
ACCEPTED FOR PUBLICATION IN IEEE TRANS. COMMUN., TO APPEAR APRIL 2011 1

Efficient computation and optimization of the
free distance of variable-length

finite-state joint source-channel codes
Amadou Diallo,Student Member, IEEE, Claudio Weidmann,Member, IEEE,

and Michel Kieffer,Senior Member, IEEE

Abstract—This paper considers the optimization of a class
of joint source-channel codes described by finite-state encoders
(FSEs) generating variable-length codes. It focuses on FSEs
associated to joint source-channel integer arithmetic codes, which
are uniquely decodable codes by design. An efficient method
for computing the free distance of such codes using Dijkstra’s
algorithm is proposed. To facilitate the search for codes with good
distance properties, FSEs are organized within a tree structure,
which allows the use of efficient branch-and-prune techniques
avoiding a search of the whole tree.

Index Terms—Variable length codes, finite state machines,
source coding, channel coding, arithmetic codes.

I. I NTRODUCTION

NOWADAYS, most communication systems are based on
Shannon’s separation principle [1], which states that

source and channel coding may be optimized separately, with-
out loss of optimality compared to a joint design. However, this
result has been obtained under the hypothesis of a stationary
channel, which is seldom the case in wireless communication
systems. As a consequence, channel codes are usually difficult
to adapt to time-varying channel conditions. Moreover, source
codes are suboptimal due to complexity constraints.

These issues have prompted the development of joint
source-channel (JSC) coding techniques, which aim at de-
signing low-complexity codes simultaneously providing data
compression and error correction capabilities. The hope isto
find joint codes outperforming separate codes when the length
of the codes is constrained, see [2]. Compression efficiencyis
measured by the ratio of the average code length to the source
entropy [3], while the error-correction performance may be
predicted with an union bound using thedistance properties
of the code,i.e., its free distanceand distance spectrum, see
[4]. JSC coding using variable-length codes (JSC-VLC) with
error-correcting capabilities was studied in [5] and laterin [6];
more recently, design techniques aiming at optimizing distance

Paper submitted December 17, 2009; revised August 31, 2010;approved
for publication 16 October 2010.

A. Diallo is with the L2S – CNRS – SUPELEC – Univ Paris-Sud, 91192
Gif-sur-Yvette, France. C. Weidmann was with INTHFT, Vienna University
of Technology, Austria, and is now with ETIS, CNRS UMR 8051, ENSEA –
Univ Cergy-Pontoise, 95014 Cergy-Pontoise, France. M. Kieffer is with LTCI
– CNRS – Telecom ParisTech, 75014 Paris, France, on leave from L2S.

This work was supported by the European Commission in the framework of
the FP7 Network of Excellence in Wireless COMmunications NEWCOM++
(contract n. 216715). Parts of this work have been presentedat EUSIPCO
2009.

properties of a small subclass of JSC integer arithmetic codes
(JSC-IAC) were reported in [7].

This paper focuses on the optimization of codes generated
by finite-state encoders(FSEs), which can be used to describe
many JSC codes, including JSC-VLC and JSC-IAC. More
precisely, our aim is to efficiently explore the (already very
large) subclass offinite-state codes(FSCs) corresponding to
JSC-IAC. One prerequisite for such an optimization is the
availability of efficient tools to evaluate distance properties
of FSCs, which constitutes the first contribution of this paper,
see Section III.

The first tools for evaluating distance properties considered
linear FSCs, such as convolutional codes (CCs) [8]. In [9],
Viterbi computed transfer functions on the state diagram of
CCs to obtain the distance spectrum and implicitly the free
distance. In [10], a variant of Dijkstra’s shortest path algorithm
is applied on the CC state diagram to compute the free distance
without generating the spectrum. Later, [11] proposed a fast
tree search algorithm for computing the CC distance spectrum.
All these techniques have a complexity that is linear in the
number of encoder states, due to the linearity of CCs.

For nonlinear FSCs, all pairs of codewords have to be
compared to compute the free distance. For Euclidean-distance
codes generated by trellis-coded modulation (TCM) [12], the
product graph derived from the graph associated to the FSE
can be used [13], allowing to compute the distance spectrum
of TCM in the code (signal) domain and to infer the free
distance. For an FSC with2ν states, a product trellis with(2ν)2

states is required for these evaluations [13]. For the classof
geometrically uniformFSCs [14], which includes certain TCM
codes, a modified generating function on a state diagram with
only 2ν states is sufficient to compute the spectrum [15].

All the above-described techniques are for fixed-rate codes,
more precisely for FSEs defined by graphs where all tran-
sitions have input labels of the same lengthk, as well as
output labels of the same lengthn, as is the case,e.g., for
rate k/n CCs. Distance properties for JSC-VLCs were first
evaluated in [6], [16], where a lower bound on the free
distance and exhaustive (exponential complexity) algorithms
for the distance spectrum were proposed. Graphs that are
similar to those used for distance properties of fixed-rate
trellis codes have also been used in the context of JSC-
VLCs, but to evaluate other figures of merit. For example,
[17] introduced atesting graph, consisting of the product graph
that represents only pairs of paths at null Hamming distance

2 ACCEPTED FOR PUBLICATION IN IEEE TRANS. COMMUN., TO APPEAR APRIL 2011

to define a test for synchronizability of VLCs. Theerror-state
diagram introduced by [18] for VLCs is the product graph
that represents the pairs of paths at Hamming distance one to
study the resynchronization properties of the decoder after a
single bit error in the encoded sequence. In [19], these results
were extended to JSC-IACs.

Evaluating the distance properties of nonlinear FSCs cor-
responding to JSC-IACs is slightly more complex than for
JSC-VLCs. This is due to the fact that the FSE of a JSC-
VLC has only one state in which paths can diverge and
converge, while there may be many such states for a JSC-
IAC. First analytical tools for JSC-IACs were proposed in
[7], where the free distance is evaluated with polynomial
complexity, whereas approximate distance spectra are obtained
with exponential complexity as in [16]. More recently, [20]
explicitly defined variable-length finite-state codes (VL-FSCs)
generated by variable-length finite-state encoders (VL-FSEs)
and proposed a matrix method with polynomial complexity to
compute the exact distance spectrum in the code domain or an
upper bound of it. The definitions of VL-FSEs and VL-FSCs
will be recalled in Section II.

In Section III, we first generalize the methods proposed in
[10] and [13] to all FSCs, in order to be able to evaluate
distance properties. A product graph inspired by that in [13] is
proposed for general FSEs and is simplified to get two graphs:
the modified product graph(MPG), which allows to compute
the code domain distance spectrum using a transfer function
approach, and thepairwise distance graph(PDG). The PDG
allows to compute the free distance of the FSC by applying
Dijkstra’s algorithm as in [10], without computing the entire
distance spectrum. This approach is much less complex than
the technique for computing the free distance of a JSC-IAC
proposed in [7]. Our aim is then to apply these free distance
evaluation tools to the efficient optimization of JSC-IACs.

