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Abstract—This paper studies coding schemes for theq-ary
symmetric channel based on binary low-density parity-check
(LDPC) codes that work for any alphabet size q = 2m,
m ∈ N, thus complementing some recently proposed packet-
based schemes requiring largeq. First, theoretical optimality
of a simple layered scheme is shown, then a practical coding
scheme based on a simple modification of standard binary LDPC
decoding is proposed. The decoder is derived from first principles
and using a factor-graph representation of a front-end thatmaps
q-ary symbols to groups ofm bits connected to a binary code.
The front-end can be processed with a complexity that is linear
in m = log

2
q. An extrinsic information transfer chart analysis is

carried out and used for code optimization. Finally, it is shown
how the same decoder structure can also be applied to a larger
class ofq-ary channels.

Index Terms—q-ary symmetric channel, low-density parity-
check (LDPC) codes, decoder front-end.

I. I NTRODUCTION

T HE q-ary symmetric channel (q-SC) with error probabil-
ity ǫ takes aq-ary symbol at its input and outputs either

the unchanged input symbol, with probability1 − ǫ, or one
of the otherq − 1 symbols, with probabilityǫ/(q − 1). It has
attracted some attention recently as a more general channel
model for packet-based error correction. For very largeq,
its appropriately normalized capacity approaches that of an
erasure (packet loss) channel. In the following, we will only
consider channel alphabets of sizeq = 2m with m ∈ N.

The capacity of theq-SC with error probabilityǫ is

Cq-SC = m − h(ǫ) − ǫ log2(2
m − 1)

bits per channel use, whereh(x) = −x log2 x−(1−x) log2(1−
x) is the binary entropy function. Asymptotically inm, the
normalized capacityCq-SC/m thus approaches1−ǫ, which is
the capacity of the binary erasure channel (BEC) with erasure
probability ǫ.
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Recent work [1]–[5] has shown that it is possible to devise
coding schemes that approachCq-SC for large alphabet sizes
q = 2m, with symbols of hundreds to thousands of bits, and
complexityO(log q) per code symbol. The focus of the present
work is on smallerq, with symbols of tens of bits at most,
although the presented coding techniques will work for any
q = 2m.

The q-ary channel input and output symbols will be rep-
resented by binary vectors of lengthm. Hence a simplistic
coding approach consists in decomposing theq-SC into m
binary symmetric channels (BSCs) with crossover probability

ǫBSC =
qǫ

2(q − 1)
=

ǫ

2(1 − 2−m)
, (1)

which have capacityCBSC = 1 − h(ǫBSC) each.
We briefly study the normalized capacity loss,∆ =

Cq-SC/m−CBSC, which results from (wrongly) assuming that
the q-SC is composed of independent BSCs. For fixedm,
we havelimǫ→0 ∆ = 0; so using binary codes with inde-
pendent decoders on them-fold BSC decomposition might
be good enough for smallǫ (e.g. ǫ < 10−3). However,
Fig. 1 shows that the relative capacity lossm∆/Cq-SC =
1−mCBSC/Cq-SC increases close to linearly inǫ. For fixedǫ,
we havelimm→∞ ∆ = h(ǫ/2)− ǫ, which can be a substantial
fraction of the normalizedq-SC capacity (e.g., forǫ = 0.1,
h(ǫ/2) − ǫ = 0.19). Fig. 2 shows that already for smallm,
the q-SC capacity is substantially larger than what can be
achieved with the BSC decomposition. Clearly, there is a need
for coding schemes targeted at “large”ǫ (say ǫ > 10−1),
but moderatem (say 2 ≤ m < 20), which are not that
well handled by methods for largeq. For example, to use
verification-based decoding, the symbols should have between
m = 32 bits for short codes (block length102 . . . 103) and
m = 64 bits for longer codes (block length104 . . . 105) [1].

One example application, which also motivated this work, is
Slepian-Wolf coding ofq-ary sources with a discrete impulse-
noise correlation model, usingq-SC channel code syndromes
as fixed-rate (block) source code. This can then be used as a
building block for a Wyner-Ziv coding scheme, whereq is the
number of scalar quantizer levels, or for fixed-rate quantization
of sparse signals with a Bernoulli-ǫ prior on being nonzero [6].
Clearly, q will be only moderately large in such a scenario.

The capacity loss of the binary decomposition is due to
the fact that the correlation between errors on the binary
sub-channels is not taken into account, i.e., since an error
on one sub-channel of theq-SC implies a symbol error,
the error probabilities on the other sub-channels will change

c© 2012 IEEE
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conditioned on this event. A better approach would be the
use of non-binary low-density parity-check (LDPC) codes over
GF(q) [7]. While that would take into account the dependency
between bit errors within a symbol, the decoding complexity
of the associated non-binary LDPC decoder isO(q · log q) or
at leastO(q) when using sub-optimal algorithms [8].

