
1 23

Pattern Analysis and Applications

ISSN 1433-7541

Pattern Anal Applic
DOI 10.1007/s10044-020-00918-0

An efficient generic approach for automatic
taxonomy generation using HMMs

Sylvain Iloga, Olivier Romain & Maurice
Tchuenté

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer-Verlag

London Ltd., part of Springer Nature. This e-

offprint is for personal use only and shall not

be self-archived in electronic repositories. If

you wish to self-archive your article, please

use the accepted manuscript version for

posting on your own website. You may

further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Vol.:(0123456789)1 3

Pattern Analysis and Applications
https://doi.org/10.1007/s10044-020-00918-0

THEORETICAL ADVANCES

An efficient generic approach for automatic taxonomy generation
using HMMs

Sylvain Iloga1,2,4  · Olivier Romain2 · Maurice Tchuenté3,4

Received: 5 March 2020 / Accepted: 9 September 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Taxonomies are essential tools for fast information retrieval and classification of knowledge. Many existing techniques
for automatic taxonomy generation strongly depend on the specific properties of a particular domain and are consequently
hard to apply to other domains. Some attempts have been made to design taxonomies for multiple domains. Unfortunately,
they induce high hierarchical classification error rates for some datasets. The automatic design of a taxonomy requires the
capability of measuring the similarity between classes. More precisely, the fact that two classes are near intuitively implies
that some elements of one class are scattered in the neighborhood of some elements of the other class. This observation
is used in this paper to propose a new generic technique for automatic taxonomy generation. A topological analysis of the
neighborhood of each instance is first performed. The results of this analysis are used to initialize and train a hidden Markov
model for each class. The model of a given class c captures the frequencies of the classes found in the neighborhood of the
instances of c, from the most dominant class to the least dominant. The similarities between these models are finally used to
derive a taxonomy. Hierarchical classification experiments realized on 20 datasets from various domains showed an average
accuracy of 97.22% and a standard deviation of 4.11% . Comparison results revealed that the proposed approach outperforms
existing work with accuracy gains reaching 38.62% for one dataset.

Keywords  Automatic taxonomy generation · Hidden Markov models · Hierarchical classification

1  Introduction

A taxonomy is an essential tool for fast information retrieval
and classification of knowledge [1]. A taxonomy provides an
efficient navigating and browsing mechanism by organizing

huge volumes of data into a relatively small number of hier-
archical clusters [2]. In this hierarchy, broad concepts are
at the top and more specific concepts are further down [3].
Initially introduced for the classification of biological spe-
cies, the concept of taxonomy is nowadays used in several
other areas related to data (text, audio, image and video)
mining and processing. One of the most important tasks in
taxonomy generation is the evaluation of the quality of the
resulting taxonomies. This can be achieved through hierar-
chical classification [4–10] or by using appropriate metrics
[2, 3, 11–14]. It is also possible to entrust this evaluation to
human experts [3] or to perform ontological tests using a
specialized software program [15].

Several techniques for taxonomy generation have been
designed, and detailed surveys on various approaches for
taxonomy construction are available in [16, 17]. All these
techniques can be organized into three main categories:

1.	 The manual approach [18–21].
2.	 The semi-automated approach [8, 22–24].
3.	 The automated approach [2–7, 9–15].

 *	 Sylvain Iloga
	 sylvain.iloga@gmail.com

	 Olivier Romain
	 olivier.romain@gmail.com

	 Maurice Tchuenté
	 maurice.tchuente@gmail.com

1	 Department of Computer Science, Higher Teachers’ Training
College, University of Maroua, P.O.box 55, Maroua,
Cameroon

2	 ENSEA, CNRS, ETIS UMR 8051, CY Cergy Paris
University, 95000 Cergy, France

3	 Department of Computer Science, Faculty of Science,
University of Yaoundé I, P.O.box 812, Yaoundé, Cameroon

4	 IRD, UMMISCO, University of Sorbonne, 93143 Bondy,
France

Author's personal copy

http://orcid.org/0000-0002-4603-7744
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-020-00918-0&domain=pdf

	 Pattern Analysis and Applications

1 3

Manually generated taxonomies are generally constructed
using a top-down approach. This implies the selection
according to the context, of a few number of higher cat-
egories and to further move down to more specific levels
of lower subcategories. A bottom-up approach is generally
applied for automatic taxonomy construction. This involves
the selection of specific levels of categories to further move
up to higher categories [1]. Manual taxonomy construction
is a tedious process, and the resulting taxonomy is gener-
ally highly subjective [13]. Manually generated taxonomies
generally use human semantics and are mainly suitable for
human use, whereas automatically generated taxonomies
are optimized for computational classifiers [19]. Further-
more, automatic approaches have the potential to enable
humans or machines to easily understand a highly focused
and potentially fast changing domain [13]. Details related
to the advantages and limitations of these two approaches
are presented in [1]. Semi-automated approaches generally
share the advantages and drawbacks of manual and auto-
matic approaches. In [5] and [25], several criteria that should
guide the design of a ‘good’ taxonomy are analyzed.

Some existing automatic techniques are applicable to
multiple domains [4–8], but most of these techniques exhibit
high hierarchical classification error rates. In some cases,
the hierarchical classifiers derived from these techniques are
even outperformed by the corresponding flat classifiers [4, 7,
8]. Other existing techniques strongly depend on the specific
properties of a particular domain, and their application in
other domains is not straightforward [2, 3, 9–15].

The automatic design of a taxonomy requires the capabil-
ity of measuring the similarity between classes. When the
elements of each class are observed as points scattered in
the multidimensional affine space, the fact that two classes
c1 and c2 are near intuitively induces that some elements of
c1 (resp. c2 ) are found in the neighborhood of some elements
of c2 (resp. c1 ). The probability to find elements of one class
c2 in the neighborhood ℵ of another class c1 depends on the
zone covered by ℵ . Therefore, when measuring the similar-
ity between two classes, the radius of the neighborhood that
must be considered for each instance is a crucial parameter.
Indeed, if ℵ is very large (resp. very narrow), then the prob-
ability is almost always equal to 1 (resp. 0). Unfortunately,
none of the existing techniques for automatic taxonomy gen-
eration exploits this fundamental observation.

To overcome the aforementioned limitations, an efficient
generic approach for automatic taxonomy generation based
on hidden Markov models (HMMs) is proposed in this paper.
In the proposed approach, one HMM is first designed for
each class c. This model captures the global frequencies of
the classes found in the neighborhood of the instances of c,
from the most dominant class to the least dominant one. The
similarities between these models are finally used to derive a
taxonomy. The performances of the proposed approach are

then evaluated in a hierarchical classification process on 20
publicly available datasets from various domains.

The rest of this paper is organized as follows: The state
of the art is presented in Sect. 2, followed by a summarized
presentation of HMMs in Sect. 3. A detailed description
of the approach proposed in this paper is given in Sect. 4.
Experimental results are presented in Sect. 5, and the last
section is devoted to the conclusion.

2 � State of the art

2.1 � Related work

An automatic taxonomy generation technique is generally
based on algorithms designed to capture the hierarchical
relationships existing between the categories found in a
database. The performance of such a technique relies on:

1.	 The experts’ opinion regarding the taxonomies.
2.	 The quality of the taxonomies.
3.	 The time complexity of the technique.

The problem of automatic taxonomy generation for speech
archives was investigated in [11]. In that work, similar key
terms manually extracted from the transcription of a speech
archive are first grouped into clusters. Then, similar clusters
are grouped into super clusters to form a taxonomy of the
archive. The Agglomerative Hierarchical Clustering (AHC)
[26] and the Hierarchical Cluster Partitioning (HCP) algo-
rithms are used to achieve this goal. The principle of HCP
is fully described in [11]. AHC produces a binary tree of
clusters, and HCP generates a multi-way tree from the out-
put of AHC. The F-measure was used as metric to evaluate
the quality of the resulting taxonomies.

An automatic approach to extract information from
the Web in order to build a taxonomy of terms and Web
resources for a given domain was proposed in [15]. The most
representative Web sites for each concept in the domain are
first retrieved and categorized. Then, a Sequential Agglom-
erative Hierarchical Non-Overlapping (SAHN) cluster-
ing algorithm fully described in that paper is used to join
the more similar terms, using the number of coincidences
between their URLs sets as a similitude measure. Ontologi-
cal tests have been performed in the software PROTÉGÉ to
evaluate the correctness of the resulting taxonomies from a
logical point of view. Experts estimate that the taxonomy
obtained with this approach really represents the state of the
art on the Web for a given concept.

The problem of generating Attribute Value Taxonomies
(AVTs) was tackled in [4] and [6]. In [4], AVT-Learner, an
algorithm for automated construction of AVTs from data,
was introduced. This algorithm uses the AHC algorithm

Author's personal copy

Pattern Analysis and Applications	

1 3

to cluster attribute values based on the distribution of the
classes that co-occur with the values. Hierarchical classifica-
tion experiments on 37 datasets of the UCI Machine Learn-
ing Repository1 showed that the AVTs generated by AVT-
Learner were competitive with available human-generated
AVTs. In [6], an adaptive genetic algorithm named MCM-
AVT-Learner is proposed to generate AVTs. This algorithm
imports the mutations and crossover matrices which makes
effective use of the fitness ranking and loci statistics infor-
mation. Experimented through hierarchical classification
on eight datasets of the UCI Machine Learning Repository
from diverse domains, MCM-AVT-Learner generated AVTs
that were competitive with human-generated AVTs and also
with AVTs generated by other algorithms including AVT-
Learner [4].

The problem of learning N-ary taxonomies with no
user-defined parameters is analyzed in [5]. As a solution, a
framework that categorizes a ‘good’ taxonomy is proposed
and an algorithm named constructTaxonomy is developed
to automatically find a good taxonomy. This algorithm is
considerably less greedy than existing ones. The resulting
taxonomies have been evaluated through hierarchical clas-
sification on several real-life datasets from diverse domains
like text mining, hyper-spectral analysis and written char-
acter recognition. Linear support vector machines (SVMs)
with Gaussian kernels and Bayesian classifiers were used in
a fivefold cross-validation. The resulting taxonomies seemed
to be more ‘natural’ and produced better classification accu-
racies than binary taxonomies.

