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g-ary Symmetric Channels
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Abstract—This paper studies coding schemes for thej-ary Recent work [1]-[5] has shown that it is possible to devise
symmetric channel based on binary low-density parity-chéc  coding schemes that approa€hy.sc for large alphabet sizes
(LDPC) codes that work for any alphabet size ¢ = 2™, . _ om with symbols of hundreds to thousands of bits, and

m € N, thus complementing some recently proposed packet- .
based schemes requiring largeg. First, theoretical optimality complexityO(log ¢) per code symbol. The focus of the present

of a simple layered scheme is shown, then a practical coding WOrk is on smallerg, with symbols of tens of bits at most,
scheme based on a simple modification of standard binary LDPC although the presented coding techniques will work for any
decoding is proposed. The decoder is derived from first priniples g=2m.

and using a factor-graph representation of a front-end thatmaps The ¢-ary channel input and output symbols will be rep-

g-ary symbols to groups ofm bits connected to a binary code. . . -
The front-end can be processed with a complexity that is liner ~'€Seénted by binary vectors of length. Hence a simplistic

in m = log, ¢. An extrinsic information transfer chart analysis is  coding approach consists in decomposing ¢h8C into m
carried out and used for code optimization. Finally, it is sfown  binary symmetric channels (BSCs) with crossover probgbili
how the same decoder structure can also be applied to a larger ge c

class ofg-ary channels. = = 1
€BSC 2q—1) 2(1—2-m) (1)

Index Terms—g-ary symmetric channel, low-density parity-
check (LDPC) codes, decoder front-end. which have capacity’ssc = 1 — h(egsc) each.

We briefly study the normalized capacity losgd =
Cy-sc/m — Casc, Which results from (wrongly) assuming that
the ¢-SC is composed of independent BSCs. For fixed

HE ¢-ary symmetric channeb{SC) with error probabil- we havelim. .o A = 0; so using binary codes with inde-

ity e takes ag-ary symbol at its input and outputs eithependent decoders on the-fold BSC decomposition might
the unchanged input symbol, with probability— ¢, or one be good enough for smak (e.g. ¢ < 1073). However,
of the otherg — 1 symbols, with probability/(q — 1). It has Fig. 1 shows that the relative capacity lo8sA/Cy.sc =
attracted some attention recently as a more general chanhelmCgsc/Cy.sc increases close to linearly in For fixede,
model for packet-based error correction. For very lagge we havelim,, ... A = h(e/2) — ¢, which can be a substantial
its appropriately normalized capacity approaches thatrof &action of the normalized-SC capacity (e.g., foe = 0.1,
erasure (packet loss) channel. In the following, we willyonlh(e/2) — e = 0.19). Fig. 2 shows that already for smat,

I. INTRODUCTION

consider channel alphabets of size- 2™ with m € N. the ¢-SC capacity is substantially larger than what can be
The capacity of the-SC with error probability is achieved with the BSC decomposition. Clearly, there is a@lnee
for coding schemes targeted at “large”(say ¢ > 1071),
Cqsc=m — h(e) — elogy(2™ — 1) but moderatem (say 2 < m < 20), which are not that

well handled by methods for large For example, to use

) is the binary entropy function. Asymptotically im, the verification-based decoding, the symbols should have letwe
x y by - ASymp y i, m = 32 bits for short codes (block lengtho?...103) and

normalized capacityy.sc/m thus approacheb—e, which is ¢ “tor jonger codes (block lengtto® . .. 10%) [4].
the capacity of the binary erasure channel (BEC) with emsur . . . : .
One example application, which also motivated this work, is

robability e. . . . . .

P y Slepian-Wolf coding of;-ary sources with a discrete impulse-
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allow capacity-achieving iterative decoders. Section tiéfly
outlines how to design optimized LDPC codes for this problem
and presents simulation results. Finally, Section V exéend

0.6
o these decoding methods to a larger clasg-afy channels.
oo 04
Il. LAYERED CODING SCHEME
0.2 We study the following layered coding scheme based on
binary codes. Blocks ok symbols[ul,u?, ..., u*] are split
0 , into m bit layersful,u2,...,u¥],i =1,...,m, and each layer

10 is independently encoded with a code for a binary symmet-

ric erasure channel (BSEC) with erasure probabifityand
crossover probability;, to be specified below. The channel
input symbol will be denoted? = [z],2},...,,]T, where

€ x is thei-th bit of the j-th symbol, while the corresponding
channel output is/ = [y], 3, . ..,y2,]T, respectivelyy’.