Instead, this work focuses on a modified binary LDPC
decoder of complexityO(log q). Section II studies an ideal
scheme using layers of different-rate binary codes, providing
the key intuition that once a bit error is detected, the remaining
bits of the symbol may be treated as erasures without loss
in rate. Section III-A then proposes a scheme using a single
binary code and develops the new variable node decoding rules
from first principles, by factorizing the posterior probabilities.
Section III-B shows that the new decoding rule is equivalent
to a front-end (orfirst receiver block) that mapsq-ary symbols
to groups ofm bits and studies its factor graph representation.
Section III-C analyzes the extrinsic information transferchart
characterization of thisq-SC front-end, which is shown to

allow capacity-achieving iterative decoders. Section IV briefly
outlines how to design optimized LDPC codes for this problem
and presents simulation results. Finally, Section V extends
these decoding methods to a larger class ofq-ary channels.

II. L AYERED CODING SCHEME

We study the following layered coding scheme based on
binary codes. Blocks ofk symbols[u1, u2, . . . , uk] are split
into m bit layers[u1

i , u
2
i , . . . , u

k
i ], i = 1, . . . , m, and each layer

is independently encoded with a code for a binary symmet-
ric erasure channel (BSEC) with erasure probabilityδi and
crossover probabilityǫi, to be specified below. The channel
input symbol will be denotedxj = [xj

1, x
j
2, . . . , x

j
m]T, where

xj
i is the i-th bit of the j-th symbol, while the corresponding

channel output isyj = [yj
1, y

j
2, . . . , y

j
m]T, respectivelyyj

i .
The key idea is to decode the layers in a fixed order and to

declarebit erasuresat those symbol positions in which a bit
error occurred in a previously decoded layer. This saves on
the code redundancy needed in the later layers, since erasures
can be corrected with less redundancy than bit errors.

It will be shown that this layered scheme is optimal if the
constituent BSEC codes attain capacity. The intuition behind
the optimality of this seemingly suboptimal scheme is that
once a bit error (and thus a symbol error) has been detected,
all the following layers have bit error probability 1/2 in that
position, since theq-SC assigns uniform probabilities over
the possible symbol error values. Now the BSC(1/2) has zero
capacity and so the concerned bits can be treated as erasures
with no loss.

The decoder performs successive decoding of them layers,
starting from layer 1. All errors corrected at layeri and
below are forwarded to layeri + 1 as erasures, that is all
bit error positions found in layers 1 up toi will be marked
as erased in layeri + 1, even though the channel provides
a (possibly correct) binary output for those positions. Letǫi

be the probability that the channel outputy is equal to the
input x in bit positions 1 toi − 1 and differs in positioni
(i.e. [y1, y2, . . . , yi−1]

T = [x1, x2, . . . , xi−1]
T and yi 6= xi).

A simple counting argument shows that there are2m−i such
binary vectorsy 6= x, out of a total2m − 1. The i-th binary
sub-channel is thus characterized by

ǫi =
2m−i

2m − 1
ǫ, (2)

δi =

i−1∑

j=1

ǫj =
2m − 2m−i+1

2m − 1
ǫ. (3)

Theorem 1 The layered scheme achievesq-SC capacity if the
constituent BSEC codes achieve capacity.

Proof: We may assume an ideal scheme, in which all
layers operate at their respective BSEC capacities and correct
all errors and erasures. The BSEC(δi, ǫi) capacity is

CBSEC = (1 − δi)

(

1 − h

(
ǫi

1 − δi

))

. (4)
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Hence the sum of the layer rates becomes
m∑

i=1

Ri =

m∑

i=1

(1 − δi)

(

1 − h

(
ǫi

1 − δi

))

(5)

= m +
m∑

i=1

{

− δi − (1 − δi) log2(1 − δi)

+ ǫi log2 ǫi + (1 − δi+1) log2(1 − δi+1)

}

(6)

= m +

m∑

i=1

{
− (m − i)ǫi + ǫi log2 ǫi

}

+ (1 − p) log2(1 − p) (7)

= m +

m∑

i=1

{
− (m − i)ǫi + (m − i)ǫi

}
+ p log2 p

− p log2(2
m − 1) + (1 − p) log2(1 − p) (8)

= m − h(p) − p log2(2
m − 1) = Cq-SC,

where (5) follows from (4) and the definition of the layered
scheme, (6) follows fromδi + ǫi = δi+1 (which holds up to
i = m, whenδm+1 = ǫ), (7) follows from the evaluation of
the telescoping sum and

∑m

i=1 δi =
∑m

i=1(m − i)ǫi, and (8)
follows from substituting (2) forǫi.