An automatic taxonomy generation method on relational
datasets is proposed in [2]. That work is based on the rela-
tional clustering algorithm DIVA [27] which consists of two
steps:

1.	 A divisive step where the dataset is divided into a user-
defined number of clusters so that the variance of each
cluster is lower than a fixed threshold.

2.	 Based on these clusters, a hierarchical dendrogram is
generated using an agglomerative algorithm.

The intra-node entropy and the inter-node entropy were
used to measure the quality of the generated taxonomies.
Comparisons were made with the taxonomies generated
by the AHC and the bisecting K-means partitioning algo-
rithms on the synthetic Amazon dataset and a real movie
dataset. The results showed that DIVA was slightly beaten
by these two algorithms on the synthetic Amazon dataset
with a quality loss reaching 4.2% . On the other hand, DIVA
obtained a quality of 0.033 on the real movie dataset. This

is considerably better than the two other approaches that
produced solutions with qualities no higher than 0.026.

In [7], an algorithm named Propositionalized Attribute
Learner (PAT-Learner) that automatically constructs tax-
onomies is introduced. This algorithm propositionalizes
attributes and hierarchically clusters the propositionalized
attributes based on the distribution of class labels that co-
occur with them, to generate a taxonomy. PAT-DTL, an
inductive algorithm that exploits the taxonomy generated
by PAT-Learner as prior knowledge to generate compact
decision trees, is also introduced in [7]. Hierarchical clas-
sification experiments realized on 37 datasets from the UCI
Machine Learning Repository showed that PAT-DTL gen-
erates decision trees that are more compact than standard
decision trees.

Some authors focus on the automatic generation of tax-
onomies from a text corpus [3, 12–14]. For instance in [12],
it is proposed to use a framework which incrementally clus-
ters terms from text documents based on ontology metric,
in order to derive taxonomies. This approach combines the
strengths of both lexico-syntactic patterns and clustering,
through the use of heterogeneous features. More formally, a
feature vector h(cx, cy) ∈ ℝ

n is initially calculated for every
input terms cx and cy . These features include contextual
information, co-occurrence, syntactic dependency, lexico-
syntactic patterns and miscellaneous. The resulting feature
vectors are later used to incrementally insert the terms into
the taxonomy. Experimental results reveal that this approach
achieves higher F1-measure than other related approaches,
when the hypernym and the meronym taxonomies extracted
from WorldNet and ODP are considered as gold standards.

The Bayesian Rose Tree (BRT) algorithm has been used
to build a multi-branch taxonomy from a given set of key-
words phrases [13]. This algorithm reduces the complex-
ity of previous hierarchical clustering algorithms from
O(n2logn) to O(nlogn) . The Normalized Mutual Information
is then used as metric to access the quality of the generated
taxonomies.

A graph-based solution for automatic taxonomy genera-
tion from a large text corpus is also proposed in [3]. This
algorithm, GraBTax, uses statistical co-occurrences and
lexical similarity to optimize the structure of the taxonomy.
After extracting topical terms and their relationships from
the text corpus, GraBTax constructs a weighted graph repre-
senting topics and their associations. Finally, the multilevel
graph partitioning algorithm proposed in [28, 29] is used to
generate the taxonomy. This algorithm finds the partition-
ing that minimizes the edge-cut while keeping the vertex
strength balanced. The quality of the resulting taxonomies
was manually evaluated by human experts. This evalua-
tion was combined with the automatic calculation of the
semantic precision. Experimented on 1.1 Million papers
with titles and abstracts from the CiteSeerX database gave 1  https​://archi​ve.ics.uci.edu/ml/.

Author's personal copy

https://archive.ics.uci.edu/ml/

	 Pattern Analysis and Applications

1 3

a semantic precision of 0.69. This is significantly higher
than the semantic precision of 0.44 exhibited by the AHC
algorithm.

A recent deep reinforcement learning approach for auto-
matic taxonomy induction from a set of terms has been pro-
posed in [14]. The aim of that approach is to unify hypern-
ymy detection (i.e., extraction of term pairs from ‘is-a’
relation) and hypernymy organization (i.e., organizing ‘is-a’
term pairs into a tree structure hierarchy), in an end-to-end
manner. To achieve this goal, the authors first design a policy
neural network to incorporate semantic information of term
pairs. They then use cumulative rewards to holistically meas-
ure the quality of the resulting taxonomies. Experimented on
two public datasets [30, 31], this approach performed 19.6%
better than existing techniques on the ancestor F1 which is a
metric that compares ancestors (‘is-a’ pairs) from the gener-
ated taxonomy with those from a gold taxonomy.

The authors of [8] use equal-depth discretization
approach [32] and entropy-based Kononenko discretization
[33] approach to generate taxonomies over data described by
continuous attributes. For data described by nominal attrib-
utes, taxonomies are analyst-provided. Hierarchical classi-
fication experiments on 20 datasets from the UCI Machine
Learning Repository show the effectiveness of this approach
which improves the accuracy of state-of-art classifiers.

Other authors rather tackle the problem of automatic
generation of music genre taxonomies [9, 10]. An overview
of relevant existing techniques is available in [9] where a
sequential pattern mining approach to automatically gener-
ate music genre taxonomies is proposed as follows. Con-
sider a music database composed of M genres gi (1≤i≤M) .
Each song of gi is initially transformed into a sequential pat-
tern using the k-means [34] and the K-NN [35] algorithms.
Thereafter, the characteristic sequential patterns of genre gi
are extracted using the PrefixSpan [36] and the FeatureMine
[37] algorithms. These characteristic sequential patterns are
then used to compute a descriptor vector ��⃗Vi for genre gi .
The jth component of ��⃗Vi is the percentage of characteristic
sequential patterns of genre gj (1≤j≤M) that are contained
in those of genre gi . Finally, the AHC algorithm is applied
on these vectors to derive the taxonomy. Hierarchical clas-
sification experiments applied to the music database GTZAN
which belongs to the MARSYAS repository 2 exhibit the
actual best accuracy.

An accurate HMM-based similarity measure between
two sets of histograms is proposed in [10]. A model is first
trained with the Baum–Welch algorithm [38] for each set
of histograms. This HMM captures the bin values and the
visual shapes of the histograms in the considered set, irre-
spective of their bin sizes. The similarity between the two

input sets of histograms is then obtained by evaluating the
similarity between their respective models. This similarity
measure is then experimented in the automatic generation
of music genres taxonomies as follows. Consider a music
database composed of M genres gi (1≤i≤M) . The 60-bin
Rhythm Histogram (RH) [39] corresponding to each song
of a genre gi is first calculated, and a model �i is trained to
capture the visual shape of these RHs. Then, a descriptor
vector ���⃗Wi is associated with gi in such a way that the jth
component of ���⃗Wi is the similarity between the models �i
and �j (1≤j≤M) . Similar to what was done in [9], the AHC
algorithm is also applied on these vectors to derive the tax-
onomy. Experimental results show the actual best hierarchi-
cal classification accuracy for the music database GTZAN+ 3
which is an extension of GTZAN. Table 1 summarizes the
main information about the papers surveyed in this section.

2.2 � Problem statement

As previously stated in this paper, the spatial proximity
between two classes means that some elements of one class
are scattered in the neighborhood of certain elements of the
other class. None of the existing techniques for automatic
taxonomy generation relies on this fundamental observation.

As it can be observed in Table 1 and in the surveys pre-
sented in [16, 17], a high number of existing techniques for
automatic taxonomy generation strongly depend on the spe-
cific properties of a particular domain and are consequently
hard to apply to other domains. For example, the techniques
proposed in [9, 10] for music genre recognition strongly rely
on the natural sequentiality of music excerpts. This property
is not valid for the text documents manipulated in [3, 12–14].
Although a technique may be applicable to multiple domains
[4–8], at present, no technique performs well in multiple
domains. Indeed, most of these techniques exhibit high hier-
archical classification error rates for some datasets. Table 2
presents the highest error rates of these existing works for
the datasets involved in the experiments of the current work.

In some cases, existing work is even outperformed by the
corresponding flat classifiers. This is the case, for example,

1.	 In [4] for the datasets Iris, Primary-tumor, Vowel and
Waveform-5000.

2.	 In [7] for the datasets Anneal, Audiology, Autos, Car,
Glass, Hypothyroid, Letter, Lymph, Nursery, Segment,
Vehicule and Vowel.

3.	 In [8] for the dataset Satimage.

Table 3 summarizes the aforementioned specificities of the
existing techniques. The content of this Table 3 leads us

2  http://marsy​as.info/downl​oads/datas​ets.html. 3  https​://perso​-etis.ensea​.fr/sylva​in.iloga​/GTZAN​+/.

Author's personal copy

http://marsyas.info/downloads/datasets.html
https://perso-etis.ensea.fr/sylvain.iloga/GTZAN+/

Pattern Analysis and Applications	

1 3

to the following question: Is it possible to develop an effi-
cient generic approach for automatic taxonomy generation
based on the topological analysis of the neighborhood of
each instance? This paper attempts to provide a positive
answer to this question.

