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Abstract—This paper considers the optimization of a class properties of a small subclass of JSC integer arithmetiesod
of joint source-c_hannel_codes described by finite-state enders  (JSC-|IAC) were reported in [7].
(FSEs) generating variable-length codes. It focuses on FSE = Thig napner focuses on the optimization of codes generated
associated to joint source-channel integer arithmetic coek, which by finite-stat d SE hich b dtod ib
are uniquely decodable codes by design. An efficient method y finite-state enco .eréF _S)' which can be used to describe
for computing the free distance of such codes using Dijkstra Many JSC codes, including JSC-VLC and JSC-IAC. More
algorithm is proposed. To facilitate the search for codes wh good  precisely, our aim is to efficiently explore the (alreadyyer
distance properties, FSEs are organized within a tree struare,  |arge) subclass ofinite-state codeg¢FSCs) corresponding to
which allows the use of efficient branch-and-prune techniqes jgc_jac. One prerequisite for such an optimization is the
avoiding & search of the whole tree. availability of efficient tools to evaluate distance prajey

Index Terms—Variable length codes, finite state machines, of FSCs, which constitutes the first contribution of this @ap
source coding, channel coding, arithmetic codes.

see Section lII.
The first tools for evaluating distance properties congider
I. INTRODUCTION linear FSCs, such as convolutional codes (CCs) [8]. In [9],

o Viterbi computed transfer functions on the state diagram of

N OWADAYS, most communication systems are based Qfcs to obtain the distance spectrum and implicitly the free
Shannon's separation principle [1], which states thgfstance. In [10], a variant of Dijkstra’s shortest pathoaithm

source and channel coding may be optimized separately; wihigpplied on the CC state diagram to compute the free distanc
out loss of optimality compared to a joint design. Howeu&is t \yithout generating the spectrum. Later, [11] proposed & fas
result has bgen_ obtained under the_ hypothesis of a stayior_\ﬁ\ée search algorithm for computing the CC distance spectru
channel, which is seldom the case in wireless communicatigf} these techniques have a complexity that is linear in the
systems. As a consequence, channel codes are usuallytiffigymber of encoder states, due to the linearity of CCs.
to adapt to time-varying channel conditions. Moreoveryseu  gqr nonlinear FSCs, all pairs of codewords have to be
codes are suboptimal due to complexity constraints. ~ compared to compute the free distance. For Euclideanrdista

These issues have prompted the development of joi¥des generated by trellis-coded modulation (TCM) [123, th
source-channel (JSC) coding techniques, which aim at dguquct graph derived from the graph associated to the FSE
signing low-complexity codes simultaneously providingada can e used [13], allowing to compute the distance spectrum
compression and error correction capabilities. The hofde iSqgf TcM in the code (signal) domain and to infer the free
find joint cod(_as outperfprming separate codes yvhen th‘?_”e”@‘istance. For an FSC wittt states, a product trellis witf2")2
of the codes is constrained, see [2]. Compression efficiencystates is required for these evaluations [13]. For the adiss
measured by the ratio of the average code length to the souge@metrically unifornFSCs [14], which includes certain TCM
entropy [3], while the error-correction performance may bgdes, a modified generating function on a state diagram with
predicted Wi_th an union pound using_ tdéstance properties only 2” states is sufficient to compute the spectrum [15].
of the codej.e, its free distanceanddistance spectrumsee Al the above-described techniques are for fixed-rate codes
[4]. JSC coding using variable-length codes (JSC-VLC) Withhore precisely for FSEs defined by graphs where all tran-
error-correcting capabilities was studied in [5] and latef6];,  sitions have input labels of the same lendgthas well as
more recently, design techniques aiming at optimizingatise output labels of the same lengih as is the casee.g, for