As can be seen from inserting (2) and (3) into (4), the layer
rate quickly approaches1 − ǫ for increasingi, that is, for
large m the last layers all operate at rates close to1 − ǫ.
Thus an interesting variant of the layered scheme is to use
µ < m BSEC layers as above, followed by a single “thicker”
layer, which sends the remainingm−µ bits (per symbol) over
the same BSEC(δµ+1, ǫµ+1). In particular, this could even be
beneficial in practical implementations, since combining layers
leads to longer codewords and thus better codes, which might
outweigh the theoretical rate loss. The next section will show
that it is actually possible to reap the benefits of a single large
binary code, without any layering, by using a decoder that
exploits the dependencies among the bits in a symbol.

The layered scheme has several disadvantages compared to
the symmetric scheme presented below. The main disadvan-
tage is that in practical implementations, each layer will need
a different BSEC code that is tuned to the effective erasure
and error probabilities resulting from the layers preceding it.
Besides causing problems with error propagation, this is also
impractical for hardware implementation, since the required
silicon area would necessarily grow with the number of layers.
Another disadvantage is that for a fixed symbol block length
n, the layered scheme uses binary codes of lengthn, while
the symmetric scheme uses block lengthmn. The latter will
provide a performance advantage, especially for short block
lengths.

III. B IT-SYMMETRIC CODING SCHEME

Ideally, a coding scheme for theq-SC should be symmetric
in the bits composing a symbol, that is, no artificial hierarchy
among bit layers should be introduced (notice that the order
of the bit layers may be chosen arbitrarily). We propose to
encode all bits composing the symbols with one “big” binary
code, which needs to satisfy just slightly stricter constraints

than an ordinary code, while the decoder alone will exploit the
knowledge about the underlyingq-SC. The key concept that
should carry over from the layered scheme is that the decoder
is able to declare erasures at certain symbol positions and thus
needs less error correction capability (for part of the bitsin
erased symbols).

We present two approaches to describe the decoder for the
proposed scheme: a bit-level APP approach, which clearly
displays the probabilities being estimated (and is more intuitive
to generalize, see Sec. V), and a decoder front-end approach,
which facilitates the use of EXIT chart tools. The model
underlying both approaches is the same: the decoder will
use estimates of the extrinsic symbol error probabilities to
estimate the marginal bit error probabilities, thus “adjusting”
the individual error probabilities of the binary sub-channels.

A. Bit-Level APP Approach

Our proposal for a practical symmetricq-SC coding scheme
relies on an LDPC code with information block lengthK =mk
bits and channel block lengthN = mn bits. We assume
that the variable nodes (VNs) in the decoder receive in-
dependent extrinsic soft estimates ofXj

i (that is, bit i of
code symbol/vectorXj, for i = 1, . . . , m, j = 1, . . . , n)
from the check nodes (CNs). These amount to estimates
of P (Xj

i |Y
[j] = y[j]) or the correspondinglog-likelihood

ratio (LLR), L(X) = log(Pr(X = 0)/ Pr(X = 1)). (As
usual, the notationy[j] denotes the block consisting of all
symbols/vectors except thej-th.) In particular, the extrinsic
estimate ofXj

i is assumed to be independent of the other bits
Xj

[i] of the same symbol, so that we may write

P (Xj
i |X

j
1 , . . . , Xj

i−1,Y
[j] =y[j]) = P (Xj

i |Y
[j] =y[j]).

In the standard case, these independence assumptions are
justified by the fact that asymptotically in the block length,
the neighborhood of a VN in the LDPC decoder computation
graph becomes a tree [9, Chap. 3]. Unfortunately, theq-SC VN
message computation rule has to depend on the other bits in the
same symbol, in order to account for the bit error correlation,
and thus will introduce cycles. However, this problem can
be alleviated by imposing an additional constraint on the
code, namely that the parity checks containingXj

i do not
involve any of the bitsXj

[i]. This is a necessary condition for
the above intra-symbol independence assumption and may be
achieved by using an appropriate edge interleaver in the LDPC
construction. Then the cycles introduced by the VN message
rule will grow asymptotically and are thus not expected to lead
to problems in practice.

As suggested above, the properties of theq-SC can be taken
into account via a simple modification of the VN computation
in the message-passing decoding algorithm for binary LDPC
codes. We factor thea posterioriprobability (APP) of symbol
Xj as follows:

P (Xj |Y=y)
.
= P (Y j =yj|Xj)P (Xj |Y[j] =y[j])

= P (Y j =yj|Xj)

m∏

i=1

P (Xj
i |Y

[j] =y[j]), (9)
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where the factorization in (9) is made possible by the above
independence assumption (the symbol

.
= denotes equality up

to a positive normalization constant). Using the definitionof
the q-SC, this becomes

P (Xj =xj |Y=y)

.
=

{

(1 − ǫ)
∏m

i=1 P (Xj
i =xj

i |Y
[j] =y[j]), xj = yj ,

ǫ
q−1

∏m
i=1 P (Xj

i =xj
i |Y

[j] =y[j]), xj 6= yj .
(10)

We define the extrinsic probability thatXj = yj as

βj =

m∏

i=1

P (Xj
i =yj

i |Y
[j] =y[j]) =

m∏

i=1

pj
i ,

where we introduced

pj
i = P (Xj

i =yj
i |Y

[j] =y[j]) (11)

for notational convenience. The normalization constant in(10)
thus becomes

γj = (1 − ǫ)βj +
ǫ

q − 1
(1 − βj).