Given a database composed of many classes, we propose
an approach that uses HMMs to model each class. HMMs
generally deal with temporality in the data representation
of the considered domain. Therefore, our biggest challenge

Table 1   Specificities of relevant related papers in automatic taxonomy generation

Authors [references] Year Domain Algorithms Interest of the approach Evaluation of the taxonomy

Chien et al. [11] 2002 Speech processing Manual extraction of
similar key terms ,
AHC, HCP

Reduces the complex-
ity by avoiding an
automatic extraction of
key terms

F-measure

Sánchez and Moreno [15] 2004 Web search SAHN The resulting taxonomies
seemed to really repre-
sent the Web

Ontological tests in PRO-
TÉGÉ

Li and Anand [2] 2008 Relational datasets DIVA More efficient than exist-
ing works

Intra-node and inter-node
entropy

Hui Y. and Jamie C. [12] 2009 Incremental term cluster-
ing based on ontology
metric

Achieves higher F1

-measure than existing
techniques

F1-measure

Liu et al. [13] 2012 Text processing Bayesian Rose Tree taking
keywords as input

Reduces the complex-
ity from O(n2logn) to
O(nlogn)

Normalized Mutual Infor-
mation

Treeratpituk et al. [3] 2013 GraBTax Better at discovering
meaningful relationship
compared to AHC

Human experts and seman-
tic precision

Mao et al. [14] 2018 Deep reinforcement
learning

Performed 19.6% better
than existing techniques
on the ancestor F1

Ancestor F1

Iloga et al. [9] 2018 Music genre recognition PrefixSpan, k-means, K-
NN, FeatureMine, AHC

Actual best hierarchical
classification accuracy
in GTZAN

Hierarchical classification

Iloga et al. [10] 2018 Baum–Welch, HMMs
similarity computation,
AHC

Actual best hierarchical
classification accuracy
in GTZAN+

Kang et al. [4]
Kang et al. [4]

2004 AVT-Learner Generates AVTs that
were competitive with
human-generated AVTs

Punera et al. [5] 2006 Multiple domains constructTaxonomy that
produces N-ary taxono-
mies, N ≥ 2

Exhibits better classifica-
tion accuracies than
binary taxonomies

Jo et al. [6] 2008 MCM-AVT-Learner Generates AVTs that
were competitive with
human-generated
AVTs and with other
algorithms including
AVT-Learner

Kang and Sohn [7] 2009 PAT-Learner and PAT-
DTL

Generates more compact
decision trees than
standard decision trees

Cagliero and Garza [8] 2013 Equal-depth and entropy-
based discretization

Improved the accuracy of
state-of-art classifiers

Table 2   Highest error rates in hierarchical classification of relevant
existing work for the datasets involved in the experiments of the cur-
rent work

Authors [references] Dataset Error rate (%)

Jo et al. [6] Anneal 26.33
Punera et al. [5] Glass 27
Kang et al. [4] Primary-tumor 52.22
Kang and Sohn [7] Primary-tumor 55.46

Author's personal copy

	 Pattern Analysis and Applications

1 3

is to provide a uniform temporal representation of the data,
irrespective of the considered domain. Once this is done,
the robust existing algorithms associated with HMMs can
be used to learn the data in order to derive the taxonomy.

3 � Presentation of HMMs

HMMs are used in several domains such as the comparison
of sets of histograms [10], handwriting recognition [40],
texture retrieval and classification [41]. They are also thor-
oughly used in speech recognition. A detailed tutorial on
HMMs and selected applications in speech recognition is
available in [38].

3.1 � Definition of HMM

An HMM � = {A,B,�} is composed of [38]:

1.	 The number N of states of the model. The set of states is
S = {S1, S2,… , SN} , and the state of the model at time
t≥1 is denoted qt∈S.

2.	 The number M of symbols. The set of symbols is
V = {v1, v2,… , vM} , and the symbol observed at time t
is denoted Ot∈V .

3.	 The state transition probability distribution A = {aij} ,
where aij is the probability P(qt+1 = Sj|qt = Si) , 1≤i, j≤N.

4.	 The symbols probability distribution B = {bi(k)} ,
where bi(k) i s the condit ional probabi l i ty
P(vk at time t|qt = Si) , 1≤i≤N and 1≤k≤M .

5.	 The initial states probability distribution � = {�i} , where
�i = P(q1 = Si) , 1≤i≤N .

3.2 � HMM as a sequence generator

An HMM � = {A,B,�} can be used to generate a sequence
O = O1O2…OT composed of T symbols observed by the
sequence of states Q = q1q2…qT as described in Fig. 1. In
the rest of this paper, a diagram similar to that of Fig. 1 is
called a Markov chain.

The Markov chain presented in Fig. 1 is obtained by exe-
cuting the following algorithm:

1.	 Select the initial state Sj∈S with respect to the distribu-
tion � , and set t = 0.

2.	 Set t = t + 1 and then change the current state to qt = Sj
3.	 Select the symbol Ot∈V to be observed at state qt

according to the distributions in B.
4.	 If t < T  , go to step 5, or else terminate.
5.	 Perform the state transition from the current state qt to

the next state Sj∈S according to the distribution A, and
then, go to step 2.

3.3 � HMM probability computing and training

Consider a sequence O = O1O2…OT and an HMM
� = {A,B,�} . The probability P(O|�) to observe O given �
is efficiently calculated by the Forward–Backward algorithm
which has a time complexity of �(T .N2) [38]. The parameters
A, B and � of the HMM � can be re-estimated in order to
maximize the value of P(O|𝜆̄) , where 𝜆̄ = {Ā, B̄, 𝜋̄} is the
re-estimated model. This re-estimation is done by the
Baum–Welch algorithm [38]. This algorithm improves the
probability to observe O from the model, by iteratively using
𝜆̄ in place of � and repeating this re-estimation until 𝜆̄ = 𝜆 ,
or until a user-defined maximum number of iterations � is
reached. For one iteration, the time complexity of the
Baum–Welch algorithm is dominated by computation of
P(O|𝜆̄) using the Forward–Backward algorithm. Therefore,
the global algorithm runs in �(� .T .N2) . It is also possible to
train � to maximize the value of the probability
P(O�𝜆̄) = ∑K

k=1
P(O(k)�𝜆̄) where O = {O(1),… ,O(K)} is a set

of K sequences and O(k) = O
(k)

1
…O

(k)

Tk
 is the kth sequence of

O. In the case of multiple sequences, only the distributions

Table 3   Specificities of the techniques reviewed in this paper. ‘S
1
 ’

to ‘S
4
 ,’ respectively, refer to ‘No topological analysis of the neigh-

borhood,’ ‘Strongly depend on the specific properties of a particular
domain,’ ‘Outperformed by flat classifiers’ and ‘High error rates in
hierarchical classification for some datasets’

Authors [references] Year S
1

S
2

S
3

S
4

Chien et al. [11] 2002 ✓ ✓
Kang et al. [4] 2004 ✓ ✓ ✓
Sánchez & Moreno [15] 2004 ✓ ✓
Punera et al. [5] 2006 ✓ ✓
Jo et al. [6] 2008 ✓ ✓
Li & Anand [2] 2008 ✓ ✓
Hui Y. & Jamie C. [12] 2009 ✓ ✓
Kang & Sohn [7] 2009 ✓ ✓ ✓
Liu et al. [13] 2012 ✓ ✓
Cagliero & Garza [8] 2013 ✓ ✓
Treeratpituk et al. [3] 2013 ✓ ✓
Iloga et al. [9] 2016 ✓ ✓ ✓
Iloga et al. [10] 2018 ✓ ✓ ✓
Mao et al. [14] 2018 ✓ ✓

(symbols) O1 O2 . . . OT

↑ ↑
... ↑

(states) q1 → q2 → . . . → qT

Fig. 1   A Markov chain

Author's personal copy

Pattern Analysis and Applications	

1 3

A and B are re-estimated by the Baum–Welch algorithm
because 𝜋̄ can be statistically determined from the initial
states of the K observed sequences [38]. The time complex-
ity of the Baum–Welch algorithm for multiple sequences can
be approximated by �

�
� .(

∑K

k=1
Tk).N

2
�
 . In the particular

case where all the K sequences have the same length T, this
time cost is given by �(� .K.T .N2)

The Baum–Welch algorithm tends to converge to a local
optimum that does not correspond to the global best param-
eters of the model. Indeed, the quality of the solution pro-
duced depends on how the parameters of the initial model fit
the statistical content of the training sequences.

3.4 � HMMs similarity measure

Numerous distance and similarity measures between two
HMMs have been proposed [40–47]. For example, in order
to compare two HMMs � = {A,B,�} and �� = {A�,B�,��} ,
one can compute the Euclidean distance between the rows
of B and B′ or calculate their Kullback–Leibler divergence
[42]. Techniques for fast computation of an upper-bound
of the Kullback–Leibler divergence were proposed in [45]
and [46]. It is also possible to evaluate their Monte Carlo
approximation [44]. However, all these measures are limited.
For example, the temporal structure of the models is not cap-
tured in the Euclidean distance, and the Kullback–Leibler
divergence of two HMMs is not symmetric (symmetric alter-
natives have later been proposed). The Monte Carlo approx-
imation has a high computational cost, and the produced
value may change from one computation to another. Other
measures have been proposed to attenuate these limitations:
the co-emission probability [43], the stationary cumulative
distribution [47], the Bayes probability error [40] and the
generalized probability product Kernel [41], among others.

In the current work, we opted for the accurate low-com-
plexity similarity measure between two HMMs � and �′
proposed in [44]. This similarity measure hereafter denoted
dsim(�, �

�) is based on the probability that � and �′ gener-
ate identical sequences following the principle of Fig. 1. Its
theoretical time complexity is �(N3 + N2.M2) , when both �
and �′ have N states and M symbols. A detailed computation
scheme of dsim can be found in [10].

4 � The proposed approach

4.1 � Main idea

Let � = ∪ci, (1≤i≤M) be a database composed of M classes
to be organized into a taxonomy, each class ci being repre-
sented by |ci| instances. The main idea of this work is based
on the following hypothesis: ‘the similarity between two

classes can be derived from the topological analysis of a
fixed user-defined neighborhood of their instances.’ More
formally, if the results of such an analysis for the instances of
two classes c1 and c2 can be, respectively, captured into two
models �1 and �2 , then the similarity between c1 and c2 can
be obtained by calculating the similarity between �1 and �2.

In this paper, the topological analysis of the neighborhood
of an instance X consists in detecting the classes appear-
ing in this neighborhood, from the most dominant class to
the least dominant class. In order to analyze the neighbor-
hood of an instance, we assume that there exists a distance/
dissimilarity measure between any two elements of � . Let
us define presence(ci,X) as the percentage of instances of
class ci found in the neighborhood of X. In other words,
presence(ci,X) = y% means that y. |ci|

100
 instances of class ci

are located in the neighborhood of X. Let us, for example, set
M = 3 and consider a particular instance X whose neighbor-
hood has the following composition: presence(c1,X) = 25% ,
presence(c2,X) = 5% and presence(c3,X) = 45% . When
these values are sorted in decreasing order to arrange the
classes according to their dominance in the neighborhood
of X, this neighborhood can be transformed into the Markov
chain shown in Fig. 2. This Markov chain contains classes
(symbols) generated by the corresponding sequence of per-
centages (hidden states).

In Fig. 2, an up-arrow from y% to ci indicates that
presence(ci,X) = y% . When the left arrows are browsed
from left to right in that figure, the kth left arrow mate-
rializes the transition from the kth dominant class to the
(k + 1) th dominant class in the neighborhood of X.