Arithmetic coding (AC) [21] is an efficient source coding
method whose variants have been used in recent still image
and video coders [22], [23]. AC is particularly vulnerable to
transmission errors. To overcome this, the most common form
of JSC-AC introduces some redundancy in the compressed
bitstream by means of a forbidden symbol (FS), to which a
non-zero probability is given during the partition of thecode
interval [24]. The larger the FS probability, the higher the
redundancy and the robustness against errors. This idea is
extended in [25], which proposes the introduction of multiple
FSs (MFS). All these FS techniques can be applied to IAC
[26] leading to JSC-IAC. Optimization of JSC-IAC has been
considered in [7], assuming that the total probability allotted
to the (M)FS and the probability of each individual FS are
independent of the states of the FSE representing the JSC-
IAC. However, the class of JSC-IAC with state-independent
probability allocation for the FSs is significantly smallerthan
that with state-dependent allocation. For a fixed amount of
redundancy, more robust JSC-IACs than those obtained by [7]
may be obtained.

The second contribution of this paper, described in Sec-
tion IV, consists in presenting algorithms to globally optimize
the free distance of FSE by adjusting the introduction of MFS
in binary-input JSC-IAC.

A JSC-IAC (and its corresponding FSE) may be described
by its encoder parameters(source probabilities, arithmetic
precision, design rate) and by the way MFS are introduced.
The set of all JSC-IACs for fixed parameter values and with
state-dependent MFS is huge in general, but Section IV-B
shows that it may be structured with a tree, where all JSC-IAC
codes correspond to leaves of the tree. An efficient branch-and-
prune algorithm is then used to explore this tree and discard
large parts of it, as soon as it can be shown that all JSC-
IACs stemming from a given node in the tree cannot have
good performance in terms of free distance. An extension to
non-binary input JSC-IACs is then presented in Section IV-C.
Experimental results for both binary input and non-binary
input JSC-IACs are provided in Section V.

II. JOINT SOURCE-CHANNEL FINITE-STATE ENCODERS

We briefly recall and extend some definitions from [20]. A
binary-output FSE may be represented with a directed graph
Γ(S, T), whereS is the set of states (vertices) andT is the set
of transitions (directed edges). Each transition is labeled with
a sequence of input symbols and a sequence of output bits.
Let σ(t) be the originating state of a transitiont ∈ T andτ(t)
its target state, whileI(t) denotes its input label andO(t) its
output label. LetP (t), t ∈ T , be the probability thatI(t) is
emitted by the source, which for simplicity we assume to be
memoryless. A patht = (t1 ◦ t2 ◦ · · · ◦ tk) ∈ T k on the graph
is a concatenation of transitions that satisfyσ(ti+1) = τ(ti)
for 1 ≤ i < k (this corresponds to awalk of length k on
the encoder graph). By extension, we defineσ(t) = σ(t1)
and τ(t) = τ(tk), as well asI(t) and O(t), which are the
concatenations of the input, respectively output, labels of t.
The probability of a path isP (t) =

∏k

i=1 P (ti). Finally, ℓ(x)
is the length (in symbols or bits) of the sequencex.

We assume that the FSE graph is irreducible,i.e., that any
state can be reached from any other state in a finite number of
transitions, and that it is aperiodic,i.e., that the state recurrence
times, measured in output bits, are not multiples of an integer
periodm > 1. These assumptions imply that the FSE, together
with the source being encoded, forms an ergodic Markov
chain, which has a unique stationary state distribution. Let
P ∗(s), s ∈ S, be the stationary probability of the states,
which is computed taking into account the output label lengths
as outlined in [20].

For an FSE to be a proper source encoder, for every
state, the input labels of the outgoing transitions have to
form a complete prefix set, which implies that their transition
probabilities sum to one [20].

Given an initial states0, the succession of states of the
FSE for all possible (semi-)infinite input sequences can be
displayed with a trellis, which can be viewed as a description
of the temporal evolution of the FSE. The output labels of all
paths through the trellis form an FSC, whose performance is
determined by itscoding rateand itserror correcting capabil-
ity. The error correcting capability is primarily characterized
by the free distancedfree (a finer characterization is possible
through thedistance spectrum). Under the assumption that the
FSE is an irreducible graph, the free distance will be the same
for every possible initial state.

DIALLO et al.: EFFICIENT COMPUTATION AND OPTIMIZATION OF THE FREE DISTANCE OF FINITE-STATE JOINT SOURCE-CHANNEL CODES 3

Definition 1: The coding rateRc, in bits per symbol, is the
ratio between the average length of the output labels and the
average length of the input labels of the transitions inT ,

Rc =

∑

t∈T P ∗(σ(t))P (t)ℓ(O(t))
∑

t∈T P ∗(σ(t))P (t)ℓ(I(t))
. (1)

Definition 2: Let Pk
s0

be the set of all paths withk transi-
tions starting ins0. The FSCC (Γ, s0) is the set of all infinite-
length output sequences generated by the FSE starting ins0,
C (Γ, s0) = {O(t) : t ∈ P∞

s0
}.

The Hamming distancedH between two equal-length se-
quencesx, y is equal to the Hamming weightwH of their
difference,dH(x, y) = wH(x−y), i.e., the number of non-
zero entries of their elementwise difference. If two paths
(t1, t2) ∈ T k1 ×T k2 are such thatℓ(O(t1)) = ℓ(O(t2)), then
we will write dH(t1, t2) = dH(O(t1), O(t2)).

Definition 3: The free distance,dfree, of the FSCC (Γ, s0)
is the minimum Hamming distance between any pair of code
sequences on distinct paths. LetP be the set of all pairs of
paths in

(

T k1 × T k2
)

1≤k1,k2<∞
diverging in some state and

converging for the first time in the same or another state and
with the same length of output labels. Consequently,dfree is
also the minimum Hamming distance inP ,

dfree = min
(t1,t2)∈P

dH (t1, t2) . (2)

Definition 4: The distance spectrum [9] in the code domain
can be represented with a generating function

G (D) =

∞
∑

d=dfree

AdD
d, (3)

whereAd is the average number of paths at Hamming distance
d from a given path. In the most general case,Ad can be
defined as [7], [20],

Ad =
∑

(t1,t2)∈P
dH(t1,t2)=d

P ∗(σ(t1))P (t1) (4)

By the above definitions we see that the codeC (Γ, s0) and
its free distance are independent of the source (provided all
source letters have nonzero probability), while the joint source-
channel characteristic shows in the fact that the rate and the
spectrum coefficientsAd depend on the source statistics.

Finally, we introduce two notions which may help searching
codes with a computer. Acomplete automaton(CA) is an
FSE that can encode any source sequence. Anincomplete
automaton(IA) is an FSE having one or more terminal states
without outgoing transitions, in which encoding stops, see
Fig. 1. Such terminal states are calledstopping statesor
unexplored states. An IA Γ0 generates finite-length prefixes
of code sequences and possibly some infinite-length code
sequences. Let theincomplete codeC0 = C(Γ0, s0) contain
these (finite and infinite) sequences.