Then the bit APP may be obtained by the marginalization

P (Xj
i =xj

i |Y=y) =
∑

x
j

[i]
∈{0,1}m−1

P (Xj =xj |Y=y), (12)

which may be written as

P (Xj
i =xj

i |Y=y)

=







[

(1 − ǫ)βj

[i] + ǫ
q−1 (1 − βj

[i])
]

·
p

j

i

γj , xj
i = yj

i ,

ǫ
q−1 ·

1−p
j

i

γj , xj
i 6= yj

i ,
(13)

where βj

[i] = βj/pj
i is the intra-symbol extrinsic probability

that Xj = yj, using no information on bitXj
i . Finally, we

may express thea posterioribit-level LLR as

Lapp(X
j
i =yj

i )

= log

(

(q − 1)βj − qǫβj + ǫpj
i

ǫ(1 − pj
i )

)

= log

(
(q − 1)βj

[i] − qǫβj

[i] + ǫ

ǫ
·

pj
i

1 − pj
i

)

= log

(

1 +
q − qǫ − 1

ǫ
· βj

[i]

)

︸ ︷︷ ︸

Lch(X
j
i =yj

i )

+Lextr(X
j
i =yj

i ). (14)

The usualL(X) is obtained fromL(X = y) = log(Pr(X =
y)/ Pr(X =1−y)) via a sign flip,L(X) = (1−2y)L(X =y).

The second term in (14) corresponds to the extrinsic infor-
mation from the CNs that is processed at the VNs in order to
compute the bit APP in standard binary LDPC decoding. The
difference lies in the first term in (14), which corresponds to
the channel LLR (which would beLch(X) = log(P (y|X =
0)/P (y|X = 1)) in the binary case). When the extrinsic
information on the bitsXj

[i] favors the hypothesisXj 6= yj,

the productβj

[i] will be small and thereforeLch in (14)
will be close to zero, which is equivalent to declaring a bit

erasure. This shows that the symmetric LDPC scheme relies
on “distributed”softbit erasure estimates, while in the layered
scheme the erasures are declared in ahard “top-down” fashion.

Equation (14) describes the modification of the VN com-
putation that turns a message-passing binary LDPC decoder
into one for theq-ary symmetric channel. The outgoing VN
messages are computed as usual by subtracting the incoming
edge message fromLapp(X

j
i ); also the CN messages are

the same as in the binary case. For practical implementation
purposes, (14) should probably be modified (approximated) in
order to avoid switching back and forth between probabilities
and LLRs when computingβj .

A final detail is the specification of the initial channel LLR
L

(0)
ch in (14), which is needed to start the decoder iterations. By

inserting the memoryless worst-case estimateβj

[i] = 2−m+1

into (14), we obtain

L
(0)
ch = log

(
2(1 − 2−m) − ǫ

ǫ

)

, (15)

which is exactly the channel LLR for the marginal BSC with
crossover probabilityǫBSC given in (1).

Notice that the decoder iterations are exclusively between
VN (14) and CN computations, like in the binary case.
However, computing (14) at the VNs requires the extrinsic
information (the CN messages) for all bits within a symbol;
this might be considered an additional level of message
exchanges (specifically, plain copying of messages), but itdoes
not involve iterations of any kind. The complexity increase
compared to binary LDPC decoding is on the order of at most
m operations per variable node, depending on the scheduling.
In fact, the marginalization (12) is reminiscent of a combined
detector and VN decoder for binary LDPC codes that are
directly mapped to larger signal constellations [10]. Thanks to
the symmetry of theq-SC, here it is not necessary to actually
sum over allq symbol values.

B. q-SC Front-end Approach

The similarity of the bit-APP approach to combined detec-
tion and decoding mentioned above points to a different view
on the bit-symmetric coding scheme, which is to consider aq-
SC front-end for a binary LDPC decoder, similar to approaches
for iterative demapping and decoding [11], [12]. These tech-
niques involve proper iterations between the demapper and the
LDPC decoder, being treated as separate functional blocks.