The main idea of the current work relies on the combi-
nation of the frequencies and the dominance of the classes
found in the neighborhood of each instance. The dominance
does not basically matter when each instance is considered
individually, but combining the frequencies and the domi-
nance can enable to obtain finer results during the compari-
son of two instances. Indeed, two instances that are differ-
ent (resp. identical) regarding the frequencies of the classes
appearing in their respective neighborhoods may be similar
(resp. different) regarding the dominance of these classes.
A typical situation that illustrates the importance of com-
bining the frequencies and the dominance is provided by
the instances that are equidistant to a given instance. As an
example, the instances B, C, D and E in Table 4 are equi-
distant to instance A considering the frequencies of the four
classes appearing in their respective neighborhoods when
the Euclidean or the Manhattan distance is applied. How-
ever, when the dominance is considered, B, C, D and E are
not equidistant to A and one can obviously observe that the
nearest neighbor of A is E.

The example of Table 4 illustrates the interest of combin-
ing the frequencies and the dominance during the compari-
son of two instances. Since the goal of the current work is to

Author's personal copy

	 Pattern Analysis and Applications

1 3

compare the available classes (and implicitly their instances)
to derive a taxonomy, we thus needed to select a formal
representation (and consequently a formal model) that can
capture both: the frequencies and the dominance in order
to obtain finer results. Markov chains (and consequently
HMMs) appear to be an accurate choice as described in
Fig. 2, although each class appears only once in this rep-
resentation. Besides HMMs, probability distributions like
multinomials may also be considered. However, probabil-
ity distributions will only consider the frequencies while
neglecting the dominance, unlike HMMs that can capture
both.

When several classes appear in identical proportions
in the neighborhood of an instance X, X is transformed
into z Markov chains, where z is the number of possible

results of the decreasing sorting of its neighborhood. For
M = 3 , if we have, for example, presence(c1,X) = 45% ,
presence(c2,X) = 5% and presence(c3,X) = 45% , then X is
transformed into the Markov chains presented in Fig. 3a
and b.

When the proposed transformation is applied to all the
instances of class ci , a database �i of Markov chains is
obtained. The content of �i is later used to initialize and
train a model �i associated with class ci . These models are
finally used to derive the taxonomy. The main obstacle in
this approach is that the states are represented by percent-
ages that can take any value in the continuous interval
[0, 100]. However, the number of states of an HMM is
always finite. By analogy with what was done in [10] to
overcome the same issue, the interval [0, 100] is split here
into N slices as described in Equation 1 (Fig. 4):

In this equation, N is a user-defined number and each slice
is now considered as a state after replacing each percentage
appearing in the Markov chain by the identifier of the slice
to which it belongs. For example, if N = 5 , then the slices
are: S1 = [0, 20] , S2 =]20, 40] , S3 =]40, 60] , S4 =]60, 80] and
S5 =]80, 100] . Using these five slices, Fig. 2 is transformed
into Fig. 5.

4.2 � Methodology

The technique proposed in this paper requires an initial
implicit step where each instance in the database must be

(1)S1 = [0,
100

N
]andSj =

]100
N

×(j − 1),
100

N
×j
]
, 2≤j≤N

Table 4   Importance of
combining the frequencies
and the dominance during the
comparison of two instances

Class 1 Class 2 Class 3 Class 4 Dominance

A 30% 20% 15% 35% Class 4 → Class 1 → Class 2 → Class 3
B 35% 15% 20% 30% Class 1 → Class 4 → Class 3 → Class 2
C 25% 15% 20% 40% Class 4 → Class 1 → Class 3 → Class 2
D 35% 25% 10% 30% Class 1 → Class 4 → Class 2 → Class 3
E 35% 15% 10% 40% Class 4 → Class 1 → Class 2 → Class 3

Classes (symbols) c3 c1 c2
↑ ↑ ↑

Percentages (states) 45% → 25% → 5%

Fig. 2   Initial Markov chain associated with X 

c3 c1 c2
↑ ↑ ↑

45% → 45% → 5%
(a) 1st Markov chain

c1 c3 c2
↑ ↑ ↑

45% → 45% → 5%
(b) 2nd Markov chain

Fig. 3   The two Markov chains associated with the instance X when
classes c

1
 and c

3
 appear in identical proportions in its neighborhood

Fig. 4   Methodology of the proposed approach

Author's personal copy

Pattern Analysis and Applications	

1 3

stored as a vector X ∈ ℝ
n . This initial step is generally

straightforward. This happens, for instance, in the classi-
fication of vertebrates as mammals, birds, fishes, reptiles
or amphibians. The database then contains pairs (x, y),
where y is the category and x represents the attributes of
a vertebrate including its body temperature, its skin cover,
its method of reproduction, its ability to fly and its abil-
ity to live in water [48]. However, there are applications
where this initial step needs a sophisticated analysis. For
instance, in music genre recognition, the representation
of a song c requires three main steps [9, 10]: (1) Define
an elementary time interval t (for instance one second)
and extract appropriate timbre or rhythm music features
from excerpts within windows of duration t. (2) Represent
each c as a sequence v1v2...vw of vectors of music features.
(3) The last thing to do is to use the former sequences to
derive a descriptor vector X ∈ ℝ

n for c.
Let us assume now that each instance in the database is

stored as a vector X ∈ ℝ
n . Figure 4 describes the follow-

ing global process proposed in this paper to automatically
generate a taxonomy:

1.	 Each instance X∈ci is transformed into a Markov
chain according to the content of its neighborhood as
described in Sect. 4.3. This produces a database �i of
Markov chains for each class ci.

2.	 A model �i associated with class ci is then initialized
and trained according to the content of �i as described
in Sect. 4.4.

3.	 Class ci is later associated with a descriptor vector ���⃗Ui
whose components are the similarities between �i and
the various models �j , 1≤j≤M . Section 4.5 presents the
computation scheme of ���⃗Ui.

4.	 Finally, the descriptor vectors associated with all the M
classes are used to generate the taxonomy as described
in Sect. 4.6.

4.3 � Transformation of an instance into a Markov
chain

As it can be observed in Fig. 6, in order to transform an
instance X into a Markov chain considering its neighbor-
hood ℵX of radius d, the composition of ℵX is first analyzed
topologically. The result of this analysis is a vector �(X, d)

whose components are the frequencies of the classes found
in ℵX . The components of �(X, d) are then normalized to
obtain the vector 𝜎̃(X, d) . Thereafter, the components of
𝜎̃(X, d) are sorted in decreasing order. The resulting sorted
vector 𝜎̄(X, d) is finally used to derive the Markov chain of
X. The formal definitions of �(X, d) , 𝜎̃(X, d) and 𝜎̄(X, d) are
given in the following subsections.

4.3.1 � Definition of new concepts

Definition 1  Consider a user-defined positive real number
d, and let dist be the distance/dissimilarity between two
instances of � . For each X∈� , we define in Equation 2 the
set �j(X, d) containing the instances of class cj found in the
neighborhood ℵX of X materialized by a ball of radius d
centered at X:

A large value of d may lead to a situation where
�j(X, d) ≈ � . To avoid this situation, we suggest to
select the value of d in such way that d≤�.dmax , where
dmax = max{dist(X, Y)|X, Y∈�} , and � is a user-defined real
number lower than one. Note that d must not be too small;
otherwise, we will have �j(X, d) ≈ �.

Definition 2  For each instance X∈� , we define in Equa-
tion 3 the M-dimensional vector �(X, d) whose jth com-
ponent is the percentage of instances of class cj found in
�j(X, d):

Depending on the value of d, the components of �(X, d)
can be very small real numbers. We thus propose to normal-
ize �(X, d) in the next definition.

Definition 3  For each instance X∈� , we define in Equa-
tion 4 the M-dimensional vector 𝜎̃(X, d) whose jth

(2)�j(X, d) = {Y∈cj|Y≠X and dist(X, Y)≤d}

(3)
�(X, d) = (�1(X, d), �2(X, d),… , �M(X, d)), where

�j(X, d) =
100

|cj| ×|�j(X, d)|, 1≤j≤M

Classes (symbols) c3 c1 c2
↑ ↑ ↑

Intervals (states) S3 → S2 → S1

Fig. 5   The final Markov chain associated with the instance X when
each percentage is replaced by the identifier of the slice to which it
belongs

X →

d →

Topological
analysis
of ℵX

→ σ(X, d) → Normalize

↓
σ̃(X, d)

↓
Markov
chain
of X

←
Construction

of the
Markov chain

← σ̄(X, d) ← Sort

Fig. 6   Transformation of the instance X into a Markov chain consid-
ering its neighborhood ℵ

X
 of radius d 

Author's personal copy

	 Pattern Analysis and Applications

1 3

component is equal to �j(X, d) normalized according to the
value �max = max{�j(X, d)|X∈� and 1≤j≤M}:

4.3.2 � Transformation of an instance

Given a radius d, the following steps are executed in order to
transform the instances of � into Markov chains:

1.	 For every instance X∈� and each class cj(1≤j≤M) , com-
pute �j(X, d) using Equation 3 and save the highest value
�max.

2.	 For every instance X∈� , calculate the vector �(X, d)
using Equation 3.

3.	 Use �max to normalize the components of every vector
�(X, d) and save the result as the vector 𝜎̃(X, d) using
Equation 4.

4.	 Sort the components of every vector 𝜎̃(X, d) in decreas-
ing order and save the result in the vector 𝜎̄(X, d).

5.	 For each vector 𝜎̄(X, d) :

(a)	 Start browsing 𝜎̄(X, d) by initializing k to 1.
(b)	 Determine the interval Sjk containing the kth com-

ponent of 𝜎̄(X, d) and determine the class cik asso-
ciated with this component.

(c)	 Assign Sjk to the current state and cik to the current
symbol.

(d)	 If k < M , then set k = k + 1 and go to step 5-(b).
(e)	 Stop the browsing of 𝜎̄(X, d) and return the

Markov chain illustrated in Fig. 7.