The key idea is to decode the layers in a fixed order and to
declarebit erasuresat those symbol positions in which a bit
0.9 error occurred in a previously decoded layer. This saves on
+ Cosc/M W e o v the code redundancy needed in the later layers, since emsur
o “Bsc N can be corrected with less redundancy than bit errors.

o8- * Asymptotic loss || It will be shown that this layered scheme is optimal if the
* constituent BSEC codes attain capacity. The intuition ehi
0.75¢ * : : . the optimality of this seemingly suboptimal scheme is that
once a bhit error (and thus a symbol error) has been detected,
0.71 . o ° : 7 all the following layers have bit error probability 1/2 inath
position, since the)-SC assigns uniform probabilities over
the possible symbol error values. Now the BSC(1/2) has zero
0.6- i capacity and so the concerned bits can be treated as erasures
with no loss.
0.55f 8 The decoder performs successive decoding ofthayers,
starting from layer 1. All errors corrected at layérand
0.5, 5 10 15 below are forwarded to layei + 1 as erasures, that is all
m =log,q bit error positions found in layers 1 up towill be marked
as erased in layet + 1, even though the channel provides
F|2021 Normalized capacity 0f-SC vs. marginal BSC (error probability 5 (possibly correct) binary output for those positions. ket
€=0 be the probability that the channel outpytis equal to the
input x in bit positions 1 toi — 1 and differs in position
conditioned on this event. A better approach would be thES: 1,2, 9]’ = [w1,22,. . 2i]T and Ji 7f ).
use of non-binary low-density parity-check (LDPC) codeerovA_ simple counting argument showsmthat there ar@ _SUCh
GF(g) [7]. While that would take into account the dependen nary vector_Sy 7 , out of a _total2 — 1. Thei-th binary
between bit errors within a symbol, the decoding complexi b-channel is thus characterized by

1_mCBSC/

mCgsc

Fig. 1. Relative capacity losk — of marginal BSC vsg-SC.
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of the associated non-binary LDPC decode®ig; - log q) or gm—i

at leastO(q) when using sub-optimal algorithms [8]. €= g © (2)
Instead, this work focuses on a modified binary LDPC i1 o om_itl

decoder of complexityO(log g). Section Il studies an ideal 5 = ZEJ' I c. (3)

scheme using layers of different-rate binary codes, piogid = 2m—1

the key intuition that once a bit error is detected, the rengi

bits of the symbol may be treated as erasures without Iolsﬁeorem 1 The layered scheme achieveSC capacity if the
in rate. Section IlI-A then proposes a scheme using a Sin@@nstituent BSEC codes achieve capacity.
binary code and develops the new variable node decoding rule

from first principles, by factorizing the posterior problélss. Proof: We may assume an ideal scheme, in which all

Section I1l-B shows that the new decoding rule is equivalefiyers operate at their respective BSEC capacities aneatorr
to a front-end (ofirst receiver blockthat mapsj-ary symbols 5 errors and erasures. The BSBCE;) capacity is
to groups ofm bits and studies its factor graph representation.

Section IlI-C analyzes the extrinsic information transfbart c -y (1-n €; 4
characterization of thig-SC front-end, which is shown to Bsec = (1—0:) (1 - 1-90,))° )
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Hence the sum of the layer rates becomes than an ordinary code, while the decoder alone will expluat t
m m knowledge about the underlyingSC. The key concept that
ZRZ' = Z(l —68;) (1 —h ( €i >> (5) should carry over from the layered scheme is that the decoder
i—1 i—1 1—4; is able to declare erasures at certain symbol positionstars] t
m needs less error correction capability (for part of the bits
=m+ Y { —0; — (1 —6;) logy (1 — &;) erased symbols).
=1

We present two approaches to describe the decoder for the
teilogy e + (1 — 0ip1) logy(1 5_+1>} (6) proposed scheme: a bit-level APP approach, which clearly
e ‘ 2 ‘ displays the probabilities being estimated (and is morstiae

m to generalize, see Sec. V), and a decoder front-end approach

=m+ Y {—(m—i)ei+eloge} which facilitates the use of EXIT chart tools. The model
=1 underlying both approaches is the same: the decoder will

+ (1 —p)logy(1—p) (7)  use estimates of the extrinsic symbol error probabilities t

s ‘ ‘ estimate the marginal bit error probabilities, thus “atpg’
=m+ Y {—(m—ie+(m—i)} +plogap  the individual error probabilities of the binary sub-chatm
=1

—plog, (2™ — 1) + (1 — p)logy,(1 —p (8)
o )+ (1= p)log,(1 —p) A. Bit-Level APP Approach

=m — h(p) — plog,(2™ — 1) = Cysc, . . .

