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Abstract—This paper revisits earlier work on the achievable
rate-region for the coded side-information problem. For specific
source distributions we provide computable extreme rate points.
As opposed to previous works, we present short and concise
proofs and additional rate points below the time-sharing line
of previously known rate points. Our results are based on a
formulation as an optimization problem.

I. INTRODUCTION

The coded side-information problem is depicted in Fig. 1.
Two discrete sources, X ∈ X and Y ∈ Y , with finite alphabets
X and Y and a joint distribution PXY , are separately encoded
by encoders EX and EY at rates RX and RY , respectively. At
the destination, the decoder DX seeks to losslessly reconstruct
X as X̂; Y serves only as side information and is not
reconstructed. (An example rate region and some properties
are provided in Section V.)

Ahlswede and Körner determined a single-letter characteri-
zation of the achievable rate region for this problem [1, 2]. A
rate pair (RX , RY ) is achievable if and only if

RX ≥ H(X|U) (1)
RY ≥ I(Y ;U) (2)

for an auxiliary random variable U ∈ U satisfying the Markov
chain X−Y −U . The alphabet size |U| ≤ |Y|+2 is sufficient,
and the rate region is convex.

Although the rate region is completely defined by these
conditions, it is not computable from the joint distribution
PXY . Marco and Effros found a way to compute two specific
rate pairs on the boundary of the rate region for a given source
distribution PXY , namely (RX = H(X) − K(X;Y ), RY =
K(X;Y )) and (RX = H(X|Y ), RY = J(X;Y )) [3]. In
this paper, we will call these the K-point and the J-point,
respectively. Before explaining these points, we discuss two
properties of the rate region.

There are two obvious necessary conditions for achievable
rate pairs:

RX +RY ≥ H(X) (3)
RX ≥ H(X|Y ). (4)

We refer to the boundary line given by equality in the first
condition as the X-line, and to the boundary line given by
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Fig. 1. Lossless reconstruction with coded side-information.

equality in the second condition as the Y-line, cf. Fig. 3. Note
that the sum rate is minimal on the X-line, and the rate RX

is minimal on the Y-line. Two immediate questions arise:
Q1 Starting from the rate point (RX = H(X), RY = 0), how

much can RX be reduced before leaving the X-line?
Q2 Starting from the rate point (RX = H(X|Y ), RY =

H(Y )), how much can RY be reduced before leaving
the Y-line?

Q1 is equivalent to finding the minimal rate RX such that
the sum rate is minimal, i.e., meets (3) with equality. Q2 is
equivalent to finding the minimal rate RY such that RX is
minimal, i.e., meets (4) with equality.

The answer to Q1 is the K-point, and the answer to Q2
the J-point, as defined in [3]. Marcos and Effros construct
specific auxiliary random variables U , which are functions of
Y , such that the rate points are achieved by RX = H(X|U)
and RY = I(Y ;U). As the rate region is convex, the time-
sharing line between these two points is, in general, only an
inner bound of the rate region.

In the present paper we present new short proofs for the
K-point and the J-point. Generalizing the ideas underlying the
construction of U for these two rate points, we derive new rate
points on the boundary of the rate region, which are below
the time-sharing line between the J-point and the K-point. We
derive certain optimality conditions and show that these are
fulfilled by a set of candidate rate pairs.

The rest of the paper is organized as follows. Section II and
Section III deal with the new proofs for the J-point and the K-
point, respectively. Section IV addresses with the optimization
problem and the new rate pairs. A numerical example is
presented in Section V.



Random variables are denoted by uppercase letters, their
realizations by lowercase letters. For the probability of a
random variable X with distribution PX , we may simply
write PX(x) = p(x); similarly for joint and conditional
probabilities. The support of a probability distribution P is
written as supp(P ).