4.3.3 � Example

Figure 8 depicts three classes c1, c2 and c3 represented by
circles, stars and squares in the affine space ℝ2 . Let us
consider that the value of d is

√
74 which is the Euclidean

distance between coordinates (13, 11) and (8, 4).
The algorithm presented in Sect. 4.3.2 can be applied

as follows to construct the Markov chain associated with
the instance X of class c1 located at coordinates (13, 11):

(4)

𝜎̃(X, d) =(𝜎̃1(X, d), 𝜎̃2(X, d),… , 𝜎̃M(X, d)), where

𝜎̃j(X, d) =
𝜎j(X, d)

𝜎max
×100, 1≤j≤M

–	 Steps 1 to 3: With Equation 3, we calculate
�(X, d) = 100×(

8

16
,

4

16
,

9

15
) = (50, 25, 60) . After calcu-

lations, we obtained �max = 75% . This highest value is
obtained for the instance of class c1 located at coordi-
nates (8, 9) whose neighborhood contains 12

16
 instances

of class c1 . Equation 4 is then used to normalize �(X, d)
to derive 𝜎̃(X, d) = 100×(

50

75
,
25

75
,
60

75
) = (66.6, 33.3, 80).

–	 Step 4: The components of 𝜎̃(X, d) are sorted in decreas-
ing order and saved into 𝜎̄(X, d) = (80, 66.6, 33.3) . It is
important to note that the classes of the three compo-
nents of 𝜎̄(X, d) are c3 , c1 and c2 , respectively.

–	 Step 5: If we fix N = 10 , then the interval [0, 100] is
split into the ten following slices using Equation 1:
S1 = [0, 10], S2 =]10, 20],… , and S10 =]90, 100] . There-
fore, the three components of 𝜎̄(X, d) , respectively,
belong to the slices (S8, S7, S4) . Finally, the Markov
chain of Fig. 9 is derived.

4.3.4 � Time cost of the transformation

The goal of this section is to evaluate the time cost of the
transformation of all the instances of � into Markov chains,

Classes (symbols): ci1 . . . cik . . . ciM

↑
... ↑

... ↑
Slices (states): Sj1 → . . . → Sjk → . . . → SjM

Fig. 7   Markov chain associated with an instance X ∈�

d

X

− − − − −

0 5 10 15 20 25

−

−

−

−

−

5

10

15

20

25

•

•
•

•

•

•
•

• •

•
••
••

•

•

��
�
�

�

�

�
� �

�
�

�

�
�

�
�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

Fig. 8   Example of three classes c
1
, c

2
 and c

3
 represented by circles,

stars and squares in ℝ2 . The circled area represents the neighbor-
hood ℵ

X
 of the instance X∈c

1
 located at coordinates (13, 11) when

d =
√
74

Classes (symbols) c3 c1 c2
↑ ↑ ↑

Slices (states) S8 → S7 → S4

Fig. 9   The Markov chain associated with the instance X of class c
1

located at coordinates (13, 11) in Fig. 8

Author's personal copy

Pattern Analysis and Applications	

1 3

given a fixed radius d. Let us first evaluate the number of
comparisons as follows:

1.	 For each X∈� , the computation of �j(X, d) involves |cj|
comparisons between dist(X, Y) and d.

2.	 The computation of �(X, d) therefore costs (
∑M

j=1
�cj�)

which gives |�| comparisons for each instance. The
global number of comparisons for all the instances of �
is therefore |�|2.

3.	 There is no comparison during the calculation of 𝜎̃(X, d)
.

4.	 For each instance X∈� , the sorting of 𝜎̃(X, d) to obtain
𝜎̄(X, d) costs around M2 comparisons (this can be
reduced to M.log(M) depending on the selected sorting
algorithm). The global cost for all the instances of � is
therefore |�|.M2.

5.	 For each instance X∈� , the search of the interval asso-
ciated with the kth component of 𝜎̄(X, d) takes around
N comparisons between that component and the lower
bound of each interval, where N is the user-defined num-
ber used to split the interval [0,100]. This gives a cost
of M.N comparisons for all the components of 𝜎̄(X, d)
and, therefore, a cost of |�|.M.N comparisons for all the
instances of �.

When we sum all the previously calculated values, we deduce
that the algorithm takes around (|�|2 + |�|(M2 +M.N))
comparisons. If we now suppose that the computation of
the distance/dissimilarity dist(X, Y) between two instances
of � needs around � arithmetic operations, then the number
of arithmetic operations required by the algorithm is evalu-
ated as follows:

1.	 For each X∈� , the computation of �j(X, d) involves two
arithmetic operations augmented by |cj| computations of
the distance/dissimilarity between two instances of � .
Therefore, this step costs (�.|cj| + 2) arithmetic opera-
tions.

2.	 The computation of �(X, d) needs
∑M

j=1
(�.�cj� + 2) which

gives �.|�| + 2M arithmetic operations per instance.
Thus, global number of arithmetic operations for all the
instances of � is �.|�|2 + 2M.|�|.

3.	 For each instance X∈� , the calculation of the vector
𝜎̃(X, d) involves 2M arithmetic operations. Therefore, the
global cost for all the instances of � is therefore 2M.|�|.

4.	 For each instance X∈� , the sorting of 𝜎̃(X, d) to obtain
𝜎̄(X, d) costs around M2 arithmetic operations. The
global cost for all the instances of � is therefore |�|.M2.

5.	 No arithmetic operation is involved during this step.

When we sum all these values, we deduce that the algorithm
takes around (�.|�|2 + 4M.|�| +M2) arithmetic opera-
tions. If we now consider both, comparisons and arithmetic

operations, we obtain the following time complexity for the
algorithm: |�|2(� + 1) + |�|(2M2 + 4M +M.N) . Given that
the value of |�| will generally be very high compared to the
values of M and N, then we conclude that the algorithm runs
in �(�.|�|2 + |�|.M2).

4.4 � Design of the HMMs

In order to derive the HMM associated with a class ci whose
Markov chains are contained in the set �i , the parameters
of an initial HMM �0

i
 are first computed. These parameters

must statistically capture the state transitions and the distri-
butions of symbols from the content of �i . The parameters
of �0

i
 are later readjusted in order to avoid eventual divisions

by zero and zero probabilities. The readjusted model �1
i
 is

finally trained, using the content of �i and the Baum–Welch
algorithm, to derive the final model �i . Figure 10 summa-
rizes this process, and the three main steps are formally pre-
sented in the following subsections.

4.4.1 � Initial HMMs

In order to guarantee that the initial models fit the raw data,
the parameters of each initial HMM �0

i
 of class ci are set to

statistically capture the state transitions and the distributions
of symbols from the content of �i as follows:

1.	 The number of states is the user-defined positive integer
N, and the set of states is S = {S1, S2,… , SN} , as defined
in Equation 1.

2.	 The number of symbols is the number M of classes, and
the set of symbols is V = {c1, c2,… , cM}.

3.	 Given a user-defined floating-point number 𝜀 > 0 ,
the probability of transition from state Sj to state Sk is
given by Equation 5, where transit(j, k, �i) is the num-
ber of transitions from state Sj to state Sk in �i and
transit(j,−, �i) is the number of transitions from state Sj
to any destination in �i :

4.	 The probability to observe symbol ck at state Sj is
given by Equation 6, where observe(k, j, �i) is the num-
ber of times symbol ck is observed at state Sj in �i and
observe(−, j, �i) is the number of occurrences of state Sj
in �i :

(5)A0
i
[j, k] =

transit(j, k, �i)

transit(j,−, �i) + �

δi →
Initial
HMM
design

→ λ0
i → HMM

readj. → λ1
i → HMM

train. → λi

Fig. 10   Design of the HMM �
i
 of class c

i

Author's personal copy

	 Pattern Analysis and Applications

1 3

5.	 The probability that a sequence starts with state Sj is
given by Equation 7, where start(j, �i) is the number of
elements in �i starting with state Sj :

4.4.2 � Readjustment of the initial HMMs

The parameters of �0
i
 are not probability distributions. This

inconvenience was intentionally introduced by adding � to
the denominators of each component of (A0

i
,B0

i
,�0

i
) in order

to avoid eventual divisions by zero and zero probabilities.
In this paper, the value � = 1.0 has been selected following
[10, 49]. An equitable redistribution of the missing quan-
tity is done to each element of each line in �0

i
= (A0

i
,B0

i
,�0

i
)

to obtain the readjusted model �1
i
= (A1

i
,B1

i
,�1

i
) of class ci

whose parameters are:

1.	 A1
i
[j, k] = A0

i
[j, k] +

1

N

�
1 −

∑N

l=1
A0
i
[j, l]

�

2.	 B1
i
[j, k] = B0

i
[j, k] +

1

M

�
1 −

∑M

l=1
B0
i
[j, l]

�

3.	 �1
i
[j] = �0

i
[j] +

1

N

�
1 −

∑N

l=1
�0
i
[l]
�

4.4.3 � Training of the HMMs

The readjusted initial HMM �1
i
 of class ci is trained to

recognize the Markov chains in �i using the Baum–Welch
algorithm. The resulting HMM �i is the final model associ-
ated with class ci . During this training phase, the training
sequences are exclusively composed of symbols (classes).
If we consider, for example, the Markov chain presented in

(6)B0
i
[j, k] =

observe(k, j, �i)

observe(−, j, �i) + �

(7)�0
i
[j] =

start(j, �i)

|�i| + �

Fig. 9 obtained for the instance X of Fig. 8, then the training
sequence is c3c1c2.

4.5 � Computation of descriptor vectors

Given that a model �i is now attached to each class ci , one
can compute a descriptor vector ���⃗Ui for class ci . The jth com-
ponent uij of ���⃗Ui is the similarity rate between the models �i
and �j as specified in Equation 8, where uij is the probability
that �i and �j generate identical Markov chains:

4.6 � Taxonomy generation

To generate a taxonomy, we use the algorithm applied in
[10]. This algorithm consists of two main phases:

1.	 The hierarchical clustering: This phase is realized by the
AHC algorithm [26] that outputs a binary dendrogram of
the M classes. The principle of the AHC algorithm is as
follows: Initially, each class ci is considered as a cluster
of size 1. In consecutive steps, the two nearest clusters
are merged into a new cluster. This process is repeated
until one single cluster is obtained.

2.	 The taxonomy derivation: The taxonomy is finally
derived from the dendrogram as follows: The taxonomy
follows the general shape of the dendrogram, except for
the sub-trees of the dendrogram in which each node that
is not a leaf has exactly two children including at least
one leaf. All the leaves of such sub-trees are merged into
a k-ary cluster, where k is the number of leaves in the

(8)

⎧⎪⎨⎪⎩

���⃗Ui = (ui1, ui2,… , uiM) where

uij = 100×dsim(𝜆i, 𝜆j) with 1≤j≤M

Fig. 11   Example of taxonomy
derivation from a dendrogram

Author's personal copy

Pattern Analysis and Applications	

1 3

sub-tree. When this principle is applied to the dendro-
gram of Fig. 11a, the taxonomy of Fig. 11b is obtained.
In these figures, the leaves are the classes and the inner
nodes are the clusters.

