = (1− p)βj +
p

2m − 1
(1− βj). (14)

Then the bit APP may be be obtained by the marginalization

P (Xi,j = xi,j |Y = y) =
∑

x[i],j∈{0,1}m−1

P (Xj = xj |Y = y),

(15)
which may be written as

P (Xi,j = xi,j |Y = y)

=





[
(1− p)β[i],j + p

2m−1 (1− β[i],j)
]
· pi,j

γ , xi,j = yi,j ,
p

2m−1P (Xi,j = xi,j |Y[j] = y
[j]

)γ−1, xi,j 6= yi,j ,

(16)

whereβ[i],j =βj/pi,j is the “intra-symbol” extrinsic probabil-
ity that Xj = yj , using no information on bitXi,j . Finally,
we may express thea posterioribit-level LLR as

Lapp(Xi,j =yi,j)

= log
(

(2m − 1)βj − 2mpβj + ppi,j

p(1− pi,j)

)

= log
(

(2m − 1)β[i],j − 2mpβ[i],j + p

p
· pi,j

1− pi,j

)

= log
(

1 +
2m − 2mp− 1

p
· β[i],j

)
+ Lextr(Xi,j =yi,j).

(17)

(The usualL(X) is obtained fromL(X = y) = log(Pr(X =
y)/ Pr(X =1− y)) via a sign flip depending ony.)

The second term in (17) corresponds to the extrinsic in-
formation from the check nodes that is processed at the
variable nodes in order to compute the bit APP in stan-
dard binary LDPC decoding. The difference lies in the first
term in (17), which is the equivalent of the channel LLR,
Lch(X) = log(P (y|X = 1)/P (y|X = 0)), in the standard
binary case. When the extrinsic information on the bitsXs 6=i,j

favors the hypothesisXj 6= yj , the productβ[i],j will be small
and therefore the channel LLR in (17) will be close to zero,
which is equivalent to declaring a bit erasure. This shows that
the symmetric LDPC scheme relies on “distributed”soft bit
erasure estimates, while in the layered scheme the erasures are
declared in ahard “top-down” fashion.

Equation (17) describes the main modification required to
turn a binary message passing LDPC decoder into one for the
q-ary symmetric channel. For practical implementation pur-
poses, it should probably be modified (approximated) in order
to avoid switching back and forth between probabilities and
LLRs when computingβj . A final detail is the specification
of the initial channel LLR in (15), which is needed to start
the decoder iterations. By inserting the memoryless worst-case
estimateβ[i],j = 2−m+1 into (15), we obtain the channel term

log
(

1 +
2m − 2mp− 1

p
· β[i],j

)
= log

(
2(1− 2−m)− p

p

)
,

(18)
which is exactly the channel LLR for the marginal BSC with
crossover probabilitypm given in (2).

Notice that the decoder iterations are still exclusively be-
tween variable and check node computations, like in the binary
case. However, computing the bit-levelLapp at the variable
nodes requires the extrinsic information (the check node mes-
sages) for all bits within a symbol; this might be considered
an additional level of message exchanges (specifically, plain
copying of messages), but it does not involve iterations of
any kind. The complexity increase compared to binary LDPC
decoding is on the order of at mostm operations per variable
node, depending on the scheduling. In fact, the marginalization
operation (15) is reminiscent of a combined detector and
variable-node decoder for binary LDPC codes that are directly
mapped to larger (MIMO) signal constellations [7]. Thanks
to the symmetry of theq-SC, here it is not necessary to
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Fig. 3. q-SC vs. BSC rate 1/2 LDPC decoding (q = 24, k = 150 symbols).

actually sum over all2m symbol values. Other similar work
includes iterative demapping and decoding [8], [9], which
however involves proper iterations between the demapper and
the LDPC decoder, that are treated as two separate functional
blocks.

IV. SIMULATION RESULTS

To assess the performance gains of an LDPC decoder
adapted to theq-SC compared to an ordinary binary decoder
(for the BSC decomposition outlined in Sec. I), we ran simula-
tions using a standard(3, 6)-regular, rate 1/2 LDPC code (see,
e.g., [10, Ch. 3]). No particular interleaving measures were
taken that would have guaranteed the (quasi-)independence
of the extrinsic bit estimates within a symbol. Thus plenty
of optimization opportunities are left open, be it in the code
(irregular LDPC) or the interleaver. Exactly the same encoder
and channel model are used, once with the standard BSC
decoder, and once with theq-SC decoder. Results form = 4
and block lengthk = 150 symbols (N = 1200 channel
bits) are shown in Fig. 3; results for block lengthk = 1500
(N =12000) are shown in Fig. 4. Although performance is far
from the Shannon limit (because the code is not optimized),
the advantage of theq-SC decoder is clearly visible.

V. OUTLOOK

We expect to have first results on practical code optimization
in time for the conference.
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