Definition 5: The free distance associated to an incomplete
FSE is the minimum Hamming distance between any pair of
output sequences on distinct paths, which are either infinite, or
of equal output length and ending in the same state (all paths
begin in s0). If there is no pair of finite-length paths ending

s0

s0

s1

s1

s2

s2

s3

0/0

0/0
1/1

1/1

-/1

-/1

0/1

1/0-/0

(a) (b)

Fig. 1. (a) Example of an incomplete automaton; heres2 is a stopping state.
(b) Example of a complete automaton derived from the incomplete automaton.

in the same state or infinite-length paths converging at some
time instant in the same state, the free distance is infinite.

An IA or CA Γ1 is derived from an IA Γ0 if it has been
obtained by exploring (adding the successor states of) one or
more terminal states ofΓ0 (hence the graphΓ0 is a subgraph
of Γ1) [27]. Let C0 andC1 be two codes generated byΓ0 and
Γ1, with free distancesdfree(C0) and dfree(C1), respectively.
We define the relationC0 � C1, meaning that all sequences in
C0 are prefixes of sequences inC1. If C0 � C1, an important
property following directly from Definitions 3 and 5 is that
dfree(C0) is an upper bound ondfree(C1).

Lemma 1:Let C0 and C1 be two (incomplete) codes such
that C0 � C1. Thendfree(C0) > dfree(C1).

In [7], three types of FSE describing the coding operations
were considered: a symbol-clock FSE (S-FSE) suited for
encoding, where each transition is labeled with exactly one
input symbol; a reduced FSE (R-FSE), with variable-length
non-empty input and output labels, leading to a compact trellis
better suited for decoding, and a bit-clock FSE (B-FSE) suited
for the evaluation of distance spectra, where each transition is
labeled with exactly one output bit, as in Fig. 1. Details on
how these FSEs are obtained can be found in [7]. In the sequel,
Sr andTr are the set of states and transitions in R-FSE andSb

andTb the set of states and transitions in B-FSE.Mr andMb

are the number of states in a R-FSE and a B-FSE, respectively.

III. C HARACTERIZATION OF THE ERROR CORRECTING

PERFORMANCE

From here on, we consider B-FSE. To evaluate the free
distance and the distance spectrum of a JSC-IAC described
by a B-FSEΓb(Sb, Tb), techniques inspired from [13] are
applied to track the distances between pairs of paths generated
by the B-FSE. The product graphΓ2

b = Γb × Γb labeled
with Hamming distances (which would yield the product
trellis from [13]) is considered for that purpose. The main
difference with [13] is that for VL-FSE, different states may
have different numbers of outgoing transitions. Then we show
how this product graph may be simplified.

A. Efficient computation of the free distance

This section describes the generation of the product graph
associated to a B-FSE and its simplification to efficiently
compute the free distance of the FSC generated by the B-FSE.

Consider the set of statesSb = {si : 0 6 i < Mb} and
the set of transitionsTb of the directed graphΓb(Sb, Tb)
representing a B-FSE. The product graph associated with
Γb(Sb, Tb) is the directed graphΓ2

b(Sb × Sb, Tb × Tb) with

4 ACCEPTED FOR PUBLICATION IN IEEE TRANS. COMMUN., TO APPEAR APRIL 2011

0

0

000

0
0

0

0

0

00

0

0

0

0

0

0

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0

s2,1

s2,2 s2,3

s3,0 s3,1 s3,2

s3,3

Fig. 2. Product graph derived from the B-FSE of Fig. 1(b)

M2
b statessi,j defined assi,j = (si, sj), 0 6 i, j < Mb.

For any pair of transitions(u, v) in the original graph,Γ2
b

contains a directed edgee = (u, v), with σ(e) = sσ(u),σ(v)

and τ(e) = sτ(u),τ(v). The weight of the edgee, wH(e) is
defined as the Hamming distance between the outputs of the
two transitionsu andv, i.e., wH(e) = dH (u, v).

A directed pathe in Γ2
b from the state si,j to the state sm,n,

is a sequence of edgese = (e1 ◦ e2 ◦ · · · ◦ eN) such that
σ(eµ+1) = τ(eµ) for 1 6 µ < N . The weight of this
directed path,wH(e) is defined as

wH(e) =

N
∑

µ=1

wH(eµ). (5)

SinceΓb is a bit-clock FSE, one haswH(e) 6 N .
Thus, the weight of a directed path inΓ2

b from a statesi,j to
a statesm,n, is the Hamming distance between the output bits
of two paths(t1, t2) ∈ T k

b × T k
b . Hence, when we explore

Γ2
b from the initial states0,0, the weights of the obtained

directed paths correspond to the Hamming distances between
all possible pairs of codewords inC (Γb, s0) × C (Γb, s0),
including dfree, according to Definition 3. Fig. 1(b) gives an
example of a graph for a B-FSE (wheres0 and s2 are the
states where paths diverge). Fig. 2 shows the product graph
derived from the B-FSE in Fig. 1(b). The edges in Fig. 2 are
labeled with their weight.

Since for the evaluation ofdfree we need to consider only
paths on Γ2

b belonging to P , we can derive a modified
product graph (MPG) fromΓ2

b that represents only these paths.
Consider the two sets of statesSdiv ⊂ S2

b and Sconv ⊂ S2
b

such that

Sdiv =
{

si,i ∈ S2
b : ∃(u, v) ∈ T 2

b , u 6= v, σ(u)=σ(v)=si

}

,

Sconv =
{

si,i ∈ S2
b : ∃(u, v) ∈ T 2

b , u 6= v, τ(u)=τ(v)=si

}

.

0

0

0
0

00

0

0

00

0

0

0

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

sin s0,1 s0,2 s0,3

s1,0 s1,2 s1,3

s2,0 s2,1 s2,3

s3,0 s3,1 s3,2 sout

Fig. 3. The Modified Product Graph (MPG)

Sdiv is the set of states ofΓ2
b for which the outgoing edges

correspond to pairs of diverging transitions inT 2
b having the

same originating state inSb. We merge the states inSdiv into
a single statesin with only outgoing edges.Sconv is the set of
states ofΓ2

b for which the incoming edges correspond to pairs
of distinct transitions inT 2

b converging in the same target state
in Sb. We merge the states inSconv into a single statesout

with only incoming edges. In Fig. 2,Sdiv = {s0,0, s2,2} and
Sconv = {s0,0, s2,2}.

The set of edges{e = (u, u) : u ∈ Tb} in Γ2
b corresponds to

pairs of paths which have not diverged. Therefore, according
to Definition 3, this set will not be useful to finddfree. If
in Γ2

b we replace the setsSdiv and Sconv by sin and sout,
respectively, and remove the set{e = (u, u) : u ∈ Tb}, we
obtain a modified product graph (MPG), in whichsin is the
initial state andsout is the final state, and which still contains
all paths needed for the evaluation ofdfree. The MPG derived
from the product graph in Fig. 2 is represented in Fig. 3. When
we explore the MPG from the initial state to the final state the
weights of the paths give the Hamming distances inP . Thus
finding dfree amounts to determining the directed path(s) from
sin to sout with smallest weight.