II. THE K-POINT

The X-line starts at (RX = H(X), RY = 0) and is formed
by rate pairs satisfying

H(X|U) + I(Y ;U) = H(X)

or equivalently
H(U |X) = H(U |Y ). (5)

Consider a graphical representation of PXY as in Fig. 2,
where nodes x and y are connected by an edge if they have
positive joint probability, p(x, y) > 0. Let the random variable
A = φ(Y ) be a function of Y that indexes the partition of PXY

into the largest number of (graphically) connected components
XA

a × YA
a such that x ∈ XA

a implies {y : p(x, y) > 0} ⊆ YA
a

and y ∈ YA
a implies {x : p(x, y) > 0} ⊆ XA

a , while x ∈ XA
a ,

y ∈ YA
a′ , a′ 6= a, implies p(x, y) = 0.

We use (5) to characterize the X-line:

H(U |X=x) = H(p(U |x))

= −
∑
u

(∑
y

p(y|x)p(u|y)
)
log

(∑
y

p(y|x)p(u|y)
)

= H

(∑
y

p(y|x)p(u|y)
)

≥
∑
y

p(y|x)H(p(U |y))

=
∑
y

p(y|x)H(U |Y = y),

where the y-summations are over y ∈ supp(PY |X(·|x)). The
inequality follows from the concavity of entropy and Jensen’s
inequality, and thus equality holds if and only if

∀x : p(u|y) = p(u|y, x) =
∑
y′

p(y′|x)p(u|y′)

⇐⇒ p(u|y) = const for y ∈ supp(p(·|x)) (6)

Since for each component a, all y ∈ YA
a are connected

via some x ∈ XA
a and y′ ∈ YA

a , condition (6) must hold
transitively for all y ∈ YA

a . We conclude that for all points
on the X-line, p(u|y) must be constant over YA

a , i.e., U and
Y are independent given A and we have the Markov chain
Y −A− U .

The K-point is defined as the point on the X-line with
minimal RX or, alternatively, with maximal RY . We express
the latter as I(Y ;U) = H(Y ) − H(Y |U). Thus the K-point
can be reached by minimizing H(Y |U) on the X-line. Since

on the X-line the Markov chain Y −A− U holds, we obtain

H(Y |U) = H(Y |UA) + I(Y ;A|U)

= H(Y |A) +H(A|U)

≥ H(Y |A),
where I(Y ;A|U) = H(A|U) since A is a function of Y , and
equality holds in the last line if and only if A = f(U). Thus
H(Y |U) becomes minimal for A = f(U) and we will also
have Y − U −A, since I(Y ;A|U) = 0.

Theorem 1: Any U such that A = f(U) achieves the K-
point, maximizing RY = I(Y ;U) on the X-line. The choice
U = A is sufficient, and has minimal alphabet size.

Proof: By the above derivation.

III. THE J-POINT

The Y-line ends at (RX = H(X|Y ), RY = H(Y )) and
is formed by points satisfying RX = H(X|U) = H(X|Y ).
From X − Y − U we have H(X|Y ) = H(X|Y U), and
therefore points on the Y-line must satisfy I(X;Y |U) = 0.
The latter implies X−U−Y , that is, X and Y are independent
given U [2, Sec. 2.8]. Therefore a point lies on the Y-line if
and only if U satisfies ∀(u, x, y) ∈ supp(PU,X,Y ):

p(x, y|u) = p(y|u)p(x|u, y) = p(y|u)p(x|y)
= p(y|u, x)p(x|u) = p(y|u)

∑
y′

p(y′|u)p(x|y′), (7)

where the summation is over y′ ∈ supp(PY |U (·|u)),
p(x|u, y) = p(x|y) follows from X−Y −U , and p(y|u, x) =
p(y|u) follows from X − U − Y .

For the following proposition, define

Yu = {y : p(u, y) > 0}, (8)
Xu = {x : ∃y ∈ Yu : p(x, y) > 0}

= {x : p(u, x) > 0},
where the last equality is due to X − Y − U .

Proposition 2: On the Y-line, the conditional distribution
p(u|y) must be such that every x ∈ Xu has a singleton “reverse
fan” {p(x|y) : y ∈ Yu} towards Y . This means that for a given
x ∈ Xu, the set {p(x|y) : y ∈ Yu} contains a single element.

Proof: By (7), p(x|y) is the weighted mean of |Yu|
probabilities p(x|y′). Thus we must have miny∈Yu p(x|y) =
maxy∈Yu

p(x|y), that is all conditional probabilities p(x|y)
must be equal for given x and all y ∈ Yu.