, o rate k/n CCs. Distance properties for JSC-VLCs were first
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to define a test for synchronizability of VLCs. Tleeror-state A JSC-IAC (and its corresponding FSE) may be described
diagram introduced by [18] for VLCs is the product graphby its encoder parametergsource probabilities, arithmetic
that represents the pairs of paths at Hamming distance ongtecision, design rate) and by the way MFS are introduced.
study the resynchronization properties of the decoder afte The set of all JSC-IACs for fixed parameter values and with
single bit error in the encoded sequence. In [19], thesdtsesistate-dependent MFS is huge in general, but Section IV-B
were extended to JSC-IACs. shows that it may be structured with a tree, where all JISC-IAC
Evaluating the distance properties of nonlinear FSCs camdes correspond to leaves of the tree. An efficient brandh-a
responding to JSC-IACs is slightly more complex than fgorune algorithm is then used to explore this tree and discard
JSC-VLCs. This is due to the fact that the FSE of a JSGrge parts of it, as soon as it can be shown that all JSC-
VLC has only one state in which paths can diverge ardCs stemming from a given node in the tree cannot have
converge, while there may be many such states for a JSfood performance in terms of free distance. An extension to
IAC. First analytical tools for JSC-IACs were proposed imon-binary input JSC-IACs is then presented in Section IV-C
[7], where the free distance is evaluated with polynomi&xperimental results for both binary input and non-binary
complexity, whereas approximate distance spectra arénglota input JSC-IACs are provided in Section V.
with exponential complexity as in [16]. More recently, [20]
explicitly defined variable-length finite-state codes (¥#6Cs)  !l. JOINT SOURCECHANNEL FINITE-STATE ENCODERS
generated by variable-length finite-state encoders (VEHJS  We briefly recall and extend some definitions from [20]. A
and proposed a matrix method with polynomial complexity tbinary-output FSE may be represented with a directed graph
compute the exact distance spectrum in the code domain orfd®, 7'), whereS is the set of states (vertices) afids the set
upper bound of it. The definitions of VL-FSEs and VL-FSCsf transitions (directed edges). Each transition is labelih
will be recalled in Section II. a sequence of input symbols and a sequence of output bits.
In Section lll, we first generalize the methods proposed Iret o(¢) be the originating state of a transitiore 7 and 7 (t)
[10] and [13] to all FSCs, in order to be able to evaluatiés target state, whild(t) denotes its input label an@(t) its
distance properties. A product graph inspired by that ifj [43 output label. LetP(t), ¢t € 7, be the probability thaf (¢) is
proposed for general FSEs and is simplified to get two graplsnitted by the source, which for simplicity we assume to be
the modified product grapliMPG), which allows to compute memoryless. A patlt = (t; oty 0---ot;,) € T* on the graph
the code domain distance spectrum using a transfer functisna concatenation of transitions that satisfit; 1) = 7(¢;)
approach, and thpairwise distance graplifPDG). The PDG for 1 < i < k (this corresponds to salk of length & on
allows to compute the free distance of the FSC by applyine encoder graph). By extension, we defing) = o(t1)
Dijkstra’s algorithm as in [10], without computing the eeti and 7(¢) = 7(¢x), as well asI(t) and O(t), which are the
distance spectrum. This approach is much less complex tlgmcatenations of the input, respectively output, labélg.o
the technique for computing the free distance of a JSC-IAThe probability of a path i$?(t) = Hle P(t;). Finally, ¢(x)
proposed in [7]. Our aim is then to apply these free distan@&ethe length (in symbols or bits) of the sequence
evaluation tools to the efficient optimization of JSC-IACs. We assume that the FSE graph is irreducibke, that any
Arithmetic coding (AC) [21] is an efficient source codingstate can be reached from any other state in a finite number of
method whose variants have been used in recent still imagansitions, and that it is aperiodic., that the state recurrence
and video coders [22], [23]. AC is particularly vulnerabte ttimes, measured in output bits, are not multiples of an ieteg
transmission errors. To overcome this, the most common fopariodm > 1. These assumptions imply that the FSE, together
of JSC-AC introduces some redundancy in the compressgith the source being encoded, forms an ergodic Markov
bitstream by means of a forbidden symbol (FS), to which ghain, which has a unique stationary state distributiort. Le
non-zero probability is given during the partition of thede P*(s), s € S, be the stationary probability of the state
interval [24]. The larger the FS probability, the higher thavhich is computed taking into account the output label Ieagt
redundancy and the robustness against errors. This ideagsoutlined in [20].
extended in [25], which proposes the introduction of mldtip For an FSE to be a proper source encoder, for every
FSs (MFS). All these FS techniques can be applied to IA€ate, the input labels of the outgoing transitions have to
[26] leading to JSC-IAC. Optimization of JSC-IAC has beeform a complete prefix set, which implies that their tramsiti
considered in [7], assuming that the total probability téld probabilities sum to one [20].
to the (M)FS and the probability of each individual FS are Given an initial states,, the succession of states of the
independent of the states of the FSE representing the J&SE for all possible (semi-)infinite input sequences can be
IAC. However, the class of JSC-IAC with state-independedtisplayed with a trellis, which can be viewed as a descniptio
probability allocation for the FSs is significantly smaltean of the temporal evolution of the FSE. The output labels of all
that with state-dependent allocation. For a fixed amount péths through the trellis form an FSC, whose performance is
redundancy, more robust JSC-IACs than those obtained by fi§termined by it€oding rateand itserror correcting capabil-
may be obtained. ity. The error correcting capability is primarily charactedz
The second contribution of this paper, described in Selgy the free distancels,.. (a finer characterization is possible
tion IV, consists in presenting algorithms to globally opte through thedistance spectrujnUnder the assumption that the
the free distance of FSE by adjusting the introduction of MFISSE is an irreducible graph, the free distance will be theesam
in binary-input JSC-IAC. for every possible initial state.
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Definition 1: The coding rateR., in bits per symbol, is the 1 1
ratio between the average length of the output labels and the < o‘@ e 0/1
average length of the input labels of the transitiongin 0/ 52 -0 e 1/0
(b)

e P(a(t)P()E(O(t))
T S er o) POUTD) . @

~ Definition 2: Let Pl be the set of all paths with transi-  rjg 1. (a) Example of an incomplete automaton; herés a stopping state.
tions starting insg. The FSCC (T, sg) is the set of all infinite- (b) Example of a complete automaton derived from the incetephutomaton.
length output sequences generated by the FSE starting, in

C(T,s0) ={O(t) : t € P}

The Hamming distancey; between two equal-length se-in the same state or infinite-length paths converging at some
quencesz, y is equal to the Hamming weighty of their time instant in the same state, the free distance is infinite.
difference,dy (z,y) = wg(x —y), i.e., the number of non- Aq IAor CA Ty .is derivgdfrom an IAT if it has been
zero entries of their elementwise difference. If two path@ptained by exploring (adding the successor states of) one o
(t1,t2) € T* x T*» are such that(O(t,)) = ¢(O(t,)), then more terminal states df, (hence the graph is a subgraph
we will write dy(t1,t2) = du(O(t1), O(t2)). of Fl). [27]. Let _CO andC; be two codes generated W_and

Definition 3: The free distanc&lfc., of the FSCC (T, s¢) Iy, W'th free d'Star_‘CGS‘ifree(CO) and_dfree(cl), respectlvely._
is the minimum Hamming distance between any pair of codde define the relatiod, =< C;, meaning that all sequences in
sequences on distinct paths. LBtbe the set of all pairs of Co are prefixes of sequences@. If Co < C1, an important
paths in(Tkl « Tkz) diverging in some state andProperty following directly from Definitions 3 and 5 is that