5 � Experimental results

5.1 � Experimental datasets

In order to evaluate the performance of the proposed
approach, we performed hierarchical classification experi-
ments on 20 machine learning datasets from various applica-
tion domains, including 18 datasets from the UCI Machine
Learning Repository. The selected datasets vary in the num-
ber of classes, in the type of variables (nominal, numerical)
and in the sample size. The two last datasets are GTZAN
and GTZAN+ used in [9, 10]. All the datasets have at least
four classes, and the classes having no instances have been
removed. Typically, class ‘4’ was removed from Anneal,
class ‘-3’ was removed from Autos and class ‘vehic non
float’ was removed from Glass. The full description of the
datasets from the UCI Machine Learning Repository will
not be presented here because of space constraints. Never-
theless, this description is available online. Short descrip-
tions of GTZAN and GTZAN+ are presented below. Table 5
summarizes the main characteristics of the 20 experimental
datasets.

1.	 GTZAN: This dataset is among the most used data-
set in music genre recognition and is composed of ten
music genres, each genre being represented by 100
instances (songs). In this paper, the same timbre (34)
and rhythm (401) music descriptors extracted in [9, 10]
for each song of GTZAN and GTZAN+ are considered.
The main difference between the characteristics of [9,
10] and those used in this paper is that in [9] the tax-
onomy was generated using only timbre music descrip-
tors, while rhythm music descriptors were only used for
the same purpose in [10]. But in this paper, timbre and
rhythm music descriptors are both used to generate the
taxonomy.

2.	 GTZAN+: This dataset is obtained from GTZAN by
adding five new Afro genres. The music descriptors used
in GTZAN are also used in GTZAN+.

5.2 � Experimental parameters

We used the distance presented in Equation 9 to handle data-
sets with nominal attributes, numeric attributes or both. This
distance computes the sum of the discrete distances between

all the nominal attributes and adds it to the Manhattan dis-
tance between all the numeric attributes. This measure is
a special case of the weighted version presented in 2017
by Yizhou Sun in his online course 4 (See page 25). The
unweighted version is used here for two reasons. Firstly, if
the weighted version was selected, the choice of each weight
must objectively be justified. Additionally, the unweighted
version has the nice property to coincide with the Manhattan
distance when all the attributes are numeric. Missing values
were considered as a nominal attributes with value ’?’.

(9)

dist(x, y) =
∑

k
fk(x, y) where

fk(x, y) =

� �x(k) − y(k)� when the kth attribute is numeric

0 if x(k) = y(k) and 1 if x(k) ≠ y(k) otherwise

Table 5   Main characteristics of the 20 experimental datasets. Col-
umns 3, 4 and 5, respectively, contain the number of classes, the
number of nominal attributes and the number of numeric attributes
of each dataset

Dataset Authors #Classes #Nom. #Num. Size

Anneal Sterling &
Buntine

5 23 9 798

Audiology Quinlan 24 69 0 226
Autos Schlimmer 6 9 16 205
Car Bohanec &

Zupan
4 6 0 1728

Dermatology Ilter & Guvenir 6 33 1 366
Glass Spiehler 6 0 9 214
GTZAN Tzanetakis 10 0 435 1000
GTZAN+ Tzanetakis &

Iloga
15 0 435 1500

Hypothyroid Quinlan 4 22 7 3772
Letter Slate 26 0 16 20000
Lymph Zwitter & Soklic 4 15 3 148
Nursery Bohanec &

Zupan
5 8 0 12960

Pendigits Alpaydin &
Alimoglu

10 0 16 10992

Primary-tumor Kononenko &
Cestnik

21 17 0 339

Satimage Forsyth 6 0 36 6430
Segment Brodley 7 0 19 2310
Soybean Michalski &

Chilausky
19 0 35 683

Vehicule Mowforth &
Shepherd

4 0 18 846

Vowel Turney 11 3 10 990
Zoo Forsyth 7 16 1 101

4  http://web.cs.ucla.edu/~yzsun​/class​es/2017S​pring​_CS249​/Slide​
s/09Eva​luati​on_Clust​ering​.pdf.

Author's personal copy

http://web.cs.ucla.edu/%7eyzsun/classes/2017Spring_CS249/Slides/09Evaluation_Clustering.pdf
http://web.cs.ucla.edu/%7eyzsun/classes/2017Spring_CS249/Slides/09Evaluation_Clustering.pdf

	 Pattern Analysis and Applications

1 3

We experimented three different radii of the neighbor-
hood for each dataset: d1 = 0.1×dmax , d2 = 0.2×dmax and
d3 = 0.3×dmax . The value N = 50 has been used to split the
interval [0, 100] into slices following [10] where the authors
used HMMs to compare finite sets of histograms. To justify
this choice, the authors studied for a specific example, the
splitting of the interval [0, 100] in N slices, with N ranging
from 10 to 100 with step of 5. They finally recommended to
use the value N = 50 . The Baum–Welch algorithm has been
applied with a maximum number of iterations � = 100 to
avoid too high training time cost. During the experiments,
the presence of many classes in identical proportions in
the neighborhood of an instance was rarely observed. AHC
involves the use of a pair of distances: one distance between
two vectors and one distance between two clusters. The fol-
lowing distances also used in [9] have initially been selected
in this work:

1.	 Between vectors: Manhattan, Euclidean, Tchebychev
and Cosine distances.

2.	 Between clusters: Minimum, Maximum, Average and
Centroid distances.

In unreported simulations, we observed that some of these
distances always generate taxonomies with a high number of
classes combined into one single cluster. Sometimes, a flat
taxonomy (i.e., a taxonomy with a root that is the immedi-
ate parent of each class) was generated. We also observed
that some distances often generate taxonomies containing a
high number of isolated leaves, just like the isolated leaf d in
Fig. 11b. Such taxonomies do not provide relevant informa-
tion regarding the aim of this work. We therefore decided
to exclude the considered distances. Hereafter, the Centroid
distance is the unique selected distance between clusters. For
vectors, the Manhattan and the Euclidean distances where
initially preserved, but since there was no real gap between
their final performances, only the results obtained by the
Manhattan distance are presented here.

The descriptor vectors associated with the classes of the
various experimental datasets are not presented in this paper
for space constraints.

5.3 � Hierarchical classification settings

Flat and hierarchical classification experiments were, respec-
tively, performed in WEKA [50] and MEKA 5. The two fol-
lowing basic classifiers have been selected for hierarchical
classification (their corresponding names in WEKA/MEKA
are in brackets): SVM with polynomial kernel (SMO) and

multilayers perceptron (MLP). These classifiers have been
used with their default settings, and a tenfold cross-valida-
tion ( 90% − 10% ) has been applied.

5.4 � Classification performances

For space constraints, only the best taxonomy derived
for each dataset is graphically presented in Figs. 12a to o
and 13a to e. In these figures, an identifier is assigned to
each cluster and the names of the classes are attached to
the leaves. Flat and hierarchical classification accuracies
obtained for each dataset are presented in Table 6.

Table 6 reveals that for each dataset, the best hierarchical
classification accuracy is always higher than the best flat
classification accuracy, unlike what was observed in [4–8].
We experimentally observed that for few datasets, the same
taxonomy was derived for different radii of the neighbor-
hood. The impact of the radius on the classification accuracy
was different from one dataset to another. The best experi-
mental results were obtained 9/20 for the radius d1 , 10/20 for
the radius d2 and 11/20 for the radius d3 . Therefore, for any
new dataset, we recommend to perform experiments with
these three values of the radius, and to preserve the radius
that exhibits the best performance.

5.5 � Comparisons with related work

The approach proposed here has been compared with the
techniques of Table 1 where hierarchical classification is
performed [4–10]. The comparison with the remaining
techniques found in Table 1 [2, 3, 11–13, 13–15] cannot be
realized here because the terms (or key terms) involved in
these works are not initially organized into separated classes.
Indeed, the proposed approach relies on the topological anal-
ysis of the neighborhood of each instance. More precisely,
the frequencies and the dominance of the various classes
found in this neighborhood are captured. Consequently,
this topological analysis cannot be performed for the terms
appearing in [2, 3, 11–13, 13–15] due to the lack of classes.
Table 7 presents the results of this comparison for the 20
experimental datasets including 18 datasets from the UCI
Machine Learning Repository.

In Table 7, only the best accuracy of each work for each
dataset is presented and the last column contains the value
of accuracy gain (i.e., the best accuracy of the current
work minus the best accuracy of the existing works on
the considered dataset). Table 7 reveals that the approach
proposed here outperforms most of the existing approaches
with accuracy gains reaching +38.62% for the dataset Pri-
mary-tumor. Nevertheless, existing approaches slightly

5  https​://sourc​eforg​e.net/proje​cts/meka/.

Author's personal copy

https://sourceforge.net/projects/meka/

Pattern Analysis and Applications	

1 3

performed better than the proposed approach, for the data-
sets Hypothyroid and Pendigits with low accuracy gaps
of −0.36 and −0.01 , respectively. But these two isolated
cases do not have a major impact on the overall behavior
of the proposed approach compared to existing techniques.
Indeed, when the best hierarchical classification accuracy
for each dataset is considered in the current work, an aver-
age best classification accuracy of 97.22% is obtained, with
a standard deviation of 4.11%.

In Table 8, we reconsider the seven existing works pre-
sented in the columns of Table 7. For each of these exist-
ing works, we put :

–	 In column 1, the reference.
–	 In column 2, the number (#DS) of experimental data-

sets used in that paper.
–	 In column 3, the average accuracy ( ̄x ) obtained in that

reference, for corresponding experimental datasets.
–	 In column 4, the average accuracy ( ̄xthis ) obtained with

the method presented here, for the corresponding experi-
mental datasets.

–	 In column 5, the average standard deviations ( � ) obtained
in that reference.

–	 In column 6, the average standard deviation ( �this )
obtained by the method presented here, for correspond-
ing experimental datasets.

Clearly, for the experimental datasets used in the existing
works, and taking as criteria the average and the standard
deviation of the accuracy, the method presented here outper-
forms all the existing works.