Our proposal for a practical symmetgjeSC coding scheme
where (5) follows from (4) and the definition of the layereggjies on an LDPC code with information block length=mk
scheme, (6) follows fromd; + ¢; = ;11 (which holds up 0 pjts and channel block lengttv = mn bits. We assume
i = m, whenén,1 =€), (7) follows from the evaluation of {hat the variable nodes (VNs) in the decoder receive in-
the telescoping sum an;” , 6; = >°;"; (m — i)e;, and (8) dependent extrinsic soft estimates &F (that is, biti of
follows from substituting (2) fok;. B code symbolivectorX?, for i = 1,....,m, j = 1,...,n)

As can be seen from inserting (2) and (3) into (4), the lay@iom the check nodes (CNs). These amount to estimates
rate quickly approaches$ — e for increasingi, that is, for of P(X]|YV!l = ylUl) or the correspondingog-likelihood
large . the last layers all operate at rates closelte- €. atip (LLR), L(X) = log(Pr(X = 0)/Pr(X = 1)). (As
Thus an interesting variant of the layered scheme is to usgual, the notatiory[j] denotes the block consisting of all
n < m BSEC layers as above, followed by a single “thickersympols/vectors except thgth.) In particular, the extrinsic
layer, which sends the remainimg— 1. bits (per symbol) over estimate ofX? is assumed to be independent of the other bits

the same BSEQ(.+1, ¢,.+1). In particular, this could even be xi of the same symbol, so that we may write
beneficial in practical implementations, since combinangekrs

leads to longer codewords and thus better codes, which mightp(Xg|X{, o ,XZ_{DY{J‘] :y[j]) - P(X3|YU] :y[j]).
outweigh the theoretical rate loss. The next section witiveh
that it is actually possible to reap the benefits of a singigdla I the standard case, these independence assumptions are
binary code, without any layering, by using a decoder thistified by the fact that asymptotically in the block length
exploits the dependencies among the bits in a symbol. the neighborhood of a VN in the LDPC decoder computation
The layered scheme has several disadvantages compare@f@ph becomes a tree [9, Chap. 3]. Unfortunatelygt€ VN
the symmetric scheme presented below. The main disadvAiSsage computation rule has to depend on the other bits in th
tage is that in practical implementations, each layer welbah Same symbol, in order to account for the bit error corretgtio
a different BSEC code that is tuned to the effective erasu®@d thus will introduce cycles. However, this problem can
and error probabilities resulting from the layers precgdin be alleviated by imposing an additional constraint on the
Besides causing problems with error propagation, thisse alcode, namely that the parity checks containig do not
impractical for hardware implementation, since the reegiir involve any of the bitsX7,. This is a necessary condition for
silicon area would necessarily grow with the number of layerthe above intra-symbol independence assumption and may be
Another disadvantage is that for a fixed symbol block leng@¢hieved by using an appropriate edge interleaver in the@ DP
n, the layered scheme uses binary codes of lemgtivhile construction. Then the cycles introduced by the VN message
the symmetric scheme uses block length. The latter will rule will grow asymptotically and are thus not expected twlle

provide a performance advantage, especially for shortkblot® Problems in practice.
lengths. As suggested above, the properties of ¢i8C can be taken

into account via a simple modification of the VN computation
in the message-passing decoding algorithm for binary LDPC

. . codes. We factor tha posterioriprobability (APP) of symbol
Ideally, a coding scheme for theSC should be symmetric X7 as follows:

in the bits composing a symbol, that is, no artificial hiehgrc

among bit layers should be introduced (notice that the ordeP(X’|Y =y) = P(Y7 =4 |X7)P(X7| YUl =yll)

of the bit layers may be chosen arbitrarily). We propose to m ,

encode all bits composing the symbols with one “big” binary = P(YI=¢I|X7) HP(X{|YU] =yll), (9)
code, which needs to satisfy just slightly stricter coristsa i=1