The J-point is defined as the point on the Y-line with
minimal RY = I(Y ;U) = H(Y ) − H(Y |U). Thus the J-
point can be reached by maximizing H(Y |U) while staying
on the Y-line.

We define a partition random variable B = ψ(Y ) that is a
function of Y such that U=B maximizes the sizes of the sets
YB
b = {y : p(b, y)> 0} defined in (8). The partition indexed

by B satisfies

Y =
⋃
b

YB
b with YB

b ∩ YB
b′ = ∅ for b 6= b′



and it is not possible to move one or more letters y from a
set YB

b to another set YB
b′ without violating the condition of

Proposition 2. It can be seen that the partition B is a refinement
of the partition A.

Theorem 3: U=B achieves the J-point, minimizing RY =
I(Y ;U) on the Y-line.

Proof: The definition of B and the conditions in Propo-
sition 2 ensure that no u may be connected to multiple
A-components, where connected means p(u, y) > 0 and
p(u, y′) > 0 for y ∈ YA

a , y′ ∈ YA
a′ with a 6= a′. They also

ensure that no u may be connected to multiple Y -letters within
a component YA

a that are statistically dependent on X .
We define UB

b = {u : p(u, y) > 0, y ∈ YB
b }, i.e., the set of

u that are connected to b. By the above, we must have

U =
⋃
b

UB
b with UB

b ∩ UB
b′ = ∅ for b 6= b′,

that is, there may be multiple u’s connected to one b, but not
vice versa.

Now

H(Y |U) =
∑
u

p(u)H(Y |U = u)

=
∑
b

∑
u∈UB

b

p(u)H(Y |U = u)

≤
∑
b

 ∑
u∈UB

b

p(u)

H(Y |U ∈ UB
b )

=
∑
b

Pr{y ∈ YB
b }H(Y |Y ∈ YB

b ).

The inequality follows since conditioning reduces entropy, and
{U = u} ⊆ {u ∈ UB

b }. The final equality follows from the
fact that {u ∈ UB

b } and {Y ∈ YB
b } are the same event. To have

equality all along, we must have U⊥Y |B. This is satisfied by
the minimal choice U = B = f(Y ), which has PU |Y (u|y) =
1{u=f(y)} independently of y ∈ YB

b .

IV. OPTIMIZATION

The goal is to obtain additional achievable rate points that
lie below the time-sharing line J–K. Since U=A achieves the
K-point, U =B achieves the J-point, and B is a refinement
of A, a straightforward approach is to consider U = B
augmented with one letter per A-component. Then Lagrangian
optimization can be used to determine for each component
whether it is coded using only B, only A, or a mix of both.

To simplify notation, we write ba,i for the b’s belonging
to the component a, that is, belonging to the set Ba = {b :
∃y s.t. φ(y) = a ∧ ψ(y) = b}. To each ba,i, i = 1, . . . , |Ba|,
corresponds an auxiliary symbol ua,i with conditional proba-
bility p(ua,i|ba,i). The remaining probability is gathered by a
“grouping” auxiliary symbol ua,0 for each component a, with
conditional probability p(ua,0|ba,i). By these definitions we

have

p(ba,i|ua,i) = 1,

p(ua,i) = p(ba,i)p(ua,i|ba,i)

and p(ba,i|ua,0) =
p(ba,i)p(ua,0|ba,i)

p(ua,0)
,

with p(ua,0) =
∑|Ba|

i=1 p(ba,i)p(ua,0|ba,i)

Thus the distribution of the auxiliary random vari-
able U is completely determined by the parameters
{p(ua,i|ba,i), p(ua,0|ba,i)}. Furthermore, when p(ua,0) =
p(a) =

∑
i p(ba,i) for all a, we obtain U = A, while for

p(ua,0) = 0 for all a, we obtain U = B.
The goal is to find a conditional distribution PU |B that

minimizes H(X|U) subject to the constraints

I(Y ;U) = H(Y )−H(Y |U) ≤ RY , (9)
−p(ua,i|ba,i) ≤ 0, (10)
−p(ua,0|ba,i) ≤ 0, (11)

p(ua,i|ba,i) + p(ua,0|ba,i) = 1. (12)