6 � Conclusion

The main objective of this work was to propose an efficient
generic approach for automatic taxonomy generation. The
design of these taxonomies relies on the hypothesis that
the similarity between two classes can be derived from the
topological analysis of the neighborhood of their instances.
This topological analysis of the neighborhood of an instance
consists in detecting the classes appearing in this neighbor-
hood and to sort them from the most dominant class to
the least dominant one. The result of this analysis is then
saved as a Markov chain. Given a database � composed of
many objects belonging to discrete classes, the collection of
Markov chains resulting from the topological analysis of the
content of each class ci∈� ( 1≤i≤M ) is used to train a model
�i associated with ci . The similarities between the resulting
models are then calculated to associate a descriptor vector
to each class. Finally, a hierarchical clustering algorithm

Table 6   Hierarchical
classification performances
using SMO and MLP as basic
classifiers. Accuracies are in
(%) , and the best accuracies are
bold

Dataset Flat d
1

d
2

d
3

SMO MLP SMO MLP SMO MLP SMO MLP

Anneal 97.43 98.99 98.4 99.2 98.4 99.2 98.4 99.2
Audiology 81.85 83.18 92.0 90.7 90.3 91.2 90.7 91.6
Autos 71.22 80.0 88.8 88.3 81.5 87.3 94.6 94.1
Car 93.75 99.53 95.1 99.99 95.1 99.99 95.1 99.99
Dermatology 95.08 96.17 100 100 71.4 70.9 71.4 70.9
Glass 56.07 67.75 70.6 82.7 90.2 95.3 88.8 86
GTZAN 72.3 68.4 95.5 92.2 93.7 94.1 91.9 96.0
GTZAN+ 75.5 41.9 96.0 96.1 91.1 91.9 96.3 97.0
Hypothyroid 93.61 94.16 94.8 95.5 98.7 99.0 98.7 99.0
Letter 82.34 82.08 98.3 99.7 97.6 99.7 97.1 99.6
Lymph 86.48 84.45 86.48 84.45 87.2 83.8 87.2 83.8
Nursery 93.07 99.72 100 100 98.9 100 100 100
Pendigits 97.96 94.61 99.7 99.9 99.7 96.7 97.7 99.9
Primary-tumor 46.9 38.34 85.5 85.8 86.4 83.3 83.8 80.8
Satimage 86.78 89.73 98.8 99.5 95.0 96.0 96.1 97.0
Segment 93.07 96.14 97.8 99.1 95.4 98.2 99.4 99.7
Soybean 93.85 93.41 94.17 93.9 100 100 99.4 99.7
Vehicule 74.34 81.67 93.9 99.1 79.4 84.4 79.4 84.4
Vowel 71.41 92.82 85.6 99.3 87.0 99.2 96.1 99.99
Zoo 96.03 96.03 98.0 97.0 100 100 98.0 98.0

Author's personal copy

	 Pattern Analysis and Applications

1 3

Fig. 12   Best taxonomies generated for the datasets Anneal, Autos, Car, Dermatology, Glass, GTZAN, Hypothyroid, Lymph, Nursery, Pendigits,
Satimage, Segment, Vehicule, Vowel and Zoo 

Author's personal copy

Pattern Analysis and Applications	

1 3

Fig. 13   Best taxonomies generated for the datasets Audiology, GTZAN+, Letter, Primary-tumor and Soybean 

Author's personal copy

	 Pattern Analysis and Applications

1 3

combined with a specific merging algorithm is applied on
these vectors to derive the taxonomy.

The proposed approach has been experimented on 20
widespread datasets from various domains including 18
datasets belonging to the UCI Machine Learning Repository.
Classification results showed an average accuracy of 97.22%
with a standard deviation of 4.11% . The proposed approach
outperforms existing techniques with accuracy gains reach-
ing +38.62% for the dataset Primary-tumor.

The proposed approach is theoretically and experimen-
tally better than existing techniques because:

1.	 It is based on the topological analysis of the neighbor-
hood of each instance in order to capture the frequencies
and the dominance of the various classes found in this
neighborhood. This is a robust principle for detecting
the proximity between classes.

2.	 It is highly flexible because the following generic param-
eters can be customized: the number N of slices used
to split the interval [0, 100], the selected distance dist
between two instances, the positive real number � used
during the design of the initial models and the radius d
of the neighborhood of each instance. Future work may
study the impact of the variation of these parameters on
the performances of the proposed approach.

3.	 Unlike some existing techniques, it has never been
beaten by any flat classifier.

4.	 It is efficient because it outperforms existing techniques
in the hierarchical classification of the experimental
datasets.

The fact that the proposed approach derives hierarchi-
cal classifiers that outperform the state of the art proves
that the topological analysis of the neighborhood of each
instance is a relevant idea. However, slightly significant
error rates in hierarchical classification are observed for
some datasets including Audiology ( 8% ), Autos ( 5.4% ),
Glass ( 4.7% ), Lymph ( 12.8% ) and Primary-tumor ( 13.6% ).

Table 7   Comparison with existing works for the 20 experimental datasets including 18 datasets from the UCI Machine Learning Repository.
Accuracies are in (%) , and the best accuracies are bold

Dataset This work Kang et al. [4] Punera et al. [5] Kang et al. [7] Jo et al. [6] Cagliero
et al. [8]

Iloga et al. [9] Iloga et al. [10] Acc.gain

Anneal 99.2 98.99 99.11 73.67 96.6 +0.09
Audiology 92.0 76.99 74.34 +15.01
Autos 94.6 86.82 77.56 +7.78
Car 99.9 86.16 96.59 88.63 +3.31
Dermatology 100 98.08 96.99 95.49 +1.92
Glass 95.3 80.84 73.0 71.96 +14.46
GTZAN 96.0 84.9 91.6 +4.4
GTZAN+ 97.0 92.0 85.2 +5.0
Hypothyroid 99.0 95.78 99.36 99.3 -0.36
Letter 99.7 70.53 81.72 93.6 +6.1
Lymph 87.2 84.45 77.03 +2.75
Nursery 100 90.32 99.06 98.86 98.7 +0.94
Pendigits 99.99 97.7 100 -0.01
Primary-tumor 86.4 47.78 44.54 +38.62
Satimage 99.5 88.7 +10.8
Segment 99.7 90.0 95.11 95.9 +3.8
Soybean 100 94.58 93.85 89.82 93.6 +5.42
Vehicule 99.1 67.84 70.21 +28.89
Vowel 99.9 42.42 76.87 90 +9.9
Zoo 100 96.03 93.07 91.41 +3.97

Table 8   Performances of existing works and the method presented in
this paper. The values of x̄ , x̄

this
 , � and �

this
 are in (%) . The best values

are in bold

Authors [references] # DS x̄ x̄
this

� �
this

Iloga et al. [9] 2 88.45 96.5 3.55 0.5
Iloga et al. [10] 2 88.4 96.5 3.2 0.5
Punera et al. [5] 3 82.52 98.39 10.84 2.18
Jo et al. [6] 6 89.64 99.85 7.94 0.29
Cagliero et al. [8] 8 95.8 99.62 3.58 0.34
Kang et al. [4] 16 81.72 97 16.52 4.49
Kang et al. [7] 16 85.03 97 14.62 4.49

Author's personal copy

Pattern Analysis and Applications	

1 3

This justifies that a finer analysis of this neighborhood
must be carried out in order to improve the hierarchical
classification accuracy. This error rate may be due to the
fact that the spatial distribution of the instances is ignored
during the analysis of the neighborhood. Indeed, the fact
that two instances are attached to identical Markov chains
does not mean that the spatial distributions of the instances
in their neighborhoods are the same. Such situations can
introduce some bias during the analysis. Future work may
propose a technique for neighborhood analysis that addi-
tionally takes into account the spatial distribution of the
instances.

The technique proposed in Sect. 4.1 for the case where
several classes are found in identical proportions in the
neighborhood of an instance may lead to a combinato-
rial explosion of Markov chains. Such situations can con-
siderably increase the HMMs training time. One way to
attenuate this inconvenience will be studied in future work
by considering the sets of classes having identical propor-
tions in the neighborhood, as the symbols of the models.
Let us, for example, assume that M = 6 and consider an
instance X whose neighborhood has the following com-
position: Presence(c1,X) = 45% , Presence(c2,X) = 5% ,
Presence(c3,X) = 45%   , Presence(c4,X) = 25%   ,
Presence(c5,X) = 75% and Presence(c6,X) = 25% . The
method actually used will generate the four Markov chains
presented in Fig. 14a to d for X. If the newly proposed
method is used instead, the unique Markov chain presented
in Fig. 15a is initially obtained. The next step consists of
renaming the distinct sets of classes found in the database,
i.e., w1 = {c5} , w2 = {c1, c3} , w3 = {c4, c6} , w4 = {c2} , …

Thereafter, the final unique Markov chain presented in
Fig. 15b is obtained. In this way, only the number of sym-
bols may increase, while the number of Markov chains
remains unchanged.