I1l. BIT-SYMMETRIC CODING SCHEME
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where the factorization in (9) is made possible by the aboegasure. This shows that the symmetric LDPC scheme relies
independence assumption (the symbBobenotes equality up on “distributed”soft bit erasure estimates, while in the layered
to a positive normalization constant). Using the definitadn scheme the erasures are declaredha “top-down” fashion.

the ¢-SC, this becomes Equation (14) describes the modification of the VN com-

. ) putation that turns a message-passing binary LDPC decoder
P(X?=2'|Y=y) into one for theg-ary symmetric channel. The outgoing VN
CJa-eoT1, p(Xj _x"|YU] =yll), ad =y, messages are computed as usual by subtracting the incoming

[T, P(X7 = [yl —yll) e (10) edge message fronf.,(X7); also the CN messages are
- T ’ the same as in the binary case. For practical implementation
We define the extrinsic probability th&f/ = 37 as purposes, (14) should probably be modified (approximated) i
m m order to avoid switching back and forth between probabiti
# = Pxi=yiYV =yU) =] ¥, and LLRs when computing’.
=1 =1 A final detail is the specification of the initial channel LLR

LY in (14), which is needed to start the decoder iterations. By

where we introduced
msertmg the memoryless worst-case estlm%a g—mtl

pl = P(X] =yl YV =yl (11) into (14), we obtain
for notational convenience. The normalization constarfi.) © _ 2(1—27") —¢
thus becomes Ly =log{ ——— ), (15)
r B € B
Y =>0-8 + ﬁ(l - ). which is exactly the channel LLR for the marginal BSC with

] ) ~ crossover probabilitygsc given in (1).
Then the bit APP may be obtained by the marginalization  Ntice that the decoder iterations are exclusively between
P(szxﬂY:y) _ Z P(XI=27|Y =y), (12) VN (14) and CN computations, like in the binary case.
However, computing (14) at the VNs requires the extrinsic

wfy {0y information (the CN messages) for all bits within a symbol,
which may be written as this might be considered an additional level of message
) _ exchanges (specifically, plain copying of messages), lolatas
P(X] =z{[Y=y) not involve iterations of any kind. The complexity increase
[(1 _ e)ﬁj_ e 1-F )} o ol = o compareq to binary L_DPC decoding is on the order of at mc_)st
— L bl a1 7] % (13)  m operations per variable node, depending on the scheduling.
T Tf, x] #yl, In fact, the marginalization (12) is reminiscent of a conaain

) detector and VN decoder for binary LDPC codes that are
where 8/, = (7 /p] is the intra-symbol extrinsic probability girectly mapped to larger signal constellations [10]. Thsato
that X/ = 47, using no information on bltX’J Finally, we the symmetry of thg-SC, here it is not necessary to actually
may express tha posterioribit-level LLR as sum over allg symbol values.

Lapp(Xij :?Jf)
) B. ¢-SC Front-end Approach

(¢ —1)B — g’ + ep]
= log < c(1—p) The similarity of the bit-APP approach to combined detec-
. ey _ tion and decoding mentioned above points to a different view
~ log <(q - 1)%] - q€ﬁfi] te . Pl ) on the bit-symmetric coding scheme, which is to consider a

SC front-end for a binary LDPC decoder, similar to approache
-1 o for iterative demapping and decoding [11], [12]. These tech
=log (1 4 g-aqc— - M) +Lextr (X7 =y7). (14) niques involve proper iterations between the demappertand t

¢ LDPC decoder, being treated as separate functional blocks.

€ 17pg

Lon( X7 =7 The ¢-SC front-end takes into account the correlation be-
ch( i *yi) .

. . tween the errors on the: bit layers. Its factor graph rep-
The usualL(X) is obtained fromL(X =y) = log(Pr(X = resentation allows to formulate a message passing algorith

y)/ Pr(X=1-y)) viaasign flip,L(X) = (1-2y)L(X=y). that computes essentially the same quantities as the ayiproa
The second term in (14) corresponds to the extrinsic infaf Sec. 111-A, but opens the way to EXIT analysis and displays

mation from the CNs that is processed at the VNs in order {gore clearly the opportunity for further complexity redoct