_ ) 1<ky ko <oo .
converging for the first time in the same or another state afidlee(Co) is an upper bound oti;cc(C1).
with the same length of output labels. Consequenliy, is ~ Lemma l:Let C; andC; be two (incomplete) codes such

also the minimum Hamming distance thatCy < C1. Thendgee(Co) > diree(Cr).
. In [7], three types of FSE describing the coding operations
diree = (tlfglj?ede (t1,t2). (2) were considered: a symbol-clock FSE (S-FSE) suited for

o . . encoding, where each transition is labeled with exactly one
Definition 4: The distance spectrum [9] in the code domaippyt symbol; a reduced FSE (R-FSE), with variable-length

can be represented with a generating function non-empty input and output labels, leading to a compadistrel
o0 better suited for decoding, and a bit-clock FSE (B-FSE)esuit
G(D)= > AsD‘, (3)  for the evaluation of distance spectra, where each transisi
d=dree labeled with exactly one output bit, as in Fig. 1. Details on

whereA, is the average number of paths at Hamming distanB€W these FSEs are obtained can be found in [7]. In the sequel,
d from a given path. In the most general cask, can be SrandZ, are the set of states and transitions in R-FSE&nd
defined as [7], [20], and7, the set of states and transitions in B-FSE. and M,
are the number of states in a R-FSE and a B-FSE, respectively.
A=Y P'(o(t)P(t) (@)

(t1,t2)€P IIl. CHARACTERIZATION OF THE ERROR CORRECTING

I (t1,to)=d
)= PERFORMANCE
By the above definitions we see that the cad@’, so) and

its free distance are independent of the source (provided
source letters have nonzero probability), while the jomirse-
channel characteristic shows in the fact that the rate aad
spectrum coefficientsl; depend on the source statistics.
Finally, we introduce two notions which may help searchi
codes with a computer. Aomplete automatofCA) is an
FSE that can encode any source sequence.in&omplete
automaton(lA) is an FSE having one or more terminal state
without outgoing transitions, in which encoding stops, s
Fig. 1. Such terminal states are callstbpping statesor
unexplored statesAn IA Ty generates finite-length prefixes o _ _
of code sequences and possibly some infinite-length cofe Efficient computation of the free distance
sequences. Let thmmcomplete code&y = C(T'o, sg) contain This section describes the generation of the product graph
these (finite and infinite) sequences. associated to a B-FSE and its simplification to efficiently
Definition 5: The free distance associated to an incomplet®mpute the free distance of the FSC generated by the B-FSE.
FSE is the minimum Hamming distance between any pair of Consider the set of stateS, = {s;: 0<i < M} and
output sequences on distinct paths, which are either iafinit the set of transitions7, of the directed grapH',(Sy,7s)
of equal output length and ending in the same state (all patiepresenting a B-FSE. The product graph associated with
begin in sq). If there is no pair of finite-length paths endindg,(S;,7,) is the directed grapi’?(S, x Sy, 7, x 7,) with

From here on, we consider B-FSE. To evaluate the free
(‘:ﬁlstance and the distance spectrum of a JSC-IAC described
a B-FSET(Sp, 75), techniques inspired from [13] are
plied to track the distances between pairs of paths gegera

by the B-FSE. The product graphi = I', x ', labeled
Nith Hamming distances (which would yield the product
trellis from [13]) is considered for that purpose. The main
difference with [13] is that for VL-FSE, different states yna
Rave different numbers of outgoing transitions. Then weasho
§ow this product graph may be simplified.
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Fig. 2. Product graph derived from the B-FSE of Fig. 1(b)

Fig. 3. The Modified Product Graph (MPG)

M statess; ; defined ass;; = (si,s;), 0 < 4,5 < My. Sy, is the set of states a2 for which the outgoing edges
For any pair of transitiongu,v) in the original graphI'}  correspond to pairs of diverging transitions7f having the
contains a directed edge= (u,v), with o(e) = s,(u),-(vy Same originating state if,. We merge the states if;, into
and 7(e) = s;(u),r(v). The weight of the edge, wu(e) is a single state;, with only outgoing edgesS...v is the set of
defined as the Hamming distance between the outputs of tigtes ofi"? for which the incoming edges correspond to pairs
two transitionsu andov, i.e., wi(e) = dy (u, v). of distinct transitions ir7;> converging in the same target state
A directed pathe in I'; from the state g; to the state § ., in S,. We merge the states ifi.on, iNt0 a single stateou
is a sequence of edges = (e; o ez o --- o en) such that with only incoming edges. In Fig. 254, = {s0.0,52.2} and
o(ep+1) = 7(ey) for 1 < p < N. The weight of this S, = {s0.0, 522}

directed pathy(e) is defined as The set of edge$e = (u,u) : u € T} in '} corresponds to
N pairs of paths which have not diverged. Therefore, accgrdin
wi(e) = ZU’H(%)~ (5) to Definition 3, this set will not be useful to findpcc. If

in I'Z we replace the setS4iy and Scony bY sin and sout,

] . ] respectively, and remove the sét = (u,u):u € T}, we

Sincel, is a bit-clock FSE, one hasy(e) < N. obtain a modified product graph (MPG), in whiel, is the
Thus, the weight of a directed path[ifj from a states; ; 10 initial state ands. is the final state, and which still contains

a statesy, ,, is the Hamming distance between the output bit§| paths needed for the evaluationdf... The MPG derived

of two paths(ti,t2) € 7,* x 7,F. Hence, when we explore from the product graph in Fig. 2 is represented in Fig. 3. When