Furthermore, it can be seen that ife1 is a directed path in
the MPG fromsin to si,j , i 6= j, then there is also a directed
pathe2 from sin to sj,i, such that

ℓ(e1) = ℓ(e2) and wH(e1) = wH(e2). (6)

This is so sincedH is symmetric in its arguments. Here, we
say that the pathse1 ande2 in the MPG are equivalent. Thus
the complexity can be further reduced by defining a pairwise
distance graph (PDG) that contains a single path for each pair
of equivalent paths in the MPG. To this end, the two statessi,j

and sj,i in the MPG are merged and replaced with a single
statesν,γ (ν = min(i, j), γ = max(i, j)) in the PDG, and the

DIALLO et al.: EFFICIENT COMPUTATION AND OPTIMIZATION OF THE FREE DISTANCE OF FINITE-STATE JOINT SOURCE-CHANNEL CODES 5

0

0

0

0

0

0

1

1

1

1

1

1

1

1
1

sin s0,1 s0,2

s0,3

s1,2 s1,3

s2,3

sout

Fig. 4. The Pairwise Distance Graph (PDG)

two directed edges(u, v) and (v, u) (with u, v ∈ Tb) in the
MPG are replaced by a single edge in the PDG. The PDG
derived from the MPG in Fig. 3 is represented in Fig. 4.

Finding dfree with this PDG is again the same as finding
the directed path(s) fromsin to sout with the smallest weight.
This is known as the shortest weighted path problem in graph
theory and can be solved efficiently using Dijkstra’s algorithm
[27], since all weights are non-negative. The number of states
in the PDG is

MPDG =
Mb × (Mb − 1)

2
+ 2. (7)

MPDG is the maximum number of states explored when
Dijkstra’s algorithm is applied on the PDG to computedfree.

An alternative method to compute the free distance of a
JSC-IAC was presented in [7]. It uses a three-dimensional
array defined as△n = (ak,i,j)0≤k,i,j<Mb

, where ak,i,j is
the minimum Hamming distance between all pairs of paths
of length n (in code domain) starting from the statesk and
ending in the statessi and sj, respectively, and not having
converged. This method is iterative over the path lengthn. It
needs to compare paths of length up tonfree, which is the
length for which no unmerged pairs of paths with distance
less thandfree exist. In practical implementations, some upper
boundnmax on n has to be given to perform the algorithm [7]
in finite time. If nmax is too small, it may not be guaranteed
that the actual value ofdfree has been found. This may
occur for example with catastrophic codes, since such codes
contain pairs of codewords with finite Hamming distance
that correspond to never-converging paths. The computational
complexity of this method isO

(

nmax × |Tb|
2 × Mr

)

, while
the worst-case complexity of applying Dijkstra’s algorithm on
a PDG isO(M2

PDG). With a better implementation of Dijk-
stra’s algorithm using Fibonacci heaps, the complexity maybe
reduced toO(|TPDG|+MPDG× log(MPDG)), whereTPDG is
the set of edges of the PDG. The existence of catastrophic pairs
of paths implies a zero-weight directed loop in the PDG and
vice-versa. For instance, in Fig. 5(a) the codewords obtained
by (s0, s1, s3, · · · , s3) and(s0, s2, s4, · · · , s4) have Hamming

0
0

1s0 s1

s2

s3

s4

0/0

1/1

-/0

-/0

00/1

11/1 sin s1,2 s3,4

(a) (b)

Fig. 5. (a) Part of a bit clock finite state encoder and (b) corresponding part
of the pairwise distance graph.

distance one. Dijkstra’s algorithm has no problems with such
codes, since each edge of the PDG is visited at most once.

B. Distance spectra in the code domain

This section briefly describes how an MPG could be labeled
in order to obtain the distance spectrum in code domain from
a generating function, which may be computed by evaluating
a symbolic transfer function,e.g., using Mason’s gain formula
[28]. To this end, we assign to every edgee = (u, v) a gain
g(e) defined as

g(e) =

{

P ∗(σ(u))P (u)DdH(u,v), σ(u) = σ(v),

P (u)DdH(u,v), σ(u) 6= σ(v),
(8)

whereD is a symbolic variable used to track the path weight.
Then, applying Mason’s gain formula betweensin and sout

in the MPG allows to obtain a transfer functionG(D), which
represents the distance spectrum according to (4).

A method to directly compute the distance spectrum (in
code domain) using matrices instead of generating functions is
proposed in [20]. In this method, the coefficientsAd of G(D)
are computed one by one (for0 ≤ d < ∞). The index of the
first non-null coefficient gives the value of the free distance.
The method in [20] uses matrix inversion with matrices of size
M2

b × M2
b to compute the coefficients. This is more complex

than using Dijkstra’s algorithm to computedfree.
The method described above cannot be applied in the

information (source) domain for general variable-length FSCs,
since the distances between information sequences need to be
expressed using the Levenshtein distance [29], which is not
additive.

IV. OPTIMIZING FINITE-STATE JSCCODES BASED ON

ARITHMETIC CODING

This section presents a method to search for error-correcting
codes with large free distance. Our approach is to explore
a subset of the setF of all FSEs.F contains the setFu

of FSEs which generates uniquely decodable FSCs, which
in turn contains the setFJSC-IAC of all FSEs corresponding
to JSC-IAC. The latter contains the setFT

JSC-IAC of all FSEs
representing an IAC followed by an error-correcting code (i.e.
classical separatetandemencoding). It also contains the set
FM

JSC-IAC of all memorylessJSC-IAC, i.e., JSC-IAC whose
encoding behavior depends only on the current arithmetic
encoder state. For such codes, the encoder behavior can depend
on the previously encoded symbols or on the previously
generated output bits only indirectly through the state. Some
IAC followed by block codes belong to the setFM

JSC-IAC, but

6 ACCEPTED FOR PUBLICATION IN IEEE TRANS. COMMUN., TO APPEAR APRIL 2011

more general tandem schemes consisting of an IAC followed
by a CC do not belong toFM

JSC-IAC. For the sake of simplicity,
we restrict our exploration to the setFM

JSC-IAC.
As the setFM

JSC-IAC still remains large, it will be interesting
to structure it in a way that allows to efficiently explore it
for the largestdfree. This may be done with a tree in which
leaves correspond to complete JSC-IACs (CAs) and internal
nodes correspond to incomplete JSC-IACs (IAs). Starting from
the root, which is the initial IA determined by the values of
the encoder parameters, the tree is generated by successively
extending all intermediate IAs as will be described in Sec-
tions IV-B and IV-C. Using Lemma 1 in a branch-and-prune
algorithm substantially reduces the time needed to find the
best JSC-IAC. The idea of the branch-and-prune algorithm is
to successively eliminate large parts of the tree, which cannot
lead to the optimumdfree. This is done by iteratively updating
a lower bounddfree, of the largest free distance which may
be obtained for given values of the encoder parameters. When
exploring the tree, if an IA is reached, itsdfree is compared to
dfree. If it is larger, the IA is extended, in the other case, the
IA is no more explored, since according to Lemma 1 all IAs
and CAs derived from it will have adfree smaller or equal to
dfree. If a CA is reached and itsdfree is larger thandfree, then
dfree is updated.