The q-SC front-end takes into account the correlation be-
tween the errors on them bit layers. Its factor graph rep-
resentation allows to formulate a message passing algorithm
that computes essentially the same quantities as the approach
in Sec. III-A, but opens the way to EXIT analysis and displays
more clearly the opportunity for further complexity reduction
by appropriate message scheduling.

As before, letx denote the vector ofq-ary channel input
symbolsxj (j = 1, . . . , n) and letxj

i denote biti of symbol
j. In the same way, the output of the channel is represented
by y, yj andyj

i , and the errors are denoted bye, ej and ej
i ,

respectively. We assume w.l.o.g. thatej
i = xj

i ⊕ yj
i , where⊕

denotes addition in GF(2), andej = xj ⊕ yj , by extension.
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e1

e2
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fch

fch

fch

fE

m

µe1→fE
(e1)

µfE→e1
(e1)

µfch→e1
(e1)

µe1→fch(e1)

µx1→fch(x1)

µfch→x1
(x1)

Fig. 3. Factor graph representation of theq-SC front-end for symbolxj (the
symbol indexj is omitted).

Let χC(x) be the characteristic function of the code, which
evaluates to one ifx is a codeword and to zero otherwise. Fur-
thermore assuming that the transmitted codewords are equally
likely, the a posterioriprobability satisfies the proportionality
relation

fX|Y(x|y)
.
= χC(x)fY|X(y|x).

The q-ary channel is assumed to be memoryless (on the
symbol level), leading to a factorization offY|X as

fX|Y(x|y)
.
= χC(x)

n∏

j=1

fY |X(yj |xj)

= χC(x)

n∏

j=1

fY,E|X(yj , xj ⊕ yj |xj),

where we used the fact thatxj , ej and yj are related in a
deterministic way.

Given an error symbolej , the bit-layers are independent of
each other, leading to

fX|Y(x|y)
.
= χC(x)

n∏

j=1

{

fE(ej)fY |X,E(yj |xj , ej)

}

= χC(x)

n∏

j=1

{

fE(ej)

m∏

i=1

f j
ch(y

j
i |x

j
i , e

j
i )

}

,

wheref j
ch = f

Y
j

i
|Xj

i
,E

j

i

.

This factorization is shown for one symbolxj in Fig. 3,
where the edges on the right side are connected to the
check nodes of the LDPC code, i.e. the factorization of the
characteristic functionχC(x). In the following, we will denote
a message sent from a variable nodex to a function nodef
and vice versa asµx→f(x) andµf→x(x), respectively [13].

1) Message Passing Rules:We apply the sum-product algo-
rithm to compute the marginalsf

X
j

i
|Y(xj

i |y) for all symbolsj
and all bitsi, i.e. to performa posterioridecoding for every bit
of the transmitted codeword. In the following we will describe

the operations for a singleq-ary symbol and therefore omit the
symbol indexj for convenience.

First, we define the local functions and derive the message
passing rules for the function nodesfch and fE . Since the
variable nodesei have degree two, they just forward the
incoming messages, e.g.µe1→fch(e1) = µfE→e1(e1) and
µe1→fE

(e1) = µfch→e1 (e1).
a) Bit Layer Channels:In the binary sub-channels,xi,

yi andei have to sum up to zero in GF(2), therefore the local
functionsfch are given by

fch(yi|xi, ei) = [yi = xi ⊕ ei],

where[P ] evaluates to1 if the expressionP is true and to0
otherwise.

Having defined the local function, we can derive the mes-
sage passing algorithm by applying the rules of the sum-
product algorithm. Given a messageµxi→fch(xi) and a re-
ceived bityi, the channel function node computes

µfch→ei
(ei) =

∑

∼{ei}

(

fch(yi|xi, ei) · µxi→fch(xi)

)

= µxi→fch(ei ⊕ yi),

where
∑

∼{a} denotes the marginalization over all variables
excepta. In the same way, the message sent back to variable
nodexi is computed as

µfch→xi
(xi) =

∑

∼{xi}

(

fch(yi|xi, ei) · µei→fch(ei)

)

= µei→fch(xi ⊕ yi).

b) Error Patterns: The function nodefE represents the
probability that a certain binary error pattern occurs. In the
q-ary symmetric channel, every error pattern has the same
probability ǫ

q−1 , except the all-zero pattern that has probability
1 − ǫ, thus

fE(e1, . . . , em) =

{

1 − ǫ, if e1 = . . . = em = 0
ǫ

q−1 , otherwise.