I'; from the initial stateso,o, the weights of the obtainedye explore the MPG from the initial state to the final state the

directed_paths qorrespond to the I-_|amming distances betwg@gghts of the paths give the Hamming distance®inThus

all possible pairs of codewords i@ (L', s0) x C(I's,50), finding dg.e. amounts to determining the directed path(s) from

including dy.., according to Definition 3. Fig. 1(b) gives ang, to sou With smallest weight.

example of a graph for a B-FSE (whesg and s, are the  pyrthermore, it can be seen thateif is a directed path in

states where paths diverge). Fig. 2 shows the product grgge MPG froms;, to sij» i # j, then there is also a directed
derived from the B-FSE in Fig. 1(b). The edges in Fig. 2 aigath e, from sy, to s;.4, such that

labeled with their weight.

Since for the evaluation of;.. we need to consider only l(e1) =L(ez) and wp(e1) = wn(e2). (6)
paths onT} belonging t027), we can derive a modified Thjs is so sincely is symmetric in its arguments. Here, we
product graph (MPG) froni; that represegnts only these p:;\thssay that the pathe; ande, in the MPG are equivalent. Thus
Consider the two sets of statéh;, C S; and Sconv C S5 the complexity can be further reduced by defining a pairwise
such that distance graph (PDG) that contains a single path for each pai

[ 2, 2 o o of equivalent paths in the MPG. To this end, the two stajes
Saiv = {51 € Sbg' v €T, ;u # v0(u)=0(v)=si} and s;; in the MPG are merged and replaced with a single
Sconv = {51,i € §; 1 3(w,v) € %, u # v, 7(u) =7(v) states, , (v = min(i, j),7 = max(i, j)) in the PDG, and the

p=1

Il
»
o
—_ -
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Fig. 5. (a) Part of a bit clock finite state encoder and (b)esponding part
of the pairwise distance graph.

distance one. Dijkstra’s algorithm has no problems withhsuc
codes, since each edge of the PDG is visited at most once.

B. Distance spectra in the code domain

This section briefly describes how an MPG could be labeled
in order to obtain the distance spectrum in code domain from
Fig. 4. The Pairwise Distance Graph (PDG) a generating function, which may be computed by evaluating

a symbolic transfer functiore.g, using Mason'’s gain formula
[28]. To this end, we assign to every edge= (u,v) a gain
two directed edgesu,v) and (v,u) (with u,v € 7;) in the g(e) defined as
MPG are replaced by a single edge in the PDG. The PDG
derived from the MPG in Fig. 3 is represented in Fig. 4. (e) = P*(o(w)P(u) DM o(u) = o(v), )

Finding dg.c With this PDG is again the same as finding P(u) D) o(u) # o(v),
the directed path(s) from,, to s,y With the smallest weight. . . . .
This is known as the shortest weighted path problem in graﬁﬁereD IS a symbolic Yanaple used to track the path weight.

en, applying Mason’s gain formula betweef and squ

theory and can be solved efficiently using Dijkstra’s algur in the MPG allows to obtain a transfer functié{ D), which

27], since all weights are non-negative. The number ofstat . .
[27] 9 9 represents the distance spectrum according to (4).

in the PDG is A method to directly compute the distance spectrum (in
M, My x (M —1) 4o ) code domain) using matrices instead of generating funsti®n
PbG = 2 ' proposed in [20]. In this method, the coefficientg of G(D)

Mppg is the maximum number of states explored wheﬁreti]%mnf):tﬁdcgg;.cpgn?ne (efortghg <a|ooe)'o?lﬁ$nf?:§ gf tt;ic
Dijkstra’s algorithm is applied on the PDG to compuig... Irs u iclent gives vau IS

. . The method in [20] uses matrix inversion with matrices oésiz
An alternative method to compute the free distance of g, 9 . .
: : — V2 x My to compute the coefficients. This is more complex
JSC-IAC was presented in [7]. It uses a three-dimensional . - . .
i . an using Dijkstra’s algorithm to compuig;c..
array defined ash, = (ak,ij)o<y; j<ns, WHEr€ar,; is

o . k . The method described above cannot be applied in the
the minimum Hamming distance between all pairs of patri]r?formation (source) domain for general variable-lengHCB
of lengthn (in code domain) starting from the statg and 9 '

I . . __since the distances between information sequences need to b
ending in the states; and s;, respectively, and not having : S S
. o . expressed using the Levenshtein distance [29], which is not
converged. This method is iterative over the path lengtht

needs to compare paths of length uprtg.., which is the additive.
length for which no unmerged pairs of paths with distance
less thands.. exist. In practical implementations, some upper
boundn,., onn has to be given to perform the algorithm [7]
in finite time. If n,,., is too small, it may not be guaranteed This section presents a method to search for error-congpcti
that the actual value ofi;.. has been found. This maycodes with large free distance. Our approach is to explore
occur for example with catastrophic codes, since such codesubset of the seF of all FSEs.F contains the setf,
contain pairs of codewords with finite Hamming distancef FSEs which generates uniquely decodable FSCs, which
that correspond to never-converging paths. The compugtioin turn contains the sefjsc.ac of all FSEs corresponding
complexity of this method % (nmaex x |75* x M), while to JSC-IAC. The latter contains the s&fg. s Of all FSEs

the worst-case complexity of applying Dijkstra’s algonitton representing an IAC followed by an error-correcting coide (

a PDG isO(Mgp). With a better implementation of Dijk- classical separatendemencoding). It also contains the set
stra’s algorithm using Fibonacci heaps, the complexity i@y )% 4c Of all memorylessJSC-IAC, i.e, JSC-IAC whose
reduced taD(|Zppc |+ Mppa X log(Mppc)), whereZppg is  encoding behavior depends only on the current arithmetic
the set of edges of the PDG. The existence of catastropht pa&ncoder state. For such codes, the encoder behavior candlepe
of paths implies a zero-weight directed loop in the PDG arwh the previously encoded symbols or on the previously
vice-versa. For instance, in Fig. 5(a) the codewords obthingenerated output bits only indirectly through the staten&o
by (so, s1, 83, ,s3) and(so, s, 54, - - , s4) have Hamming IAC followed by block codes belong to the s&ll. .. but