Three ways for exploring the tree are considered:depth first
exploration, breadth first exploration, and thesort method,
which extends the IA with the largestdfree. Their respective
efficiency is compared in Section V. Section IV-A recalls the
basics of AC, which may be helpful for understanding the
tree construction methods. Sections IV-B and IV-C describe
the tree construction methods for binary input and non-binary
input JSC-IAC, respectively.

A. Finite-state integer arithmetic coding

The basic idea of binary AC is to assign to every sequence
of source symbols a unique subinterval of the unit interval
[0, 1). A subinterval of widthw is represented by a binary
fraction of length at least⌈log2 w⌉ bits. The source entropy
can be approached by iteratively partitioning the code interval
[0, 1) according to the probabilities of the source symbols.
Let K be the size of the source alphabet{a1, a2, . . . , aK}.
Assume that the code interval is[l, h) at the end of an
iteration. In the next iteration,[l, h) is partitioned intoK
non-overlapping subintervals{I1, I2, . . . , IK}, the width ofIi

being proportional to the probability of the symbolai. The
subinterval corresponding to the symbol being encoded is then
selected as the new code interval. Partitions and selections
continue until the last symbol has been processed. The encoder
then chooses a value in the current code interval and outputsits
binary representation as the code for the sequence of source
symbols. For sources with skewed probabilities or for long
source sequences, subintervals may however get too small
to be accurately handled by a finite-precision computer. This
problem is solved by integer AC (IAC).

Binary IAC, also called quasi-arithmetic coding [26], [30]
works as the scheme presented above, but the initial interval
is replaced by the integer interval[0, T), where T = 2P

l l0 h0 l1 h1 h

ε0 a0 ε1 a1 ε2

Fig. 6. Code interval partitioning in the general binary input JSC-IAC case

and P is the binary precision (register size) of the encoding
device. All interval boundaries are rounded to integers. During
the encoding process, the bounds of the interval[l, h) are
renormalized as follows:

• If h 6 T/2, l andh are doubled.
• If T/2 6 l, l andh are doubled after subtractingT/2.
• If T/4 6 l and h 6 3T/4, l and h are doubled after

subtractingT/4.

If the current interval before renormalization overlaps the
midpoint of[0, T), no bit is output. The number of consecutive
times this occurs is stored in a variablef (for follow). If the
current interval before renormalization lies in the upper or
lower half of [0, T), the encoder emits the leading bit ofl (0
or 1) and f opposite bits (1 or 0). This is calledfollow-on
procedure [21].

Since the IAC encoding process can be characterized by
[l, h) andf (and the source probabilities), the state of the au-
tomaton representing the encoder may be defined as(l, h, f).
If the value of f is bounded, it is possible to precompute
all the reachable states and the transitions between them, thus
yielding an FSE. In general,f may grow without bounds, but it
can be easily limited tof 6 fmax, as in [31]. The present work
takes the approach of [7]: wheneverf = fmax and the current
source interval is such thatf could be further incremented,
the symbol probabilities are temporarily modified to force a
follow-on procedure after encoding the current symbol.

B. A tree of binary input JSC-IAC automata

Consider a sourceX with alphabetA = {a0, a1} and
Pr(X = a0) = p0 and Pr(X = a1) = 1 − p0. Let (l, h, f)
be the current state of the encoder andw = h − l the width
of the current code interval. During encoding,[li, hi) is the
subinterval of widthwi = hi − li assigned toai, i = 0, 1. As
mentioned in Section I, a JSC-IAC may be derived from an
IAC by introducing FSs. In the case of a single FS, letpε be
the “probability” of the FS andwε the width of the subinterval
assigned to it. Givenpε andp0, the widths of the subintervals
of the code interval[l, h) are computed as follows:

wε = 〈pε × w〉 , (9)

w0 = 〈p0 × (h − l − wε)〉 , (10)

w1 = h − l − w0 − wε, (11)

where〈·〉 denotes rounding towards the nearest integer. In the
more general case, the FS probability may be split among up
to three FSsε0, ε1, and ε2, with corresponding probabilities
pε0 , pε1 , pε2 , such thatpε0 + pε1 + pε2 = pε. Fig. 6 shows
how the code interval may be partitioned during the coding
process in the case of a JSC-IAC with 3 FSs. The way in which
pε is distributed amongε0, ε1, ε2 may bestate-independent,

DIALLO et al.: EFFICIENT COMPUTATION AND OPTIMIZATION OF THE FREE DISTANCE OF FINITE-STATE JOINT SOURCE-CHANNEL CODES 7

IA0

Initial unexplored state

([l1
0
, h1

0
), [l1

1
, h1

1
)) ([lN

0
, hN

0
), [lN

1
, hN

1
))

IA1 IA2 IA3 IAN

IA1,1 IA1,ν IA2,1 IA2,γ

CA0

incomplete automaton (IA)

unexplored state of an IA subdivisions of unexplored states

complete automaton (CA)

Fig. 7. All automata for given values of encoder parameters on a tree

i.e., independent of the values ofl, h, and f , or it may be
state-dependent, in which case the order of the subintervals
assigned to source symbols may also change. Considering
a state-dependent FS probability assignment provides larger
design freedom, allowing to build automata that potentially
lead to better codes than those obtained with state-independent
design, already considered in [7]. However, to the best of our
knowledge, no analytical method is known to find the optimal
state-dependent probability assignment.

The set of all encoders can be obtained by iteratively
exploring the successors of all states, starting from the IAwith
state(l = 0, h = T, f = 0), for every admissible configuration
of the subintervals[l0, h0) (associated toa0) and [l1, h1)
(associated toa1) of [l, h). This may be done by letting both
l0 and l1 vary from l to h− 1 in steps of one. Then one may
check whether one of the following admissibility conditions
is satisfied:

l 6 l0 < (h0 = l0 + w0) 6 l1 < (h1 = l1 + w1) 6 h, (12)

l 6 l1 < (h1 = l1 + w1) 6 l0 < (h0 = l0 + w0) 6 h. (13)

Each time (12) or (13) is satisfied, a new IA or CA is derived
from the previous IA by extending it with two states (obtained
from [l0, h0) and[l1, h1) after appropriate renormalizations), if
they do not already exist. The resulting IAs are then explored
in turn. From the initial IA with state(l = 0, h = T, f = 0),
the expansion of IAs yields a tree of automata in which all
internal nodes correspond to IAs, leaves correspond to CAs
and each edge corresponds to the exploration of an unexplored
state.

Fig. 7 shows how all possible automata for a given value
of the encoder parameters and with a state-dependent FS
probability assignment may be described by a tree. The initial
IA consists of the unexplored state(0, T, 0) shared by all
automata. It forms the root of the tree. Each node in the first
layer of internal nodes represents an IA for which a given
configuration of the subintervals of the initial code interval
has been considered.