The derivation of the outgoing messages offE leads to

µfE→ei
(ei) =

∑

∼{ei}

(

fE(e1, . . . , em) ·
∏

i′ 6=i

µei′→fE
(ei′)

)

=

{
(1 − p) · β[i] + ǫ

q−1

(
1 − β[i]

)
if ei = 0

ǫ
q−1 if ei = 1,

whereβ[i] is defined as

β[i] =
∏

i′ 6=i

µei′→fE
(0). (16)

Appendix A outlines the simplification of the different mes-
sages using scalar quantities and highlights the fact that these
are essentially the same quantities as in the bit-level APP
approach in Sec. III-A.
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2) Complexity: Clearly, the processing complexity of the
front-end is dominated by (16) and is thusO(log q) per
symbol, as in verification decoding [1]. This means that the
overall decoding complexity scales linearly in the number of
transmitted bits, independently of the symbol alphabet size q.
Complexity may be further reduced by a constant factor (i.e.
not its order) if the front-end messages are not recomputed
on every LDPC decoder iteration; this is often sufficient in
practice.

C. EXIT Analysis of theq-SC Front-end

In this section, we analyze theq-SC front-end using extrin-
sic information transfer (EXIT) charts [14], which will also
be used later for the design (optimization) of LDPC codes.

Let the a priori and extrinsic messages for the front-end
denote the messages between the bit layer sub-channelsfch

and the bit nodesxi of the LDPC code, that is,µxi→fch(xi)
and µfch→xi

(xi), respectively. For the EXIT chart analysis,
the front-end is characterized by the transfer functionIe(Ia),
where Ia and Ie denote thea priori and theextrinsic mu-
tual information, respectively, between the messages and the
corresponding bits.

First, we derive the EXIT function of the front-end for the
case when thea priori messages are modeled as coming from a
binary erasure channel (BEC). In this special case, the EXIT
functions have important properties (e.g. the area-property),
which were shown in [14].

In the case of a BEC, the variablesxi are either known to
be error-free or erased, thus simplifying the computation of
β[i] defined in (16) as follows. The product in (16) hasm− 1
factors, taking on the value1/2 if the bit xi is erased,0 if
the bit xi is not in agreement with the received bityi and 1
otherwise. If at least one message is not in agreement with the
received bit, a symbol error occurred andβ[i] = 0. Otherwise,
β[i] = 2−t, wheret denotes the number of erased messages.

Since β[i] = 0 corresponds toǫi = 1/2 through (22)
in Appendix A, this case is equivalently described by an
erasure. Therefore, the extrinsic messages can be modeled as
being transmitted over a binary symmetric erasure channel
(BSEC), with parametersǫm−t and δm−t given by (2) and
(3), respectively, sincet erasures correspond to the situation
in layer i = m − t in the layered scheme of Section II. Its
capacity is thus

It = (1 − δm−t)

(

1 − h

(
ǫm−t

1 − δm−t

))

. (17)

In order to compute the extrinsic informationIe(Ia) at the
output of the front-end as

Ie(Ia) =
m−1∑

t=0

Itλt(Ia), (18)

we have to compute the probabilityλt(Ia) thatt messages are
erased givena priori mutual informationIa. Let ∆a = 1− Ia

denote the probability that ana priori message is erased. The
probability thatt = 0, . . . , m − 1 out of m − 1 messages are
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Fig. 4. EXIT function for theq-SC front-end with BEC (analytical) and
Gaussian (simulated)a priori messages forǫ = 0.25, m = 4 (lower curves)
andm = 8 (upper curves).

erased is computed as

λt(Ia) =

(
m − 1

t

)

∆t
a (1 − ∆a)

m−1−t

=

(
m − 1

t

)

(1 − Ia)
t
Im−1−t
a . (19)

The EXIT function for BECa priori messages can therefore
be computed using (2), (3), (17) and (19) in (18).

Theorem 2 An iterative decoder for the bit-symmetric scheme
using aq-SC front-end can attainq-SC capacity.

Proof: According to the area theorem for EXIT charts
[14], the capacity of each bit layer is given by the area below
the EXIT function, if thea priori messages are modeled as
coming from a BEC. Therefore, the capacity of the overall
channel is given by

Ctot = m

∫ 1

0

m−1∑

t=0

Itλt(Ia) dIa

= m

m−1∑

t=0

It

∫ 1

0

λt(Ia) dIa

= m

m−1∑

t=0

It

(
m − 1

t

)∫ 1

0

(1 − Ia)
t
Im−1−t
a dIa

= m
m−1∑

t=0

It

(m − 1)!

(m − 1 − t)!t!

t!(m − 1 − t)!

m!

=

m−1∑

t=0

It = Cq-SC, (20)

where we used the fact that the integral corresponds to the
definition of the beta function. The last sum in (20) is indeed
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equal to the capacity of theq-SC, as was already shown in
the proof of Theorem 1.

Without iterative processing, the maximum achievable rate
is given byIe(0). In that case, alla priori messages are erased
and one has

Im−1 = 1 − h (ǫ1) = 1 − h

(
qǫ

2(q − 1)

)

= CBSC,

which corresponds to the simplistic coding approach where
the q-SC is decomposed intom BSCs.

