Variable-Length Codes getting Framed

Claudio Weidmann IRISA-INRIA Rennes, France

2nd Asian-European Workshop on Information Theory Breisach, Germany, June 26-29, 2002

Setup

- The decoder knows ${\cal N}_k$ because the sequence is framed
- The set of all sequences of length $N_k = n$ that are encodings of k symbols forms a nonlinear block code with $d_{min}(k, n)$
- Free distance:

 $d_{free} = \min\{d_{min}(k,n) : k = 1, 2, \dots; n \in \mathcal{N}_k\}$

Variable-length codes

• Length distribution

$$(m_1, m_2, \ldots, m_{\ell_{max}})$$

• Uniquely decodable:

$$\sum_{\ell=1}^{\ell_{max}} m_{\ell} 2^{-\ell} \leq 1$$

- Compact binary VLCs have Kraft sum 1
- Compact prefix-free codes have $d_{free} = 1$

Segmentation trellis

Counting sequences to bound d_{free}

M(k, n) is the number of source sequences of length k that are encoded into n bits.

• Singleton bound:

$$d_{min} \le n + 1 - \log_2 M.$$

• Plotkin bound:

$$d_{min} \leq \frac{M}{M-1} \cdot \frac{n}{2}.$$

Proof: Sum of all distances:

$$S = \sum_{x \in \mathcal{C}} \sum_{y \in \mathcal{C}} d(x, y) \ge M(M - 1)d_{min}.$$
 (1)

Express *S* as sum over bit positions (M_i is the number of codewords with a 1 in position *i*):

$$S = \sum_{i=1}^{n} 2M_i (M - M_i) \le n \frac{M^2}{2}.$$
 (2)

• Tightened Plotkin bound (optimize over j = 0, 1, ..., n - 1):

$$d_{min} \le \frac{M}{M-2^j} \cdot \frac{n-j}{2}$$

Proof: Divide C into 2^j classes of codewords which are identical in the first j positions. Let M_j be the size of the respective class. Then $d_{min} \leq \frac{M_j}{M_j-1} \cdot \frac{n-j}{2}$ and the bound follows by observing that $\max\{M_j\} \geq M/2^j$.

Examples

- 1. A compact code with length distribution (1,1,1,2) has $d_{free} \le 2$, since M(3,6) = 13(6 = 1 + 1 + 4 = 1 + 2 + 3 = 2 + 2 + 2).
- 2. A compact code with length distribution (0,1,1,3,6,12,8) has $d_{free} \leq 3$, due to e.g. $m_4 = 3$. If we further consider A(n,d) for e.g. n = 5, we see that $d_{free} \leq 2$ (Plotkin bound too weak in this case).
- 3. The reversible (a.k.a. fix-free) VLC

 $\mathcal{C}_{12} = \{00, 11, 010, 101, 0110\}$

(Takishima, Wada, Murakami 1995) with Kraft sum 0.8125 has $d_{free} \leq 2$, due to $m_2 = 2$. Proposition: $d_{free} = 2$. Sketch of proof: $d_{min}(1, \ell) \geq 2$ and "prefix, resp. suffix distances" ≥ 1 .

All fix-free VLCs have $d_{free} \ge 2$ if the distance between equal-length codewords is ≥ 2 .

- 4. The binary comma code contains the words $0^{\ell-1}1$ for $\ell = 1, \ldots, \ell_{max}$ (Kraft sum $1 2^{-\ell_{max}}$) and has $d_{free} = 2$. The last bit in a frame may be deleted.
- 5. Compact two-length codes have $d_{free} = 1$.

$$m_1 2^{-\ell_1} + m_2 2^{-\ell_2} = 1$$

Lemma 1 Let C_n be a binary $(n, 2^{n-1}, 2)$ code. Then C_n consists of either all the even weight words or all the odd weight words of length n.

Proof: Suppose C_n contains both even and odd weight words. Then the "coset" $\overline{C}_n = C_n + 0^{n-1}1$ is also a $(n, 2^{n-1}, 2)$ code and must be equal to $GF(2)^n \setminus C_n$. But the minimum distance between even and odd weight words in C_n is at least three, therefore there exists a pair of words (x, y) with d(x, y) = 1 that is neither in C_n nor in \overline{C}_n , which is a contradiction.

6

Proposition 1 Any uniquely decodable VLC with multiplicity $m_{\ell} = 2^{\ell-1}$ for some $\ell > \ell_{min}$ has $d_{free} = 1$.

Proof: The Singleton bound implies $d_{free} \leq 2$. Let C_{ℓ} be the subset of codewords of length ℓ . To have $d_{free} = 2$, Lemma 1 requires $C_{\ell} = \mathcal{E}_{\ell}$ (the even weight words of length ℓ) or $C_{\ell} = \mathcal{O}_{\ell}$ (odd weight). Then for any $x \in C_{\ell_{min}}$ we can always find a $y \in \{0, 1\}^{\ell - \ell_{min}}$ such that $xy \in C_{\ell}$. But this implies that also $yx \in C_{\ell}$ and therefore the sequence xyx is not uniquely decodable.

Asymptotia: Coding Extension Sources

- Binary memoryless source with $\Pr{S=1} = p$
- Ideal codeword length for k-th extension (k_1 ones):

$$n = -k_1 \log p - (k - k_1) \log(1 - p)$$

- Decoder knows type $Q=(\frac{k_1}{k},1-\frac{k_1}{k})$ of source sequence if $p\leq \frac{1}{3}$ or $p\geq \frac{2}{3}$
- Size of type class:

$$\log |T_Q^k| = \log {\binom{k}{k_1}} \approx kH(Q) - \frac{1}{2}\log \frac{2\pi(k-k_1)k_1}{k}$$

• For
$$k_1 = \lfloor pk \rfloor \gg 1$$
:
 $n - \log |T_Q^k| \approx kD(Q||P) + \frac{1}{2}\log(2\pi kp(1-p))$

• Singleton bound:

$$d_{min}(k) \lesssim 1 + \frac{1}{2}\log(2\pi p(1-p)) + \frac{1}{2}\log k$$

Conclusions

- d_{free} of most practical VLCs is limited by the multiplicities of short codewords.
- Challenge: find a compact VLC with $d_{free} = 2$ or prove that none exists.
- Criteria such as "speed" of resynchronization might be more important in applications.