Compute the bit APP in standard binary LDPC deCOding. Tl’ﬂg/ appropriate message Schedu"ng_

difference lies in the first term in (14), which corresponds t As pefore, letx denote the vector of-ary channel input

the channel LLR (which would bé.,(X) = log(P(y|X = symbolsz? (j = 1,...,n) and letz? denote biti of symbol
0)/P(y|X = 1)) in the binary case). When the extrinsic; |n the same Way, the output of the channel is represented

information on the bltSX[J] favors the hypOthESI:XJ 7& yJ by v, yJ and yzl and the errors are denoted byeJ ande

the productﬁJZ will be small and thereforeL¢, in (14) respectively. We assume w.l.0.g. tlﬁt— x dyl, Where@

will be close to zero, which is equivalent to declaring a bilenotes addition in GB}, ande’ = 27 @ y7, by extension.
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Fig. 3. Factor graph representation of t#&C front-end for symbat7 (the
symbol index; is omitted).

Let xo(x) be the characteristic function of the code, which
evaluates to one i is a codeword and to zero otherwise. Fur-
thermore assuming that the transmitted codewords arelgqual
likely, the a posterioriprobability satisfies the proportionality

relation

Ixy (x]y) = xo(x) fyx (¥]x).

The g-ary channel is assumed to be memoryless (on the

symbol level), leading to a factorization ¢%- x as

Ixy (xly) = xol

X) H fyix(@7]=7)

HfYE|X

x] @y |l‘]

the operations for a singlgary symbol and therefore omit the
symbol index; for convenience.

First, we define the local functions and derive the message
passing rules for the function nodds, and fg. Since the
variable nodese; have degree two, they just forward the
incoming messages, €.Qi, —f.(e1) = HUfz—e,(e1) and
Her—fi(€1) = Hfgoer (€1).

a) Bit Layer Channels:In the binary sub-channels;,
y; ande; have to sum up to zero in GE), therefore the local
functions fcn are given by

Jen(yilwi, ei) = [yi = x; ® ey,

where[P] evaluates td if the expressionP is true and to)
otherwise.

Having defined the local function, we can derive the mes-
sage passing algorithm by applying the rules of the sum-
product algorithm. Given a message,_. . (z;) and a re-
ceived bity;, the channel function node computes

Hfen—ei (ei) = Z

~{ei}
= /’Lii‘)fch(ei D yi)a

<fch(yi|$i7 €i) * Ma;— fun (301))

whereZN{ , denotes the marginalization over all variables
excepta. In the same way, the message sent back to variable
nodex; is computed as

H fon—a; (mt) = Z

~{zi}
= e, fon(Ti D Yi)-

<fch(yi|xi7 €;) - /’[/ei_’fch(ei)>

b) Error Patterns: The function nodefr represents the
probability that a certain binary error pattern occurs. he t
g-ary symmetric channel, every error pattern has the same

deterministic way.

Given an error symbad’, the bit-layers are independent of

each other, leading to

fxpy(xly) =

{fE ) fyix, 5y |27, 6])}

{fE (¢) chh yllzl, e »},

=1

el
el

where f}, = Fyiixi g
This factorization is shown for one symbel in Fig. 3,

where the edges on the right side are connected to 1w
check nodes of the LDPC code, i.e. the factorization of the
characteristic functioly-(x). In the following, we will denote

a message sent from a variable nadéo a function nodef
and vice versa ag,_ s(z) and us_.(z), respectively [13].

1 —¢, thus

fE<e1,...,em>{1f’

q—1’

fer=...=e, =0

otherwise.

The derivation of the outgoing messagesfefleads to

:LLfE*’ei(eZ): Z <fE €1,...,€ H/Le/ﬂfE (&% )
~{ei} il i
S A=p) Bt 5 (1) ife=0
Sl S if e; =1,
q—1
ﬁereﬁm is defined as
ﬁ[z] = H He;r— fr (0) (16)

i

1) Message Passing Rulegle apply the sum-product algo-Appendix A outlines the simplification of the different mes-

rithm to compute the marglnayg(] z]|y) for all symbols;

sages using scalar quantities and highlights the fact tiesiet

and all bitsi, i.e. to performa posterlorldecodlng for every bit are essentially the same quantities as in the bit-level APP
of the transmitted codeword. In the following we will de®&i approach in Sec. IlI-A.
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2) Complexity: Clearly, the processing complexity of the 1
front-end is dominated by (16) and is thu3(logq) per —BEC
symbol, as in verification decoding [1]. This means that the %[ -~ "AWGN ]
overall decoding complexity scales linearly in the numbero gl i

transmitted bits, independently of the symbol alphabet giz
Complexity may be further reduced by a constant factor (i.
not its order) if the front-end messages are not recompute
on every LDPC decoder iteration; this is often sufficient in
practice.