Fig. 4 shows an EXIT chart for BECa priori messages. If
the q-SC would be decomposed into BSCs (without iterating
between the front-end and the LDPC code and without using
the layered scheme) then the value atIa = 0 corresponds to
the capacity of these BSCs. In contrast, the area below the
EXIT functions corresponds to the normalized capacity of the
q-SC.

When using this front-end with an LDPC code, thea priori
messages can not be modeled as coming from a BEC. For code
design, we will make the approximation that the messages
are Gaussian distributed, which is a common assumption
when using EXIT charts. The simulated EXIT function using
Gaussiana priori messages is also shown in Fig. 4.

IV. LDPC DESIGN AND CONSTRUCTION

After obtaining the EXIT function of theq-SC front-end,
we can design an LDPC code. Code design is an optimization
problem that selects the degree distributions of the code in
order to maximize the rate, under the constraint that the EXIT
function of the overall LDPC code does not intersect the EXIT
function of theq-SC front-end.

Joint optimization of the variable and check node degree
distributions is a nonlinear problem, but it was shown in [12]
that the optimization of the check node degree distribution
given a fixed variable node degree distribution is a linear
programming problem, which can be solved efficiently.

To reduce the optimization complexity and to obtain prac-
tical degree distributions, we choose three non-zero variable
node degrees (compare e.g., the approach in [15]). This allows
to perform an exhaustive search over the variable node degree
distribution, and for each variable node degree distribution we
optimize the check node degree distribution as described in
[12] with a maximum check node degreedc,max = 50.

Fig. 5 shows the normalized capacity of theq-SC and the
obtained optimized code rates (under the Gaussian approxima-
tion) versus the error probabilityǫ of theq-SC form = 4 and
m = 8. Using this code optimization, we are able to design
codes that perform close to capacity over a wide range of error
probabilities for moderateq.

For the actual code construction, we used a modified version
of the PEG algorithm [16], [17], which allows us to construct
codes with a specific variable and check node degree distribu-
tion. To avoid (short) cycles in the overall factor graph, one
has to ensure that the bits of a givenq-ary symbol do not
participate in the same parity check. This can be achieved
by using an appropriate interleaver between theq-SC front-
end and the LDPC decoder. Another way would be to use
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Fig. 5. Rate of optimized codes versus normalized capacity of the q-SC for
m = 4 andm = 8.
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Fig. 6. Bit error rate simulation for rate 1/2 LDPC decoding (m = 4,
k = 1500 symbols). Marks indicate decoding threshold for regular code
(ǫ = 0.25), optimized code (ǫ = 0.28) and Shannon limit (ǫ = 0.29).

the multi-edge type framework for LDPC code where such
constraints can be explicitly specified [9, Chap. 7].

To verify our derivations, we performed bit error rate sim-
ulations for an optimized binary LDPC code of rateR = 1/2
and lengthN = 12000, shown in Fig. 6. This code is
optimized for aq-SC with m = 4, thus N = 12000 bits
correspond tok = 1500 q-ary symbols. It has a decoding
threshold ofǫ = 0.28 (the Shannon limit forR = 1/2 is at
ǫ = 0.29). As a comparison we also show the bit error rate
for a regular LDPC code withdv = 3 anddc = 6 which has
a decoding threshold ofǫ = 0.25.

V. GENERALIZATION TO CONDITIONALLY INDEPENDENT

BINARY SUB-CHANNELS

The decoder in Section III is seen to easily extend toq-ary
channels with modulo-additive noise, where them bits of the
noise (error pattern) are independent if an error occurs, i.e. if
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Lapp(X
j
i =yj

i ) = log




(1 − ǫ)βj + α(1 − ǫi|∗)p

j
i

[
∏

k 6=i

(

ǫk|∗ + pj
k − 2ǫk|∗p

j
k

)

−
∏

k 6=i(1 − ǫk|∗)p
j
k

]

αǫi|∗(1 − pj
i )
∏

k 6=i

(

ǫk|∗ + pj
k − 2ǫk|∗p

j
k

)





= log




(1 − α)βj

[i] + α(1 − ǫi|∗)
∏

k 6=i

(

ǫk|∗ + pj
k − 2ǫk|∗p

j
k

)

αǫi|∗

∏

k 6=i

(

ǫk|∗ + pj
k − 2ǫk|∗p

j
k

)



+ log

(

pj
i

1 − pj
i

)

= log




1 − ǫi|∗

ǫi|∗
+

(1 − α)βj

[i]

αǫi|∗

∏

k 6=i

(

ǫk|∗ + pj
k − 2ǫk|∗p

j
k

)





︸ ︷︷ ︸

Lch(X
j
i =yj

i )

