Variable-Length Codes getting Framed

Claudio Weidmann
IRISA-INRIA
Rennes, France

2nd Asian-European Workshop on Information Theory Breisach, Germany, June 26-29, 2002

Setup

- The decoder knows N_{k} because the sequence is framed
- The set of all sequences of length $N_{k}=n$ that are encodings of k symbols forms a nonlinear block code with $d_{\text {min }}(k, n)$
- Free distance:

$$
\begin{aligned}
& d_{\text {free }}= \\
& \quad \min \left\{d_{\min }(k, n): k=1,2, \ldots ; n \in \mathcal{N}_{k}\right\}
\end{aligned}
$$

Variable-length codes

- Length distribution

$$
\left(m_{1}, m_{2}, \ldots, m_{\ell_{\max }}\right)
$$

- Uniquely decodable:

$$
\sum_{\ell=1}^{\ell_{\max }} m_{\ell} 2^{-\ell} \leq 1
$$

- Compact binary VLCs have Kraft sum 1
- Compact prefix-free codes have $d_{f r e e}=1$

Segmentation trellis

Counting sequences to bound $d_{\text {free }}$

$M(k, n)$ is the number of source sequences of length k that are encoded into n bits.

- Singleton bound:

$$
d_{\min } \leq n+1-\log _{2} M .
$$

- Plotkin bound:

$$
d_{m i n} \leq \frac{M}{M-1} \cdot \frac{n}{2}
$$

Proof: Sum of all distances:

$$
\begin{equation*}
S=\sum_{x \in \mathcal{C}} \sum_{y \in \mathcal{C}} d(x, y) \geq M(M-1) d_{\min } \tag{1}
\end{equation*}
$$

Express S as sum over bit positions (M_{i} is the number of codewords with a 1 in position i):

$$
\begin{equation*}
S=\sum_{i=1}^{n} 2 M_{i}\left(M-M_{i}\right) \leq n \frac{M^{2}}{2} \tag{2}
\end{equation*}
$$

- Tightened Plotkin bound (optimize over $j=0,1, \ldots, n-1$):

$$
d_{\min } \leq \frac{M}{M-2^{j}} \cdot \frac{n-j}{2}
$$

Proof: Divide \mathcal{C} into 2^{j} classes of codewords which are identical in the first j positions. Let M_{j} be the size of the respective class. Then $d_{\min } \leq \frac{M_{j}}{M_{j}-1} \cdot \frac{n-j}{2}$ and the bound follows by observing that $\max \left\{M_{j}\right\} \geq M / 2^{j}$.

Examples

1. A compact code with length distribution
$(1,1,1,2)$ has $d_{\text {free }} \leq 2$, since $M(3,6)=13$
($6=1+1+4=1+2+3=2+2+2)$.
2. A compact code with length distribution $(0,1,1,3,6,12,8)$ has $d_{\text {free }} \leq 3$, due to e.g. $m_{4}=3$. If we further consider $A(n, d)$ for e.g. $n=5$, we see that $d_{f r e e} \leq 2$ (Plotkin bound too weak in this case).
3. The reversible (a.k.a. fix-free) VLC

$$
\mathcal{C}_{12}=\{00,11,010,101,0110\}
$$

(Takishima, Wada, Murakami 1995) with Kraft sum 0.8125 has $d_{\text {free }} \leq 2$, due to $m_{2}=2$. Proposition: $d_{f r e e}=2$.
Sketch of proof: $d_{\min }(1, \ell) \geq 2$ and "prefix, resp. suffix distances" ≥ 1.

All fix-free VLCs have $d_{f r e e} \geq 2$ if the distance between equal-length codewords is ≥ 2.
4. The binary comma code contains the words $0^{\ell-1} 1$ for $\ell=1, \ldots, \ell_{\max }$ (Kraft sum $1-2^{-\ell_{\max }}$) and has $d_{\text {free }}=2$. The last bit in a frame may be deleted.
5. Compact two-length codes have $d_{\text {free }}=1$.

$$
m_{1} 2^{-\ell_{1}}+m_{2} 2^{-\ell_{2}}=1
$$

Lemma 1 Let \mathcal{C}_{n} be a binary $\left(n, 2^{n-1}, 2\right)$ code. Then \mathcal{C}_{n} consists of either all the even weight words or all the odd weight words of length n.

Proof: Suppose \mathcal{C}_{n} contains both even and odd weight words. Then the "coset" $\overline{\mathcal{C}}_{n}=\mathcal{C}_{n}+0^{n-1} 1$ is also a ($n, 2^{n-1}, 2$) code and must be equal to $G F(2)^{n} \backslash \mathcal{C}_{n}$. But the minimum distance between even and odd weight words in \mathcal{C}_{n} is at least three, therefore there exists a pair of words (x, y) with $d(x, y)=1$ that is neither in \mathcal{C}_{n} nor in $\overline{\mathcal{C}}_{n}$, which is a contradiction.

Proposition 1 Any uniquely decodable VLC with multiplicity $m_{\ell}=2^{\ell-1}$ for some $\ell>\ell_{\text {min }}$ has $d_{\text {free }}=1$.

Proof: The Singleton bound implies $d_{\text {free }} \leq 2$. Let \mathcal{C}_{ℓ} be the subset of codewords of length ℓ. To have $d_{\text {free }}=2$, Lemma 1 requires $\mathcal{C}_{\ell}=\mathcal{E}_{\ell}$ (the even weight words of length ℓ) or $\mathcal{C}_{\ell}=\mathcal{O}_{\ell}$ (odd weight). Then for any $x \in \mathcal{C}_{\ell_{\text {min }}}$ we can always find a $y \in\{0,1\}^{\ell-\ell_{\text {min }}}$ such that $x y \in \mathcal{C}_{\ell}$. But this implies that also $y x \in \mathcal{C}_{\ell}$ and therefore the sequence $x y x$ is not uniquely decodable.

Asymptotia: Coding Extension Sources

- Binary memoryless source with $\operatorname{Pr}\{S=1\}=p$
- Ideal codeword length for k-th extension (k_{1} ones):

$$
n=-k_{1} \log p-\left(k-k_{1}\right) \log (1-p)
$$

- Decoder knows type $Q=\left(\frac{k_{1}}{k}, 1-\frac{k_{1}}{k}\right)$ of source sequence if $p \leq \frac{1}{3}$ or $p \geq \frac{2}{3}$
- Size of type class:
$\log \left|T_{Q}^{k}\right|=\log \binom{k}{k_{1}} \approx k H(Q)-\frac{1}{2} \log \frac{2 \pi\left(k-k_{1}\right) k_{1}}{k}$
- For $k_{1}=\lfloor p k\rfloor \gg 1$:

$$
n-\log \left|T_{Q}^{k}\right| \approx k D(Q \| P)+\frac{1}{2} \log (2 \pi k p(1-p))
$$

- Singleton bound:

$$
d_{\min }(k) \lesssim 1+\frac{1}{2} \log (2 \pi p(1-p))+\frac{1}{2} \log k
$$

Conclusions

- $d_{f r e e}$ of most practical VLCs is limited by the multiplicities of short codewords.
- Challenge: find a compact VLC with $d_{\text {free }}=2$ or prove that none exists.
- Criteria such as "speed" of resynchronization might be more important in applications.