C. EXIT Analysis of theg-SC Front-end

In this section, we analyze theSC front-end using extrin- 0.3r 1
sic information transfer (EXIT) charts [14], which will as
be used later for the design (optimization) of LDPC codes.

Let the a priori and extrinsic messages for the front-end 0.1+ 1
denote the messages between the bit layer sub-chalfigels
and the bit nodes; of the LDPC code, that iSus,— £, (2:) 0 : : : :

. : , 0 0.2 0.4 0.6 0.8 1
and p .., (x;), respectively. For the EXIT chart analysis, L osc
the front-end is characterized by the transfer functipfl,), a
where I, and I. denote thea priori and theextrinsic mu-  rig. 4. EXIT function for theg-SC front-end with BEC (analytical) and
tual information, respectively, between the messages lamd Gaussian (simulated priori messages for = 0.25, m = 4 (lower curves)
corresponding bits. andm = 8 (upper curves).

First, we derive the EXIT function of the front-end for the
case when tha priori messages are modeled. as coming fromél’ased is computed as
binary erasure channel (BEC). In this special case, the EXIT

functions have important properties (e.g. the area-ptgper ML) = <m 1> AL (1— Aa)mflft
which were shown in [14].

In the case of a BEC, the variables are either known to _ <m — 1> (1= 1) 1=t (19)
be error-free or erased, thus simplifying the computatibn o t @ e '

By defined in (16) as follows. The product in (16) has- 1
factors, taking on the valug/2 if the bit z; is erased( if
the bit z; is not in agreement with the received bit and 1

otherwise. If at least one message is not in agreement véth thegrem 2 An iterative decoder for the bit-symmetric scheme
received bit, a symbol error occurred afigl = 0. Otherwise, using ag-SC front-end can attaig-SC capacity.
B = 27", wheret denotes the number of erased messages.

Since 3;; = 0 corresponds tce; = 1/2 through (22) Proof: According to the area theorem for EXIT charts
in Appendix A, this case is equivalently described by all4], the capacity of each bit layer is given by the area below
erasure. Therefore, the extrinsic messages can be modeleth@ EXIT function, if thea priori messages are modeled as
being transmitted over a binary symmetric erasure chang@ming from a BEC. Therefore, the capacity of the overall
(BSEC), with parameters,,_; and d,,_; given by (2) and channel is given by
(3), respectively, since erasures correspond to the situation 1m—1
in layeri = m — ¢ in the layered scheme of Section Il. Its (C,; = m/ Z I\(1,)dI,
capacity is thus 0

The EXIT function for BECa priori messages can therefore
be computed using (2), (3), (17) and (19) in (18).

t=0

m—1 1
I = (1= 6m_s) <1 —h <L)> : (17) = my It/ At(la) dlq
1—6m—t t—0 Y0
m—1 1
In order to compute the extrinsic informatidh(1,) at the — m Z I, (m — 1) / (1- Ia)tlm—l—t d,
output of the front-end as — t 0 ¢
m—1
m—1 (m-=1! t(m—-1-1)!
= m 1
I(1.) = tzo LA (1a), (18) ; “im—1—t)! m!
= m—1
we have to compute the probability(7,) thatt messages are = Z I = Cysc, (20)
erased givera priori mutual information/,,. Let A, =1—1, t=0

denote the probability that aa priori message is erased. Thavhere we used the fact that the integral corresponds to the
probability thatt = 0,...,m — 1 out of m — 1 messages are definition of the beta function. The last sum in (20) is indeed
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equal to the capacity of the-SC, as was already shown in 1 . c m (m=3)
the proof of Theorem 1. [ 0.91 N\, TRq/‘r:C m=a)/]
Without iterative processing, the maximum achievable rat N ___C___/m (m=8)
is given byI.(0). In that case, alh priori messages are erased 08 a Rq,_ric (m=8) |
and one has 0.7t "B :
Ip1=1- h(el) =1-h < E > - CBSC; o9 \ﬁ\ |
2(¢—1) 2 05) ]
o o
which corresponds to the simplistic coding approach wher ,1 ]
the ¢-SC is decomposed int BSCs. =
Fig. 4 shows an EXIT chart for BE@ priori messages. If 03 o 1
the ¢-SC would be decomposed into BSCs (without iterating .2+ ‘\D |
between the front-end and the LDPC code and without usin \\h
the layered scheme) then the valuelat= 0 corresponds to 0.1 e
the capacity of these BSCs. In contrast, the area below ti 0 02 04 06 08 = 1
EXIT functions corresponds to the normalized capacity ef th ' ' e ' '