+Lextr(X
j
i =yj

i ). (21)

at least one bit is nonzero. This assumption leads to define
the q-ary symmetric channel with conditionally independent
binary sub-channels (q-SC*), with transition probabilities

PY |X(y|x) =

{

1 − ǫ, y = x,

α
∏m

i=1 ǫxi⊕yi

i|∗

(
1 − ǫi|∗

)1⊕xi⊕yi
, y 6= x,

where α =
ǫ

1 −
∏m

i=1

(
1 − ǫi|∗

)

and ⊕ denotes GF(2) addition (this definition encompasses
all channels satisfying the above conditional independence
assumption, from which it may be derived axiomatically). The
defining parameters are the symbol error probabilityǫ and
the m conditional probabilitiesǫi|∗, which are the bit error
probabilities conditioned on the event that at least one of the
otherm−1 bits is in error. The marginal bit error probabilities
will be ǫBSC,i = αǫi|∗. Since theq-SC* is strongly symmetric,
the uniform input distribution achieves its capacity

Cq-SC* = m − α

m∑

i=1

h(ǫi|∗) + (1 − ǫ) log2(1 − ǫ)

+ α log2 α − (α − ǫ) log2(α − ǫ).

When ǫ is such thatα = 1, the q-SC* reduces tom
independent BSCs, while forǫi|∗ = 1

2 , i = 1, . . . , m, it
becomes an ordinaryq-SC.

The unnormalized bit APP (compare (13)) is obtained as

P (Xj
i =xj

i |Y=y)

.
=







(1 − ǫ)
∏m

k=1 pj
k

+α(1 − ǫi|∗)p
j
i

[
∏

k 6=i

(
ǫk|∗ + pj

k − 2ǫk|∗p
j
k

)

−
∏

k 6=i(1 − ǫk|∗)p
j
k

]

, xj
i = yj

i ,

αǫi|∗(1 − pj
i )
∏

k 6=i

(
ǫk|∗ + pj

k − 2ǫk|∗p
j
k

)
,

xj
i 6= yj

i ,

leading to the LLR expression (21). The quantitiespj
i , βj and

βj

[i] are as defined in Section III. Like in the special case

of the q-SC, for βj

[i] → 0 the channel LLRLch tends to a
constant, which is equal to the LLR of the binary sub-channel
conditioned on the occurrence of an error on one or more of
the other sub-channels. The initial value ofLch can again be

obtained by assuming a worst-case ofpj
k = 1

2 , βj

[i] = 2−m+1

in (21), yielding

L
(0)
ch (Xj

i =yj
i ) = log

(
1 − ǫi|∗

ǫi|∗
+

1 − α

αǫi|∗

)

= log

(
1 − αǫi|∗

αǫi|∗

)

= log

(
1 − ǫBSC,i

ǫBSC,i

)

,

which is the channel LLR of thei-th marginal BSC.

APPENDIX

A. Simplification of the Messages

Since all involved variables are binary, we can represent the
messages by scalar quantities. For the messages from and to
the variable nodesxj

i of the LDPC code, we use log-likelihood
ratios of the corresponding messages

La,i = log
µxi→fch(0)

µxi→fch(1)
,

Lch,i = log
µfch→xi

(0)

µfch→xi
(1)

.

The connection with the bit-level APP approach is made by
equatingµxi→fch(b) = P (Xj

i =b|Y[j] =y[j]) in the expression
for La,i; the correspondence forLch,i will be given below.

The messages from the function nodesfch to the nodefE

are defined as the probability of no error

pi = µfch→ei
(0) = µei→fE

(0),

and the messages from the function nodefE are defined as
the error probability

ǫi =
µfE→ei

(1)

µfE→ei
(0) + µfE→ei

(1)
.

Using these definitions, we can reformulate the computation
rules at the function nodes as

pi =
e

La,i

2 ·(1−2yi)

e
La,i

2 + e−
La,i

2

,

which corresponds to (11), and

ǫi =

ǫ
q−1

(1 − ǫ) · β[i] + ǫ
q−1

(
1 − β[i]

)
+ ǫ

q−1

=
ǫ

2ǫ + β[i](q − ǫq − 1)
(22)
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For the initialization, we set all a-priori L-valuesLa,i to
zero, leading toβ[i] = 2−(m−1) = 2/q. Inserting this in (22)
leads to

ǫi =
ǫq

2(q − 1)
= ǫBSC.

Finally, the messages sent from the function nodesfch to
the variable nodesxi are computed as

Lch,i = (1 − 2yi) · log
1 − ǫi

ǫi

. (23)

Using (22), the logarithmic term in (23) can be expanded as

log
1 − ǫi

ǫi

= log

(

2 +
q − qǫ − 1

ǫ
· β[i] − 1

)

,

which is equivalent toLch(X
j
i = yj

i ) defined in (14) in the
bit-level APP approach.
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