IV. OPTIMIZING FINITE-STATE JSCCODES BASED ON
ARITHMETIC CODING
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more general tandem schemes consisting of an IAC followeld €0 4o | °1 | ai L e |

by a CC do not belong td M., For the sake of simplicity, | ! ! ! ! |

we restrict our exploration to the sé. e l lo ho h In h
As the setF) . . still remains large, it will be interesting

to structure it in a way that allows to efficiently explore il'Fig. 6. Code interval partitioning in the general binaryuhgSC-IAC case

for the largestds.... This may be done with a tree in which

leaves correspond to complete JSC-IACs (CAs) and internal

nodes correspond to incomplete JSC-IACs (IAs). Startiogifr and P is the binary precision (register size) of the encoding
the root, which is the initial IA determined by the values ofjevice. All interval boundaries are rounded to integersimyu
the encoder parameters, the tree is generated by sucdgssite encoding process, the bounds of the intefal) are
extending all intermediate |1As as will be described in Segenormalized as follows:

tions IV-B and IV-C. Using Lemma 1 in a branch-and-prune | ¢ ;, < T/2,1 andh are doubled.

algorithm substantially reduces the time needed to find the, T/2 <1, 1 andh are doubled after subtractirigy/2.

best JSC-IAC. The idea of the branch-and-prune algorithm is_ | T/4 <l andh < 3T/4, | andh are doubled after
to successively eliminate large parts of the tree, whicmoan subtractingl’/4.

lead to the optimundie.. This is done by iteratively updating . . ., vent interval before renormalization overlape th

a lower bounddy,.., of the largest free distance which may . . L .
be obtained for given values of the encoder parameters. qulgigpomt of{0, T), no bit is output. The number of consecutive

. ) . . . mes this occurs is stored in a variabfe(for follow). If the
exploring the tree, if an IA is reached, ifs... is compared to current interval before renormalization lies in the upper o
dreo- IT it is larger, the IA is extended, in the other case, th pp

IA is no more explored, since according to Lemma 1 all IAsr%Wer half of [0, "), the encoder emits the leading bit b{0

and CAs derived from it will have @y, smaller or equal to or 1) and f opposite bits [ or 0). This is calledfollow-on

. . . procedure [21].
gf“’e'ilsf S pi,:tésdreached and 8. is larger thand,.., then Since the IAC encoding process can be characterized by
Lfree .

Three ways for exploring the tree are considexpth first t[i;r]rll;t% T]d rJ; (?:sdetrnie}] sc;ﬁ;cinpcrgg:rblrlrl]t;es)t; ethdeefsi;a;(; Z;;P)e aw
exploration breadth first explorationand thesort method P g y i :

which extends the IA with the largest.... Their respective If the value of f is bounded, it is p(_)_ssmle to precompute
- : . . . all the reachable states and the transitions between thers, t
efficiency is compared in Section V. Section IV-A recalls the. . ; ;
geldmg an FSE. In generaf, may grow without bounds, but it

basics of AC, which may be helpful for understanding th oo )
tree construction methods. Sections IV-B and IV-C descrilé:(‘a"ln be easily liMited 1§ < fmax, as in [31]. The present work

the tree construction methods for binary input and noanyinaalkes th_e approgch Of [7]: Whenever= fuax and_ the current
) : source interval is such thagt could be further incremented,
input JSC-IAC, respectively.

the symbol probabilities are temporarily modified to force a
follow-on procedure after encoding the current symbol.

A. Finite-state integer arithmetic coding

The basic idea of binary AC is to assign to every sequenBe A tree of binary input JSC-IAC automata

of source symbols a unique subinterval of the unit interval consider a sourcev with alphabetA = {ag,a;} and
[0,1). A subinterval of widthw is represented by a binaryp,. x — ag) = po andPr(X =ay) = 1 — po. Let (I, h, f)
fraction of length at leastlog, w]| bits. The source entropy e the current state of the encoder and= h — I the width
can be approached by iteratively partitioning the coderviae ¢ the current code interval. During encodirig, &;) is the
[0,1) according to the probabilities of the source symbolg, pinterval of widthw; = h; — I; assigned tai;,i = 0,1. As
Let K be the size of the source alphalfet,, a2, ...,ax}. mentioned in Section I, a JSC-IAC may be derived from an
Assume that the code interval ig,h) at the end of an |ac py introducing FSs. In the case of a single FS,jletbe
iteration. In the next iteration|/, 2) is partitioned into X' he “nrobability” of the FS ands. the width of the subinterval
non-overlapping subintervald’y, I, . . ., Ik }, the width of I;  5ggigned to it. Givep. andpy, the widths of the subintervals

being proportional to the probability of the symbel. The f the code intervall, k) are computed as follows:
subinterval corresponding to the symbol being encodeckis th

selected as the new code interval. Partitions and selaction we = (pe X W), 9)
continue until the last symbol has been processed. The encod wo = (po X (h—1—w.)), (10)
then chooses a value in the current code interval and outputs _