Fig. 8 shows an example of a tree of automata for the
encoder parametersT =8, fmax =1, p0 = 1

4 andpε = 1
2 . The

circles labeleds0, s1, . . . represent the states of the IA or CA.
They are shaded for unexplored states. The initial incomplete
automaton IA0 consists of the initial states0 = (0, 8, 0). One

IA0

IA1
IAN

IA1,1 IA1,ν

CA0

Initial unexplored state

s0

s0

s0

s0s0

s0

s0

s0

s1

s1

s1

s1s1

s1

s1

s2

s2

s2s2

s2

s3

(0,8,0)

(0,8,0)

(0,8,0)

(0,8,0)

(0,8,0)

(0,8,0)

(2,8,0)

(2,8,0)

(2,8,0)

(2,8,0)

(0,8,2)

(0,8,2)

(0,6,0)

(0,6,0)

(0,8,1)

0/000

0/000
0/000

0/000

0/000 0/111

1/0

1/01/0

1/0

1/0 1/1

0/0100/010

0/010 0/011

1/-1/-

1/- 1/1

1/011 1/100

0/01100 0/10011

([0,1),[1,4)) ([7,8),[4,7))

([2,3),[3,5)) ([7,8),[5,7))

([0,1),[1,4)) ([7,8),[4,7))

Fig. 8. Part of the tree of automata for the encoder parametervaluesT = 8,
fmax = 1, p0 = 1

4
, pε = 1

2
. The conventions of Fig. 7 are used; the labels

on the dotted arrows represent the intervals([l0, h0), [l1, h1)) assigned to
the symbols(a0, a1).

possible manner to extend the initial state is to assign the
interval [0, 1) to a0 and the interval[1, 4) to a1, leading to the
second incomplete automaton IA1. The last possible extension
of the initial state assigns the interval[7, 8) to a0 and the
interval [4, 7) to a1, yielding the incomplete automaton IAN .
Iterating this approach, one may get CAs such as the one
shown shaded on the bottom left side of the tree.

C. Extension to non-binary input JSC-IAC

For sources withK > 2 symbols, extending the interval
subdivision presented in Section IV-B would require to con-
sider up toK + 1 FSs. Allowing state-dependent assignment
of the probabilities of the FSs may lead to a very high
number of automata for given values of the encoder param-
eters. However, in practice most (if not all) source coding
standards using arithmetic codes apply a binarization stepto
the non-binary symbols being encoded, followed by binary
input arithmetic coding [32]. This allows the use of IAC
with reduced precision, compared to non-binary input ACs.
Instead of a single source probability model, several (adaptive)
probability models are considered and chosen depending on
some context, corresponding here to the index of the bit
to encode in a binarized symbol. The methods described in
Section IV-B are thus extended for binarized sources with
K > 2 symbols, accounting for some simple context, with
a non-adaptive probability model.

Consider aK-ary memoryless sourceX with alphabet
AK = {a1, . . . , aK} and corresponding symbol probabilities
PX = (pa1 , . . . , paK

). Without loss of generality, assume that
pai

≥ pai+1 , i = 1, . . . , K − 1.

8 ACCEPTED FOR PUBLICATION IN IEEE TRANS. COMMUN., TO APPEAR APRIL 2011

A binarization ofAK may be carried out as follows. Con-
sider first somex ∈ N andL ∈ N

∗ such thatL ≥ ⌈log2(x)⌉.
Let BL(x) be the binary representation of the integerx using
L digits. For instanceB3(1) = 001. Now considerLK ∈ N

∗

such thatLK ≥ ⌈log2(K)⌉. For each symbolai ∈ AK ,
BLK

(i − 1) is a possible binary representation.
Example 1:Consider the 26 letters of the English alphabet

A26. ThenK = 26 andLK = 5 bits. Table I lists the proba-
bility of occurrence (taken from [16]) and the bit assignment
for each symbol inA26. The entropy of a memoryless source
X generating symbols according to the probabilities given in
Table I isH(X) = 4.175 bits/symbol.

Now let aj
i (i = 1, . . . , K, j = 1, . . . , LK) be thej-th bit

of the binarization ofai. Assume that thej-th bit of the
binarization is emitted by a binary memoryless sourceXj

2 .
Let pj

b for b ∈ {0, 1} and j = 1, . . . , LK be the probability
that Xj

2 = b. One haspj
b =

∑K

i=1 pai
δ(aj

i − b), whereδ(x)
is the indicator function (δ(x) = 1 if x = 0 and δ(x) = 0
elsewhere). One has of coursepj

0 + pj
1 = 1. The entropy of

the binary memoryless sourceXj
2 generating thej-th bit of a

binarized symbol with probability model(pj
0, p

j
1) may easily

be evaluated. The entropy of the source after binarization is
then

∑LK

j=1 H(Xj
2).

Example 2:For A26, p1
0 = 0.0963; p2

0 = 0.269; p3
0 =

0.379; p4
0 = 0.432; p5

0 = 0.455 and
∑5

j=1 H(Xj
2) = 4.237

bits/non-binarized symbol, which is larger thanH(X). Using
an AC involving five independent probability models for bi-
nary memoryless sources leads thus to some loss in efficiency,
compared to an AC directly handling theK-ary source.

With a context corresponding to the index of the bit to
encode in the binarized source symbol, the symbolaj

i will
be arithmetically coded with the probability model(pj

0, p
j
1).

In the FSE, this requires keeping track of the context by
supplementing the state(l, h, f) with the value of the context
to get the new state(l, h, f, j), with j = 1, . . . , LK . As a
consequence, the number of states of the FSE is multiplied by
LK when considering this context.

When designing a JSC-IAC, one usually tries to reach some
target source-channel coding rateRd, calleddesign rate. For
that purpose, an FS “probability”

pj
ǫ = 1 − 2−(Rd−H(Xj

2)) (14)

is assigned to each contextj. The encoder parameters of a
JSC-IAC are thenT , fmax, PX , andRd. As in Section IV-B,
the set of all encoders with a state-dependent assignment ofthe
FS probabilities may be obtained by iteratively exploring the
successors of all states of IAs, starting with the IA having the
single state(l = 0, h = T, f = 0, j = 1), for every admissible
configuration of the subintervals of an unexplored state.

D. Complexity issues

It would be useful for the branch-and-prune algorithm to
find a relation between the encoder parameters and the com-
putational time for finding the best automaton. However, this is
very difficult, since the number of automata generated depends
on these parameters in intricate ways. One may compute an
upper bound on the number of states per automaton and thus