-SC.
! When using this front-end with an LDPC code, th@riori  Fig. 5. Rate of optimized codes versus normalized capaditfieng-SC for
messages can not be modeled as coming from a BEC. For c8tie 4andm =8.
design, we will make the approximation that the message 10° |
are Gaussian distributed, which is a common assumptic — Optimized code
when using EXIT charts. The simulated EXIT function using 10-t L=~ ~Regular 3/6 code
Gaussiara priori messages is also shown in Fig. 4.

-2|

10
IV. LDPC DESIGN AND CONSTRUCTION
-3
After obtaining the EXIT function of the-SC front-end, o °
we can design an LDPC code. Code design is an optimizatic &
problem that selects the degree distributions of the code
order to maximize the rate, under the constraint that theTEXI

function of the overall LDPC code does not intersect the EXIT

-4

-5

function of theq-SC front-end. -
Joint optimization of the variable and check node degre 10
distributions is a nonlinear problem, but it was shown in][12 ,7 ‘
that the optimization of the check node degree distributio 1051 0.15 0.2 0.25 0.3

given a fixed variable node degree distribution is a linea.

programming pmble_m’_ Wh_ICh can be SfOIVed efﬁmentl_y. Fig. 6.  Bit error rate simulation for rate 1/2 LDPC decoding (= 4,
To reduce the optimization complexity and to obtain prag- = 1500 symbols). Marks indicate decoding threshold for reguladeco
tical degree distributions, we choose three non-zero bkria (¢ = 0.25), optimized coded = 0.28) and Shannon limit{(= 0.29).
node degrees (compare e.g., the approach in [15]). Thizsllo
to perform an exhaustive search over the variable node degre .
distribution, and for each variable node degree distriniie "€ multi-edge type framework for LDPC code where such
optimize the check node degree distribution as describedGRnStraints can be explicitly specified [9, Chap. 7]. _
[12] with a maximum check node degrég, .. = 50. T(_) verify our de_nvtcmons,_ we performed bit error rate sim-
Fig. 5 shows the normalized capacity of thC and the ulations for an optimized binary LIIDPC.code of r_dt’gﬁ 1/2_
obtained optimized code rates (under the Gaussian appaexi@"d 1ength V- = 12000, shown in Fig. 6. This code is
tion) versus the error probabilityof the ¢-SC form — 4 and  OPtimized for ag-SC with m = 4, thus N' = 12000 bits
m = 8. Using this code optimization, we are able to desighfP"esPond tok = 1500 g-ary symbols. It has a decoding
codes that perform close to capacity over a wide range of erfgreshold ofe = 0.28 (the Shannon limit fork = 1/2 is at
probabilities for moderate. e = 0.29). As a comparlson we also show the blt_ error rate
For the actual code construction, we used a modified versi@rﬁ a regular LDPC code witld, = 3 andd. = 6 which has
of the PEG algorithm [16], [17], which allows us to construc d€coding threshold af = 0.25.
codes with a specific variable and check node degree distribu
tion. To avoid (short) cycles in the overall factor graphgon V- GENERALIZATION TO CONDITIONALLY INDEPENDENT
has to ensure that the bits of a giverary symbol do not BINARY SUB-CHANNELS
participate in the same parity check. This can be achievedThe decoder in Section Ill is seen to easily extend-#ry
by using an appropriate interleaver between ¢h®8C front- channels with modulo-additive noise, where thebits of the
end and the LDPC decoder. Another way would be to usmise (error pattern) are independent if an error occlesifi.
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(1= 8 +a(t = e )p} | [pi (ear + vk = 260.01) = T (0 = eu v

€l (1= 1) [z <€k|* +p} - 2%\*%)

Lapp(Xij:yzj) = log

(1= )@y + a1 =€) Tl (exte + 2 — 26800 o
= log - - + log L i
acis [Tz (€k|* +rr - 2€k|*Pi) L=p
1— €4 (1-a) JL .
= log = u +Lexer(X] =) (21)