) . wy =h—1—wy — we, (11)
binary representation as the code for the sequence of source
symbols. For sources with skewed probabilities or for longhere(-) denotes rounding towards the nearest integer. In the
source sequences, subintervals may however get too smadire general case, the FS probability may be split among up
to be accurately handled by a finite-precision computers Tho three FSs,<;, and ez, with corresponding probabilities
problem is solved by integer AC (IAC). Deos Pey s Pes» SUCh thatp., + pe, + pe, = pe. Fig. 6 shows

Binary IAC, also called quasi-arithmetic coding [26], [30how the code interval may be partitioned during the coding
works as the scheme presented above, but the initial interpaocess in the case of a JSC-IAC with 3 FSs. The way in which
is replaced by the integer intervéd, T'), where T = 2F p. is distributed among, 1,2 may bestate-independent
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Ao
) ;lnltléﬂ unexplored state
(11, hl) 1, ) s s hN) ufﬁhiV))

ok N
I A O A

6586 8.6 606 6.6 6.0 8.8 (2338

CAp v M v v M v M
0/010 _
6100060 TLI(s 1) L5 s
(0,8,0)(2,8,0)0.8,

(78157

0/011

. /O’Séf:
(0,8,0)(2,8,0)0,8,

o incomplete automaton (IA) o complete automaton (CA)
07 unexplored state of an IA -» subdivisions of unexplored states

1A11

Fig. 7. All automata for given values of encoder parameters dree

i.e,, independent of the values &f h, and f, or it may be

state-dependentn which case the order of the subinterval
assigned to source symbols may also change. Consideri
a state-dependent FS probability assignment providegrarg
design freedom, allowing to build automata that potentiall
lead to better codes than those obtained with state-indigmn

design, already considered in [7]. However, to the best of okig. 8. Part of the tree of automata for the encoder paranvetees?” = 8,

0/0000/010

TR

ax = 1, po = 3, pe = 5. The conventions of Fig. 7 are used; the labels
knowledge, no analytlca! .metho.d is known to find the thIm%rr? the dotted arrows repQresent the intervilly, ho), [l1, h1)) assigned to
state-dependent probability assignment. the symbols(ao, a1 ).

The set of all encoders can be obtained by iteratively
exploring the successors of all states, starting from theith
state(l=0,h =T, f=0), for every admissible configurationpossible manner to extend the initial state is to assign the
of the subintervalslly, ho) (associated toag) and [l1,h1) interval[0,1) to ao and the intervall, 4) to ay, leading to the
(associated ta;) of [/, h). This may be done by letting bothsecond incomplete automaton;lAThe last possible extension
lp andl; vary from/ to h — 1 in steps of one. Then one mayof the initial state assigns the intervil,8) to ao and the
check whether one of the fO”OWing admlSSlblllty Condimninterva] [4, 7) to aq, y|e|d|ng the incomp]ete automaton jA
is satisfied: lterating this approach, one may get CAs such as the one
1< Iy < (ho =l +wp) < (=l +w)<h (12) shown shaded on the bottom left side of the tree.

<
Z<11<(h1:h—|—w1)< 0<(h0—lo+w0)<h. (13)

Each time (12) or (13) is satisfied, a new IA or CA is derively: EXtension to non-binary input JSC-IAC
from the previous IA by extending it with two states (obtalne For sources with/' > 2 symbols, extending the interval
from [lg, ho) and[l1, hy) after appropriate renormalizations), ifsubdivision presented in Section IV-B would require to con-
they do not already exist. The resulting IAs are then explorsider up toK + 1 FSs. Allowing state-dependent assignment
in turn. From the initial IA with statgl = 0,h =T, f = 0), of the probabilities of the FSs may lead to a very high
the expansion of IAs yields a tree of automata in which aflumber of automata for given values of the encoder param-
internal nodes correspond to IAs, leaves correspond to Cekers. However, in practice most (if not all) source coding
and each edge corresponds to the exploration of an unexplostgandards using arithmetic codes apply a binarization tstep
state. the non-binary symbols being encoded, followed by binary
Fig. 7 shows how all possible automata for a given valusput arithmetic coding [32]. This allows the use of IAC
of the encoder parameters and with a state-dependent g reduced precision, compared to non-binary input ACs.
probability assignment may be described by a tree. Thalnitinstead of a single source probability model, several (ag&)p
IA consists of the unexplored stai@,7,0) shared by all probability models are considered and chosen depending on
automata. It forms the root of the tree. Each node in the figome context corresponding here to the index of the bit
layer of internal nodes represents an IA for which a givele encode in a binarized symbol. The methods described in
configuration of the subintervals of the initial code in@rv Section IV-B are thus extended for binarized sources with
has been considered. K > 2 symbols, accounting for some simple context, with
Fig. 8 shows an example of a tree of automata for tleenon-adaptive probability model.
encoder parametef6 =38, fuax=1, po= 3 andpezé. The Consider aK-ary memoryless sourc& with alphabet
circles labeledy, s1, . . . represent the states of the IA or CAAx = {a1,...,ax} and corresponding symbol probabilities
They are shaded for unexplored states. The initial incotaplePx = (pq,, - . -, Pay ). Without loss of generality, assume that
automaton |4 consists of the initial state, = (0,8,0). One p,, > pa i=1,...,K —1.