Since X − U − A and Y − U − A, we have H(X|U) =
H(X|A,U) and H(Y |U) = H(Y |A,U), which helps sim-
plify notation. The Lagrangian function is

J = H(X|U)− λH(Y |U)−
∑
a,i

(µa,i − νa,i)p(ua,i|ba,i)

−
∑
a,i

(µ′a,i − νa,i)p(ua,0|ba,i),

with

H(X|U) =
∑
a∈A

|Ba|∑
i=0

p(ua,i)H(X|U = ua,i)

= −
∑
a∈A

|Ba|∑
i=1

p(ua,i)
∑
x

p(x|ua,i) log(p(x|ua,i))

−
∑
a∈A

p(ua,0)
∑
x

p(x|ua,0) log(p(x|ua,0)), (13)

where

p(x|ua,i) =
∑
y

p(y|ba,i)p(x|y), i = 1, . . . , |Ba|, (14)

and

p(x|ua,0) =
|Ba|∑
i=1

p(ba,i|ua,0)p(x|ua,i). (15)

H(Y |U) follows analogously, with p(y|ua,i) in lieu of
p(x|ua,i).



Finally, we obtain the derivatives

∂J

∂p(ua,i|ba,i)
= p(ba,i)

[
−
∑
x

p(x|ua,i) log(p(x|ua,i))

+ λ
∑
y

p(y|ua,i) log(p(y|ua,i))
]
− µa,i + νa,i,

(16)
∂J

∂p(ua,0|ba,i)
= p(ba,i)

[
−
∑
x

p(x|ua,i) log(p(x|ua,0))

+ λ
∑
y

p(y|ua,i) log(p(y|ua,0))
]
− µ′a,i + νa,i.

(17)

For a non-boundary solution (having p(ua,i|ba,i) > 0 and
p(ua,0|ba,i) > 0), the Karush-Kuhn-Tucker (KKT) necessary
conditions require µa,i = µ′a,i = 0. Then (16) can be used to
determine the Lagrange multiplier νa,i, which inserted into
(17) yields

p(ba,i)
[
D(P (X|ua,i)‖P (X|ua,0))

− λD(P (Y |ua,i)‖P (Y |ua,0))
]
= 0 (18)

as a necessary condition for a non-boundary solution. When
p(ua,i|ba,i) = 0, the KKT conditions allow to choose µa,i > 0
in order to satisfy (16). Conversely, when p(ua,0|ba,i) = 0,
the KKT conditions allow to choose µ′a,i > 0 in order
to satisfy (17). In both cases, the other necessary condition
on p(·|ba,i) can be satisfied. This means that for a given
slope λ there will be in general only one ba,i for which
a proper non-boundary optimization takes place, with the
exception of multiple identical (sub-)components, when the
divergence expression (18) is satisfied for multiple ba,i. All
other p(ua,i|ba,i) will be saturated either at 0 or at 1.

In particular, the limiting cases with p(ua,0) = 0 (i.e.,
p(ua,i|ba,i) = 1, i = 1, . . . , |Ba|) or p(ua,0) = p(a) (i.e.,
p(ua,i|ba,i) = 0, i = 1, . . . , |Ba|) are valid candidate points.
These can be used to derive a piecewise linear upper bound
on the rate region. Potentially, 2|A| configurations with either
p(ua,0) = 0 or p(ua,0) = p(a) need to be checked. However,
this is not necessary, since we can greedily construct the con-
vex hull of these points, i.e., the piecewise linear upper bound,
as follows. Starting from the K-point, in which p(ua,0) = p(a)
for all components a ∈ A, we seek the component a(1) for
which setting p(ua(1),0) = 0 yields the most negative slope

s =
H(X|U)|p(ua,0)=0 −H(X|U)|p(ua,0)=1

H(Y |U)|p(ua,0)=1 −H(Y |U)|p(ua,0)=0
. (19)

(It is understood that all other p(ua′,0) are maintained at their
corresponding values. The sign reversal in the denominator is
due to the use of H(Y |U) instead of I(Y ;U).) There may
be multiple components yielding the minimal slope, in which
case they may be selected in any order. This procedure is
repeated until all components have p(ua,0) = 0 and we have
reached the J-point. At each step, the choice is optimal, since

any choice with less than minimal slope would point to the
interior of the convex polytope.