Symbols Probabilities Bits assignment
a1 = E pa1 = 0.1270 0 0 0 0 0
a2 = T pa2 = 0.0906 0 0 0 0 1
a3 = A pa3 = 0.0817 0 0 0 1 0
a4 = O pa4 = 0.0751 0 0 0 1 1
a5 = I pa5 = 0.0697 0 0 1 0 0
a6 = N pa6 = 0.0674 0 0 1 0 1
a7 = S pa7 = 0.0633 0 0 1 1 0
a8 = H pa8 = 0.0609 0 0 1 1 1
a9 = R pa9 = 0.0599 0 1 0 0 0
a10 = D pa10 = 0.0425 0 1 0 0 1
a11 = L pa11 = 0.0403 0 1 0 1 0
a12 = C pa12 = 0.0278 0 1 0 1 1
a13 = U pa13 = 0.0276 0 1 1 0 0
a14 = M pa14 = 0.0241 0 1 1 0 1
a15 = W pa15 = 0.0236 0 1 1 1 0
a16 = F pa16 = 0.0223 0 1 1 1 1
a17 = G pa17 = 0.0202 1 0 0 0 0
a18 = Y pa18 = 0.0197 1 0 0 0 1
a19 = P pa19 = 0.0193 1 0 0 1 0
a20 = B pa20 = 0.0149 1 0 0 1 1
a21 = V pa21 = 0.0098 1 0 1 0 0
a22 = K pa22 = 0.0077 1 0 1 0 1
a23 = J pa23 = 0.0015 1 0 1 1 0
a24 = X pa24 = 0.0015 1 0 1 1 1
a25 = Q pa25 = 0.001 1 1 0 0 0
a26 = Z pa26 = 0.0007 1 1 0 0 1

TABLE I
PROBABILITY OF OCCURRENCE OF EACH LETTER IN THEENGLISH

ALPHABET TAKEN FROM [16] AND EXAMPLE OF BINARIZATION

on the number of distinct automata, but this upper bound will
likely be too loose to be useful. An additional difficulty resides
in estimating the time required by the algorithm for computing
the free distance of an automaton. Again, this is extremely
difficult to estimate from the parameters without building the
actual FSE.

V. EXPERIMENTAL RESULTS

Two sets of experiments are conducted. First, simple binary
sources are considered, allowing an easy comparison of the ef-
ficiency of the branch-and-prune algorithm against an exhaus-
tive search for the best FSE. Free distance evaluation basedon
Dijkstra’s algorithm is compared to the method proposed in
[7]. Various tree traversal methods are also compared. Second,
a JSC-IAC for the binarized English alphabet is studied.

A. JSC-IAC for binary sources

A binary-input JSC-IAC with encoder parametersT = 8,
fmax = 1, p0 = 0.1, and design rateRd = 0.62 bits/symbol
(pε = 0.1) is considered first. The time needed to generate all
possible automata with a state-dependent assignment of the
FS probabilities, to compute their free distance and selectthe
best one is 6300 s. Using the branch-and-prune algorithm with
breadth-first exploration, the time needed to find the largest
dfree is only 25 s, resulting in a time saving of 99.6%. In both
cases, free distances are evaluated with the technique of [7].
This first experiment was made on an Intel Core 2 Duo at
2.66 Ghz with 1 Gb memory.

A second binary-input JSC-IAC with encoder parameters
T = 16, fmax = 1, p0 = 0.1, and design rateRd = 0.91

DIALLO et al.: EFFICIENT COMPUTATION AND OPTIMIZATION OF THE FREE DISTANCE OF FINITE-STATE JOINT SOURCE-CHANNEL CODES 9

bits/symbol (pε = 0.26) is now considered. An exhaustive
exploration for such a JSC-IAC would be unreasonably time-
consuming. Table II shows the time (in seconds) needed to
find the best automaton with depth-first exploration, breadth-
first exploration, and the sort method described in Section IV.
The free distance evaluation method of [7] is compared to that
presented in Section III.|Sr | and |Tr | denote the number of
states and the number of transitions of the corresponding R-
FSE. These numbers depend on the exploration method, since
several FSCs may have the samedfree, without necessarily
having the same number of states or transitions. The effective
coding rateRc is expressed in bits/symbol. In Table II, one
notices slight variations ofRc, which are due to rounding
effects in finite-precision IAC. The sort method is the best in
terms of computing time. This is mainly due to the fact that
this method explores first the IA with the highest potential to
have a largedfree, so thatdfree may rapidly increase. Having
a large value ofdfree at the beginning of the search facilitates
pruning large parts of the tree without exploring them. It can
also be seen that using Dijkstra’s algorithm to computedfree

is much more efficient than using the method in [7].
Compared to an equivalent tandem scheme (IAC followed

by a convolutional code (CC)) with the same coding rate, the
free distance of the obtained JSC-IAC remains suboptimal. For
the example of Table II, consider aRc = 0.91 bits/symbol
equivalent tandem scheme with an IAC withT = 16, p0 =
0.1, pε = 0, followed by a rate 1/2 CC. The free distance of the
tandem scheme depends on the constraint length of the CC. For
constraint length 2 (respectively 3), the bestdfree of a rate 1/2
CC is 4 (respectively 5) [33, Chapter 8]. The weakness of the
JSC-IAC is mainly due to its small effective memory (which is
related to the set of states), that is more geared towards good
compression than towards largedfree. The minimum number
of states for the best obtained FSE in the JSC-IAC case is2
(Table II), while in the tandem scheme, the total number of
states is the product of the number of states of the IAC and
the number of states of the CC (at least 2). Hence, the joint
scheme will be less complex than the tandem scheme. This
second experiment and the following were made on an Intel
Xeon E5420 at 2.50GHz with 64 Gb memory.

B. JSC-IAC for non-binary sources

Now, our aim is to optimize a JSC-IAC for the binarized
English alphabetA26 given in Table I. To reduce the number
of IAs and CAs to build in the tree of automata, only two
values of the context are considered. The first corresponds to
the first bit index and the second to the remaining bit indexes.
Two probability models are then considered, namely(p1

0, p
1
1)

and

p2:5
0 =

∑5
j=2 pj

0

4
and p2:5

1 = 1 − p2:5
0 . (15)

The probability p2:5
ε assigned to the context 2:5 can be

obtained with (14). To further simplify the search for a good
code, the FS probability assignment is state-dependent, but is
not allowed to vary for a given value of the context. This
significantly reduces the number of different automata which
may be built for given values of the encoder parameters, taken

Method depth-first breadth-first sort method
|Sr| 8 2 3
|Tr | 28 9 12
dfree 3 3 3
Rc 0.93 0.92 0.92

Time with [7] 451266 s 31338 s 12431 s
Time with PDG 734 s 219 s 45 s

TABLE II
COMPARISON BETWEEN THE THREE METHODS TO EXPLORE THE TREE OF

AUTOMATA FOR T = 16, P0 = 0.1, Pε = 0.26

now asT = 32, fmax = 1, (p1
0, p

1
1), (p

2:5
0 , p2:5

1), and design
rateRd = 14 bits/symbol.

Dijkstra’s algorithm is used to computedfree and thesort
methodis used in the branch-and-prune algorithm. The best
code hasdfree = 6 and Rc = 13.9 bits/symbols. The time
needed to find this code is 1425 s. JSC-IAC code design
is thus possible even for large alphabet sizes, provided that
a binarization process is considered. However, the reduced
number of contexts and the constraints imposed on the FSs
lead to a JSC-IAC which is less efficient than that proposed
in [16], where a JSC-VLC forA26 with dfree = 5 and
Rc = 10.41 bits/symbols is obtained.

Improvements may be obtained by considering more con-
texts and by allowing more variations of the state-dependent
assignments of the FS probabilities. However, the price to
be paid is a higher computational complexity. The consid-
ered branch-and-prune algorithm may be strongly parallelized,
which may help address this issue.