=~ 5=

i1
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A binarization of 45 may be carried out as follows. Con- ii’ib%s pproiag_ig‘;z Bitso %sgi%”?e”t
sider first somer € N and L € N* such thatL > [log,(z)]. =T pa; —0.0906 00001
Let Bz (x) be the binary representation of the integensing az=A | pa; =0.0817 00010
L digits. For instancéB3(1) = 001. Now considerLy € N* as =0 | pay =0.0751 00011

as =1 | pa, = 0.0697 00100
such thatLx > [log,(K)]. For each symboh; € Ak, a6 =N | pa. —0.0674 00101
B, (i—1) is a possible binary representation. a7 =5 | pa, =0.0633 00110

Example 1:Consider the 26 letters of the English alphabet as = H | pag = 0.0609 00111
Asg. ThenK = 26 and L = 5 bits. Table | lists the proba- Ci%::% L e LRSS
bility of occurrence (taken from [16]) and the bit assigntnen a1 =1 pz? —0.0103 01010
for each symbol indsg. The entropy of a memoryless source a12 =C | pa;, = 0.0278 01011
X generating symbols according to the probabilities given in a13_=AU4 Pajy = 8-831&5 8 i i 8(1)
Table | is H(X) = 4.175 bits/symbol. =W T =G0z 01110

Now leta! (i=1,...,K, j=1,...,Lk) be thej-th bit a6 =F pa1220,0223 01111
of the binarization ofa;. Assume that thej-th bit of the a17 =G | pa,, = 0.0202 10000
binarization is emitted by a binary memoryless souftg s 2 | Pain 200197 | 100902
Let pj for b € {0,1} andj = 1,..., Lk be the probability =B T =00 10011
that X] = b. One hay) = ZL 1;7%(5(@ —b), wherej(z) a21 =V | pay = 0.0098 10100
is the indicator function&( )=1if z =0andé(z) =0 az2 =I; Pag; =8-88g igi‘l)(l)

ag3 = Pass = 0.
elsewhere). One has of cour;a§+ p} = 1. The entropy of T = X pazj — 00005 10111
the binary memoryless source] generating thg-th bit of a 025 = Q@ | Pags = 0.001 11000
binarized symbol with probability modép}, p;) may easily a26 = Z | Paye = 0.0007 11001
be evaluated. The entropy of the source after binarizagon i TABLE |
then ZLK H(X)). PROBABILITY OF OCCURRENCE OF EACH LETTER IN THEENGLISH

EXampIe 2:For Agg, po _ 00963 p() _— 269 p() _ ALPHABET TAKEN FROM [16]AND EXAMPLE OF BINARIZATION

0.379; p§ = 0.432; pj = 0.455 andz ,1H(XJ) = 4.237

blts/non blnarlzed symbol, which is Iarger thah( X). Using

an AC involving five independent probability models for bi-

nary memoryless sources leads thus to some loss in effigierfy the number of distinct automata, but this upper bound will

compared to an AC directly handling thé-ary source. likely be too loose to be useful. An additional difficulty idss
With a context corresponding to the index of the bit t§ estimating the time required by the algorithm for compgti

encode in the binarized source symbol, the symtiohvill the free distance of an automaton. Again, this is extremely

be arithmetically coded with the probability modg¥, p?). difficult to estimate from the parameters without building t

In the FSE, this requires keeping track of the context Retual FSE.

supplementing the staig, , /) with the value of the context

to get the new statél, h, f,j), with j = 1,...,Lk. As a V. EXPERIMENTAL RESULTS
consequence, the number of states of the FSE is multiplied byrwo sets of experiments are conducted. First, simple binary
L when considering this context. sources are considered, allowing an easy comparison of-the e

When designing a JSC-IAC, one usually tries to reach somgiency of the branch-and-prune algorithm against an exhau
target source-channel coding rafa, calleddesign rate For  tjye search for the best FSE. Free distance evaluation lmased
that purpose, an FS “probability” Dijkstra’s algorithm is compared to the method proposed in
9~ (Ra—H(X})) (14) [7]. Various tree traversal methods are also compared.riégco

a JSC-IAC for the binarized English alphabet is studied.
is assigned to each context The encoder parameters of a
JSC-IAC are therl’, fuax, Px, andRq. As in Section IV-B, A 35c-IAC for binary sources
the set of all encoders with a state-dependent assignmémé of . . .
FS probabilities may be obtained by iteratively explorihg t A binary-input JSC-IAC with encoder parametdfs= 8,

successors of all states of 1As, starting with the 1A having t fmax =1, po = 0.1, and design ratéq = 0.62 bits/symbol
single state(l = 0,h = T, f = 0,j = 1), for every admissible (pe = 0.1) is considered first. The time needed to generate all

configuration of the subintervals of an unexplored state. possible automata with a state-dependent assignment of the
FS probabilities, to compute their free distance and sehect

best one is 6300 s. Using the branch-and-prune algorithin wit
breadth-first exploration, the time needed to find the larges
It would be useful for the branch-and-prune algorithm tdg.. is only 25 s, resulting in a time saving of 99.6%. In both
find a relation between the encoder parameters and the caases, free distances are evaluated with the techniqud.of [7
putational time for finding the best automaton. Howeves thi This first experiment was made on an Intel Core 2 Duo at
very difficult, since the number of automata generated déper2.66 Ghz with 1 Gb memory.
on these parameters in intricate ways. One may compute a\ second binary-input JSC-IAC with encoder parameters
upper bound on the number of states per automaton and tlius= 16, fn.x = 1, po = 0.1, and design rate?q = 0.91

pl=1-

D. Complexity issues
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bits/symbol p. = 0.26) is now considered. An exhaustive M%thOd deptg'f'rSt breadzth'f"St sort rgethc’d
exploration for such a JSC-IAC would be unreasonably time- T 28 9 12
consuming. Table Il shows the time (in seconds) needed to dfree 3 3 3
find the best automaton with depth-first exploration, brieadt __FRe 0.93 0.92 0.92