References

	 1.	 Sujatha R, Bandaru R, Rao R (2011) Taxonomy construction tech-
niques–issues and challenges. Indian J Comput Sci Eng IJCSE
2(5):661–671

	 2.	 Li T, Anand SS (2008) Automated taxonomy generation for sum-
marizing multi-type relational datasets. In: International confer-
ence on data mining (DMIN 2008), Las Vegas, USA, pp 571–577

	 3.	 Treeratpituk P, Khabsa M, Giles CL (2013) Graph-based approach
to automatic taxonomy generation (grabtax). arXiv preprint arXiv​
:1307.1718

	 4.	 Kang D-K, Silvescu A, Zhang J, Honavar V (2004) Generation of
attribute value taxonomies from data for data-driven construction
of accurate and compact classifiers. In: Fourth IEEE International
Conference on Data Mining (ICDM’04), pp 130–137. IEEE

	 5.	 Punera K, Rajan S, Ghosh J (2006) Automatic construction of
n-ary tree based taxonomies. In: null, pp 75–79. IEEE

	 6.	 Jo H, Na Y-C, Oh B, Yang J, Honavar V (2008) Attribute value
taxonomy generation through matrix based adaptive genetic algo-
rithm. In: 2008 20th IEEE International Conference on Tools with
Artificial Intelligence, vol 1, pp 393–400. IEEE

	 7.	 Kang D-K, Sohn K (2009) Learning decision trees with taxonomy
of propositionalized attributes. Pattern Recognit 42(1):84–92

	 8.	 Cagliero L, Garza P (2013) Improving classification models with
taxonomy information. Data Knowl Eng 86:85–101

	 9.	 Iloga S, Romain O, Tchuenté M (2019) A sequential pattern min-
ing approach to design taxonomies for hierarchical music genre
recognition. Pattern Anal Appl 21(2):363–380

	10.	 Iloga S, Romain O, Tchuenté M (2019) An accurate hmm-based
similarity measure between finite sets of histograms. Pattern Anal
Appl 22(3):1079–1104

	11.	 Chien L-F, Huang C-C, Teng J-W, Chuang S-L (2002) Automatic
taxonomy generation for speech archives. In: International Sym-
posium on Chinese Spoken Language Processing

	12.	 Yang H, Callan J (2009) A metric-based framework for automatic
taxonomy induction. In: Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP,
pp 271–279

	13.	 Liu X, Song Y, Liu S, Wang H (2012) Automatic taxonomy con-
struction from keywords. In: Proceedings of the 18th ACM SIG-
KDD international conference on Knowledge discovery and data
mining, pp 1433–1441. ACM

	14.	 Mao Y, Ren X, Shen J, Gu X, Han J (2018) End-to-end reinforce-
ment learning for automatic taxonomy induction. arXiv preprint
arXiv​:1805.04044​

c5 c1 c4 c2
↑ ↑ ↑ ↑

75% → 45% → 25% → 5%

(a) 1st Markov chain

c5 c1 c6 c2
↑ ↑ ↑ ↑

75% → 45% → 25% → 5%

(b) 2nd Markov chain

c5 c3 c4 c2
↑ ↑ ↑ ↑

75% → 45% → 25% → 5%

(c) 3rd Markov chain

c5 c3 c6 c2
↑ ↑ ↑ ↑

75% → 45% → 25% → 5%

(d) 4th Markov chain

Fig. 14   The four Markov chains associated with X using the actual method

{c5} {c1, c3} {c4, c6} {c2}
↑ ↑ ↑ ↑

75% → 45% → 25% → 5%
(a) Initial Markov chain

w1 w2 w3 w4

↑ ↑ ↑ ↑
75% → 45% → 25% → 5%

(b) Final Markov chain

Fig. 15   The initial and final unique Markov chain associated with X
using the new method

Author's personal copy

http://arxiv.org/abs/1307.1718
http://arxiv.org/abs/1307.1718
http://arxiv.org/abs/1805.04044

	 Pattern Analysis and Applications

1 3

	15.	 Sánchez D, Moreno A (2004) Automatic generation of taxonomies
from the www. In: International Conference on Practical Aspects
of Knowledge Management, pp 208–219. Springer

	16.	 Costa E, Lorena A, Carvalho ACPLF, Freitas A (2007) A review
of performance evaluation measures for hierarchical classifiers.
In: Evaluation methods for machine learning II: Papers from the
AAAI-2007 workshop, pp 1–6

	17.	 Sritha S, Mathumathi B (2016) A survey on various approaches
for taxonomy construction. Indian J Innov Dev 5:6

	18.	 Burred JJ, Lerch A (2003) A hierarchical approach to automatic
musical genre classification. In: Proceedings of the 6th interna-
tional conference on digital audio effects, pp 8–11. Citeseer

	19.	 Li T, Ogihara M (2005) Music genre classification with taxonomy.
In: Proceedings.(ICASSP’05). IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2005, vol 5, pp v–197.
IEEE

	20.	 Brecheisen S, Kriegel H-P, Kunath P, Pryakhin A (2006) Hier-
archical genre classification for large music collections. In: 2006
IEEE international conference on multimedia and expo, pp 1385–
1388. IEEE

	21.	 Silla JCN, Freitas AA, et al (2009) Novel top-down approaches
for hierarchical classification and their application to automatic
music genre classification. In: SMC, pp 3499–3504

	22.	 Zhang L , Liu S, Pan Y, Yang L (2004) Infoanalyzer: a computer-
aided tool for building enterprise taxonomies. In: Proceedings of
the thirteenth ACM international conference on Information and
knowledge management, pp 477–483. ACM

	23.	 Gates SC, Teiken W, Cheng K-SF (2005) Taxonomies by the num-
bers: building high-performance taxonomies. In: Proceedings of
the 14th ACM international conference on Information and knowl-
edge management, pp 568–577. ACM

	24.	 Picca D, Popescu A (2007) Using wikipedia and supersense
tagging for semi-automatic complex taxonomy construc-
tion. In: Computer aided language processing workshop 2007,
Wolverhampton

	25.	 Pachet F, Cazaly D (2000) A taxonomy of musical genres. In:
Content-Based Multimedia Information Access-Volume 2, pp
1238–1245. LE CENTRE DE HAUTES ETUDES INTERNA-
TIONALES D’INFORMATIQUE DOCUMENTAIRE

	26.	 Sasirekha K, Baby P (2013) Agglomerative hierarchical clustering
algorithm-a. Int J Sci Res Publ 83:83

	27.	 Li T, Anand SS (2007) Diva: a variance-based clustering approach
for multi-type relational data. In: Proceedings of the sixteenth
ACM conference on Conference on information and knowledge
management, pp 147–156. ACM

	28.	 Karypis G, Kumar V (1998) Multilevel algorithms for multi-con-
straint graph partitioning. In: IEEE/ACM Conference on Super-
computing, 1998, SC98, pp 28–28. IEEE

	29.	 Karypis G, Kumar V (1998) A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J Sci Comput
20(1):359–392

	30.	 Panchenko A, Faralli S, Ruppert E, Remus S, Naets H, Fairon C,
Ponzetto SP, Biemann C (2016) Taxi at semeval-2016 task 13: a
taxonomy induction method based on lexico-syntactic patterns,
substrings and focused crawling. In: Proceedings of the 10th Inter-
national Workshop on Semantic Evaluation (SemEval-2016), pp
1320–1327, 2016

	31.	 Bansal M, Burkett D, De MG, Klein D (2014) Structured learning
for taxonomy induction with belief propagation. In: Proceedings
of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp 1041–1051

	32.	 Tan P-N, Kumar V, Srivastava J (2002) Selecting the right inter-
estingness measure for association patterns. In: Proceedings of
the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp 32–41. ACM

	33.	 Fayyad UM, Irani KB (1993) Multi-interval discretization of
continuous-valued attributes for classification learning. In: Pro-
ceedings of the 13th international joint conference on artificial
intelligence (IJCAI-93), Chambèry, pp 1022–1027

	34.	 Richard CD, Anil KJ (1988) Algorithms for clustering data. Pren-
tice Hall, NJ

	35.	 Thair NP (2009) Survey of classification techniques in data min-
ing. Proc Int MultiConf Eng Comput Sci 1:18–20

	36.	 Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu
M-C (2001) Prefixspan: mining sequential patterns efficiently by
prefix-projected pattern growth. In: ICCCN, pp 0215. IEEE

	37.	 Lesh N, Zaki MJ, Oglhara M (2000) Scalable feature mining for
sequential data. IEEE Intell Syst Appl 15(2):48–56

	38.	 Rabiner LR (1989) A tutorial on hidden Markov models
and selected applications in speech recognition. Proc IEEE
77(2):257–286

	39.	 Lidy TRA (2005) Evaluation of feature extractors and psycho-
acoustic transformations for music genre classification. In: ISMIR,
pp 34–41

	40.	 Bahlmann C, Burkhardt H (2001) Measuring hmm similarity with
the bayes probability of error and its application to online hand-
writing recognition. In: ICDAR, p 0406. IEEE

	41.	 Chen L, Man H (2005) Fast schemes for computing similarities
between gaussian hmms and their applications in texture image
classification. EURASIP J Adv Signal Process 2005(13):164742

	42.	 Falkhausen M, Reininger H, Wolf D (1995) Calculation of dis-
tance measures between hidden Markov models. In: Fourth Euro-
pean Conference on Speech Communication and Technology

	43.	 Lyngso RB, Pedersen CN, Nielsen H (1999) Metrics and similar-
ity measures for hidden Markov models. In: Proc Int Conf Intell
Syst Mol Biol, pp 178–186

	44.	 Sahraeian SME, Yoon B-J (2011) A novel low-complexity hmm
similarity measure. IEEE Signal Process Lett 18(2):87–90

	45.	 Do MN (2003) Fast approximation of kullback-leibler distance
for dependence trees and hidden Markov models. IEEE Signal
Process Lett 10(4):115–118

	46.	 Silva J, Narayanan S (2008) Upper bound kullback-leibler diver-
gence for transient hidden Markov models. IEEE Trans Signal
Process 56(9):4176–4188

	47.	 Zeng J, Duan J, Chengrong W (2010) A new distance measure for
hidden Markov models. Expert Syst Appl 37(2):1550–1555

	48.	 Tan P-N, Steinbach M, Kumar V (2016) Introduction to data min-
ing. Pearson Education India

	49.	 Iloga S, Romain O, Bendaouia L, Tchuente M (2014) Musical
genres classification using Markov models. In: 2014 international
conference on audio, language and image processing (ICALIP),
pp 701–705. IEEE

	50.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Wit-
ten IH (2009) The weka data mining software: an update. ACM
SIGKDD Explor Newslett 11(1):10–18

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Author's personal copy

	An efficient generic approach for automatic taxonomy generation using HMMs
	Abstract
	1 Introduction
	2 State of the art
	2.1 Related work
	2.2 Problem statement

	3 Presentation of HMMs
	3.1 Definition of HMM
	3.2 HMM as a sequence generator
	3.3 HMM probability computing and training
	3.4 HMMs similarity measure

	4 The proposed approach
	4.1 Main idea
	4.2 Methodology
	4.3 Transformation of an instance into a Markov chain
	4.3.1 Definition of new concepts
	4.3.2 Transformation of an instance
	4.3.3 Example
	4.3.4 Time cost of the transformation

	4.4 Design of the HMMs
	4.4.1 Initial HMMs
	4.4.2 Readjustment of the initial HMMs
	4.4.3 Training of the HMMs

	4.5 Computation of descriptor vectors
	4.6 Taxonomy generation

	5 Experimental results
	5.1 Experimental datasets
	5.2 Experimental parameters
	5.3 Hierarchical classification settings
	5.4 Classification performances
	5.5 Comparisons with related work

	6 Conclusion
	References