In the example to be presented below, we opted for simple
time-sharing between the point with p(ua,0) = 0 and the point
with p(ua,0) = p(a). Further optimization results are part of
ongoing work.

V. EXAMPLE

The concepts and ideas discussed throughout this paper are
illustrated by the following example. Consider X and Y with
|X | = 6 and |Y| = 7 and the joint distribution PXY (x, y) =
Px,y ,

Px,y =



1−q1
6

q1
6 0 0 0 0 0

q1
6

1−q1
6 0 0 0 0 0

0 0 1−q2
6

q2
6 0 0 0

0 0 q2
6

1−q2
6 0 0 0

0 0 0 0 1−q3
6

q3
12

q3
12

0 0 0 0 q3
6

1−q3
12

1−q3
12

 ,

with q1 = 0.07, q2 = 0.1, q3 = 0.3. We have three
components, defined by

A =


1 for X ∈ {1, 2}
2 for X ∈ {3, 4}
3 for X ∈ {5, 6}

,

or equivalently by

A =


1 for Y ∈ {1, 2}
2 for Y ∈ {3, 4}
3 for Y ∈ {5, 6, 7}

.

Furthermore we have

B =

{
Y for Y ∈ {1, 2, 3, 4, 5}
6 for Y ∈ {6, 7} ,

i.e., Y = 6 and Y = 7 are mapped to the same B = 6. Notice
that the dependency between X and Y is strongest in the first
component, A = 1, and weakest in the third component, A =
3. The graph of the joint distribution is depicted in Fig. 2: every
node corresponds to the realization of a random variable, and
two nodes are connected if the corresponding joint probability
is positive; remember that we have the Markov chain X−Y −
B − U . The possible U in the graph describe the candidates
considered in the optimization in Section IV.

The rate region for the source PXY is shown in Fig. 3.
Rate points below the X-line and below the Y-line are not
achievable, see (4). The point A corresponds to the case
without side information, i.e., RY = 0, and the point D to
the case with maximal side information, i.e., RY = H(Y ).
All of the points B, C, J, and K are obtained by

p(ua0) ∈ {0, p(a)}.
The points J and K lie on the boundary of the rate region.

Starting from point A, RX can be reduced while the sum
rate remains minimum, i.e., at RX+RY = H(X); the extreme
point with this property is K. On the other hand, starting
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Fig. 2. Graph of the joint distribution PXY BU .

from D, RY can be reduced while RX remains minimum,
i.e., RX = H(X|Y ); the extreme point with this property
is J. The time-sharing line between K and J is indicated with
a dashed line.

The new rate points B and C are below the time-sharing
line between J and K. Point B is obtained by

p(u10) = 0, p(u20) = PA(2), p(u30) = PA(3),

and point C is obtained by

p(u10) = 0, p(u20) = 0, p(u30) = PA(3).

(Note that PA(a) ≡ p(a).) These are the optimal choices
of the probabilities p(ua0) ∈ {0, p(a)}. The rate points
corresponding to other choices may lie above or below the
KJ line.

The convexity of the rate region may be exploited to obtain
further computable rate points. For example, denote UC and
UD the auxiliary random variables that lead to the point C and
D, respectively. Define now

U ′ = ρUC + (1− ρ)UD,

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

H(X)

H(X|Y )

I(X; Y ) H(Y )

J

K

B

C

D

RY

RX

A

X-line

Y-line

Fig. 3. Rate region and specific rate points for the example.

ρ ∈ [0, 1], as a convex combination of UC and UD. Then the
rate point

RX = H(X|U ′), RY = I(Y ;U ′)

can be shown to lie below or on the time-sharing line between
C and D for all choices of ρ. Proceeding in this way with
all pairs of neighboring rate points leads to a computable
extension of the inner bound given by the polygon defined
by the points A, K, B, C, J, D.
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