. . . . . Time with [7] 451266 s 31338 s 12431 s
first exploration, and the sort method described in Section | Time with PDG | 734 5 519 s 75 s
The free distance evaluation method of [7] is compared tb tha TABLE Il

presented in SeCtiOﬂ I”|S’| and |7—’| denOte the number Of COMPARISON BETWEEN THE THREE METHODS TO EXPLORE THE TREE OF
states and the number of transitions of the corresponding R- AUTOMATA FORT = 16, Py = 0.1, P- = 0.26
FSE. These numbers depend on the exploration method, since
several FSCs may have the samig.., without necessarily
having the same number of states or transitions. The eféecti
codmg rat_el'%C is gxpressed in blt_s/symbol. In Table II, ON& o\ asT — 32, fuax = 1, (), p1), (2%, p%5), and design
notices slight variations of?., which are due to rounding rate R, = 14 bits/symbol
effects in finite-precision IAC. The sort method is the best i .. 4= . o
. . s . Dijkstra’s algorithm is used to computg,.. and thesort
terms of computing time. This is mainly due to the fact that . . .
: . . : .. methodis used in the branch-and-prune algorithm. The best
this method explores first the 1A with the highest potential t . :
have a largels.., so thatd,,.. may rapidly increase. Having code hasdpec = 6 and R. = 13.9 bits/symbols. The time
ree “free | 79J o needed to find this code is 1425 s. JSC-IAC code design
a large value ofi;,., at the beginning of the search facilitates : . ;
ree is thus possible even for large alphabet sizes, provided tha

glr;;“gg fggﬁ fhaarttsug{ntgheD:er;rggh;;toﬁ?hprI:Tg%éﬁg;g @ binarization process is considered. However, the reduced

is much more efficient than using the method in [7]. number of contexts and the constraints imposed on the FSs

Compared to an equivalent tandem scheme (IAC foIIowel.t%ad (0 a JSC-IAC which is less efficient than that proposed

by a convolutional code (CC)) with the same coding rate, the [16], where a JSC-VLC fordy with diee = 5 and

free distance of the obtained JSC-IAC remains suboptinoal. F = 10.41 bits/symbols is ob@ned. S
the example of Table Il, consider &. = 0.91 bits/symbol Improvements may be obtained by considering more con-

equivalent tandem scheme with an IAC with= 16, p, — texts and by allowing more variations of the state-dependen

0.1, p. = 0, followed by a rate 1/2 CC. The free distance of th ssigqmgnts Of. the FS probapilities. Howe\(er, the price. to

tandem scheme depends on the constraint length of the CC. rpaId is a higher comput_atlonal complexity. The con_S|d—

constraint length 2 (respectively 3), the bégt. of a rate 1/2 ere_d branch-and-prune algquthm may be strongly paraddli

CC is 4 (respectively 5) [33, Chapter 8]. The weakness of tH‘@'Ch may help address this issue.

JSC-IAC is mainly due to its small effective memory (which is

related to the set of states), that is more geared towards$ goo VI. CONCLUSION

compression than towards largg... The minimum number

of states for the best obtained FSE in the JSC-IAC cage is This paper has shown how established graph transfer func-
(Table 1), while in the tandem scheme, the total number &n methods for fixed-rate channel codes can be generalized
states is the product of the number of states of the IAC aiicompute the free distance and the distance spectrum of VL-
the number of states of the CC (at least 2). Hence, the jom®C. The resulting method for computing the free distance is
scheme will be less complex than the tandem scheme. TRIch more efficient than the method for JSC-IAC presented
second experiment and the following were made on an Ini8l[7] and does not have problems dealing with catastrophic
Xeon E5420 at 2.50GHz with 64 Gb memory. codes.

It was also shown that the proposed branch-and-prune
algorithm (using the sort method) is a fast way to find the JSC-
o 7 ~_|AC with largestdy,.. for binary sources. Using an appropriate

Now, our aim is to optimize a JSC-IAC for the binarizeg)inarization process prior to AC and using several prolgbil
English alphabetys given in Table I. To reduce the numberyggels, this method may be extended to the design of JSC-
of IAs and CAs to build in tht_a tree of aut_omata, only tWQac for non-binary sources.
values of the context are considered. The first correspands tNevertheIess, for fixed coding rate, the codes obtained for

the first bit index and the second to the remaining bit inldexetﬁe time being remain less efficient than equivalent tandem
Two probability models are then considered, nam@ly, pi)  schemes. Future work will consider the extension of JSC-IAC

and T with anm-bit memory which may improvés,.. by separating
2j=2P0 and p¥° =1 — p2°. (15) paths that would lead to small distances. The memory holds
an integer0 < A < 2™ — 1, so that the FSE state can be
The probability p>> assigned to the context 2:5 can beepresented af, h, f, \). The set of FSEs of JSC-IAC with
obtained with (14). To further simplify the search for a goochemorym contains the set of tandem schemes with CCs of
code, the FS probability assignment is state-dependents buconstraint lengthm + 1. Therefore one may expect to find at
not allowed to vary for a given value of the context. Thigeast FSEs with performance (coding rafg..) equivalent to
significantly reduces the number of different automata Wwhitche tandem schemes, but hopefully less complex in terms of
may be built for given values of the encoder parametersntakihe number of states and transitions.

B. JSC-IAC for non-binary sources

2:5
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