VI. CONCLUSION

This paper has shown how established graph transfer func-
tion methods for fixed-rate channel codes can be generalized
to compute the free distance and the distance spectrum of VL-
FSC. The resulting method for computing the free distance is
much more efficient than the method for JSC-IAC presented
in [7] and does not have problems dealing with catastrophic
codes.

It was also shown that the proposed branch-and-prune
algorithm (using the sort method) is a fast way to find the JSC-
IAC with largestdfree for binary sources. Using an appropriate
binarization process prior to AC and using several probability
models, this method may be extended to the design of JSC-
IAC for non-binary sources.

Nevertheless, for fixed coding rate, the codes obtained for
the time being remain less efficient than equivalent tandem
schemes. Future work will consider the extension of JSC-IAC
with anm-bit memory which may improvedfree by separating
paths that would lead to small distances. The memory holds
an integer0 ≤ λ ≤ 2m − 1, so that the FSE state can be
represented as(l, h, f, λ). The set of FSEs of JSC-IAC with
memorym contains the set of tandem schemes with CCs of
constraint lengthm + 1. Therefore one may expect to find at
least FSEs with performance (coding rate,dfree) equivalent to
the tandem schemes, but hopefully less complex in terms of
the number of states and transitions.

10 ACCEPTED FOR PUBLICATION IN IEEE TRANS. COMMUN., TO APPEAR APRIL 2011

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423 and 623–656, 1948.

[2] Y. Zhong, F. Alajaji, and L. L. Campbell, “On the joint source-channel
coding error exponent for discrete memoryless systems,”IEEE Trans.
Inform. Theory, vol. 52, no. 4, pp. 1450–1468, 2006.

[3] T. M. Cover and J. M. Thomas,Elements of Information Theory. New-
York: Wiley, 1991.

[4] A. J. Viterbi and J. Omura,Principles of Digital Communication and
Coding. New-York: McGraw-Hill, 1979.

[5] M. Bernard and B. Sharma, “Some combinatorial results onvariable-
length error-correcting codes,”Ars Combinatoria, vol. 25B, pp. 181–
194, 1988.

[6] V. Buttigieg and P. Farrell, “On variable-length error-correcting codes,”
in Proc. IEEE Int. Symposium on Inform. Theory, 1994, p. 507.

[7] S. Ben-Jamaa, C. Weidmann, and M. Kieffer, “Analytical tools for
optimizing the error correction performance of arithmeticcodes,”IEEE
Trans. Commun., vol. 56, no. 9, pp. 1458–1468, September 2008.

[8] P. Elias, “Coding for noisy channels,”IRE National Convention Record,
vol. 3, no. 4, pp. 37–47, 1955.

[9] A. J. Viterbi, “Convolutional codes and their performance in commu-
nication systems,”IEEE Trans. Commun. Technol., vol. 19, no. 5, pp.
751–772, 1971.

[10] J. Astola, “Convolutional codes for phase modulated channels,”Cyber-
netics and Systems, vol. 17, no. 1, pp. 89–101, 1986.

[11] M. Cedervall and R. Johannesson, “A fast algorithm for computing the
distance spectrum of convolutional codes,”IEEE Trans. Inform. Theory,
vol. 35, no. 6, pp. 1146–1159, 1989.

[12] G. Ungerboeck, “Channel coding with multilevel/phasesignals,” IEEE
Trans. Inform. Theory, vol. 28, no. 1, pp. 55–67, 1982.

[13] E. Biglieri, “High-level modulation and coding for nonlinear satellite
channels,”IEEE Trans. Commun., vol. 32, no. 5, pp. 616–626, 1984.

[14] G. D. Forney, “Geometrically uniform codes,”IEEE Trans. Inform.
Theory, vol. 37, no. 5, pp. 1241–1260, 1991.

[15] E. Zehavi and J. K. Wolf, “On the performance evaluationof trellis
codes,”IEEE Trans. Inform. Theory, vol. 33, no. 2, pp. 616–202, 1987.

[16] V. Buttigieg, “Variable-length error correcting codes,” PhD dissertation,
University of Manchester, Univ. Manchester, U.K., 1995.

[17] S. Even, “Test for synchronizability of finite automataand variable
length codes,”IEEE Trans. Inform. Theory, vol. 10, no. 3, pp. 185–
189, 1964.

[18] J. C. Maxted and J. P. Robinson, “Error recovery for variable length
codes,”IEEE Trans. Inform. Theory, vol. 31, no. 6, pp. 794–801, 1985.

[19] S. Malinowski, H. Jegou, and C. Guillemot, “Error recovery properties
and soft decoding of quasi-arithmetic codes,”EURASIP Journal on
Advances in Signal Processing, vol. 2008, no. 1, pp. 1–12, 2008.

[20] C. Weidmann and M. Kieffer, “Evaluation of the distancespectrum of
variable-length finite-state codes,”IEEE Trans. Commun., vol. 58, no. 3,
pp. 724–728, Mar. 2010.

[21] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,”Communications of the ACM, vol. 30, no. 6, pp. 520–540,
1987.

[22] C. Christopoulos, A. Skodras, and T. Ebrahimi, “TheJPEG-2000 still
image coding system: An overview,”IEEE Trans. Consumer Electron.,
vol. 46, no. 4, pp. 1103–1127, 2000.

[23] I. E. G. Richardson, H.264and MPEG-4 Video Compression: Video
Coding for Next Generation Multimedia. John Wiley & Sons, 2003.

[24] C. Boyd, J. Cleary, I. Irvine, I. Rinsma-Melchert, and I. Witten, “Inte-
grating error detection into arithmetic coding,”IEEE Trans. Commun.,
vol. 45, no. 1, pp. 1–3, 1997.

[25] J. Sayir, “Arithmetic coding for noisy channels,” inProc. IEEE Inform.
Theory Workshop, 1999, pp. 69–71.

[26] P. G. Howard and J. S. Vitter, “Practical implementations of arithmetic
coding.” Image and Text Compression, vol. 13, no. 7, pp. 85–112, 1992.

[27] M. Gondran and M. Minoux,Graphs and algorithms. Chichester, UK:
Wiley, 1984.

[28] S. J. Mason, “Feedback theory : Further properties of signal flow
graphs,”Proceedings of the IRE, vol. 44, no. 7, pp. 920–926, 1956.

[29] V. Levenshtein, “Binary codes with correction of deletions, insertions
and substitution of symbols,”Dokl. Akad. Nauk. SSSR, vol. 163, no. 4,
pp. 845–848, 1965.

[30] R. C. Pasco, “Source coding algorithms for fast data compression,” Ph.D.
Thesis, Stanford University, Dept. of EE, Stanford CA, USA,1976.

[31] D. Bi, W. Hoffman, and K. Sayood, “State machine interpretation of
arithmetic codes for joint source and channel coding,” inProc. DCC,
Snowbird, Utah, USA., 2006, pp. 143–152.

[32] I. Richardson,H.264 and MPEG-4 Video Compression: Video Coding
for Next-Generation Multimedia. John Wiley and Sons, 2003.

[33] J. G. Proakis,Digital Communications. McGraw-Hill, 2001.