Eilx €l [T (€k|* + i — 2€k|*pi)

Lch(Xij = yf)

at least one bit is nonzero. This assumption leads to defioletained by assuming a Worst—casepéf: 1 ﬁ[ﬁ] =2-mtl
the g-ary symmetric channel with conditionally independerinh (21), yielding
binary sub-channels;{SC*), with transition probabilities Y l—en 1-a

L9 () =) = tog (4 =2

Prixyl)={ & y=uz, €ilx Ol
Yy|x\Y|T) = m ;DY 1®ziDy: 170[61‘* 1-— J
| alliz, Ei\fo (1—eips) "oyt = log <7|> =log <ﬂ> ,
€ Q€| €BSC,i
where o = C ‘ .
1— H;ﬁl (1 — 6“*) which is the channel LLR of thé-th marginal BSC.
and & denotes GFY) addition (this definition encompasses APPENDIX

all channels satisfying the above conditional indepeneens. Simplification of the Messages
assumption, from which it may be derived axiomatically)eTh

. o Since all involved variables are binary, we can represent th
defining parameters are the symbol error probabititand Y P

messages by scalar quantities. For the messages from and to

the?bﬁﬁnd't'onﬂ.tpmbgb'“t'f;f“*’ WT?E ?ret Ithe tb't Zgrofrtthe variable nodes{ of the LDPC code, we use log-likelihood
probabilities conditioned on the event that at least onehef t .. o ¢ o corresponding messages

otherm —1 bits is in error. The marginal bit error probabilities

will be egsci = ae;(.. Since they-SC* is strongly symmetric, Lo:—log :u‘fm‘)fch(o)v
the uniform input distribution achieves its capacity ’ f— fen (1)
m Lch,i — log :LLfch*WCi (0) .
Coscr=m—a Y _ h(e) + (1 —e)logy(1 —¢) ffon—a; (1)
=1

The connection with the bit-level APP approach is made by
+ alogy a — (o — €) logy (o — €). equatingu,, . ., (b) = P(X? =b| YUl =yll) in the expression
for L, ;; the correspondence fdrg,; will be given below.

When ¢ is such thata = 1, the q;SC* reduces tom The messages from the function nodgs to the nodefx
independent BSCs, while fof;. = 5, ¢ = 1,...,m, it are defined as the probability of no error
becomes an ordinary-SC. - B
The unnormalized bit APP (compare (13)) is obtained as Pi = e, (0) = pei— 15 (0),
i and the messages from the function ng@ie are defined as
P(X] =Y =y) the error probability
(1_6) H?le{c ] ] ] € = lf/fE—>el(1)
+Oé(1 — €i|*)pg |:Hk7£z (€k|* + pi - 2€k|*pi) ’ Hfg—e; (O> + :LLfE**eL'(]-)
= _ Hk#(l _ €k\*)pﬂ 7 ﬂfi _ y% Using these deflnltlons, we can reformulate the computation
i i i rules at the function nodes as
e« (1 —p;) Hk;éi (Ek\* P~ 2€k\*pk)’ Lai (1 9y,
j J ez :
xi 7& Yis Pi = —¢ 7 ,

a,i a,i

S ez +e "z
leading to the LLR expression (21). The quantiti¢s3’ and hich corresponds to (11), and

[J;] are as defined in Section Ill. Like in the special case c
of the ¢-SC, for ﬁfé] — 0 the channel LLRL, tends to a € =7 fl 1 p
constant, which is equal to the LLR of the binary sub-channel (=€) B + 75 (1= Bp) + q—1

conditioned on the occurrence of an error on one or more of €

= (22)
the other sub-channels. The initial value If, can again be 2+ By (q —eq — 1)
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For the initialization, we set all a-priori L-values, ; to
zero, leading to3; = 2-(m~1Y = 2/q. Inserting this in (22)
leads to

(4]

€q (5]

2(q—1)
Finally, the messages sent from the function noggsto
the variable nodes; are computed as
(7]
1—¢
Leni = (1 —2y;) -1 . 2
eni = (1= 2y:) - log —— (23) g
Using (22), the logarithmic term in (23) can be expanded as
(9]
e—1
1 Bl — 1) ;

€ q—qe—
= log (2—1—76 [10]

€ = = €BsC.

(6]

log

€;

which is equivalent toLey(X? = /) defined in (14) in the
bit-level APP approach. (11
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