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Abstract
Taxonomies are essential tools for fast information retrieval and classification of knowledge. Many existing techniques 
for automatic taxonomy generation strongly depend on the specific properties of a particular domain and are consequently 
hard to apply to other domains. Some attempts have been made to design taxonomies for multiple domains. Unfortunately, 
they induce high hierarchical classification error rates for some datasets. The automatic design of a taxonomy requires the 
capability of measuring the similarity between classes. More precisely, the fact that two classes are near intuitively implies 
that some elements of one class are scattered in the neighborhood of some elements of the other class. This observation 
is used in this paper to propose a new generic technique for automatic taxonomy generation. A topological analysis of the 
neighborhood of each instance is first performed. The results of this analysis are used to initialize and train a hidden Markov 
model for each class. The model of a given class c captures the frequencies of the classes found in the neighborhood of the 
instances of c, from the most dominant class to the least dominant. The similarities between these models are finally used to 
derive a taxonomy. Hierarchical classification experiments realized on 20 datasets from various domains showed an average 
accuracy of 97.22% and a standard deviation of 4.11% . Comparison results revealed that the proposed approach outperforms 
existing work with accuracy gains reaching 38.62% for one dataset.

Keywords  Automatic taxonomy generation · Hidden Markov models · Hierarchical classification

1  Introduction

A taxonomy is an essential tool for fast information retrieval 
and classification of knowledge [1]. A taxonomy provides an 
efficient navigating and browsing mechanism by organizing 

huge volumes of data into a relatively small number of hier-
archical clusters [2]. In this hierarchy, broad concepts are 
at the top and more specific concepts are further down [3]. 
Initially introduced for the classification of biological spe-
cies, the concept of taxonomy is nowadays used in several 
other areas related to data (text, audio, image and video) 
mining and processing. One of the most important tasks in 
taxonomy generation is the evaluation of the quality of the 
resulting taxonomies. This can be achieved through hierar-
chical classification [4–10] or by using appropriate metrics 
[2, 3, 11–14]. It is also possible to entrust this evaluation to 
human experts [3] or to perform ontological tests using a 
specialized software program [15].

Several techniques for taxonomy generation have been 
designed, and detailed surveys on various approaches for 
taxonomy construction are available in [16, 17]. All these 
techniques can be organized into three main categories: 

1.	 The manual approach [18–21].
2.	 The semi-automated approach [8, 22–24].
3.	 The automated approach [2–7, 9–15].
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Manually generated taxonomies are generally constructed 
using a top-down approach. This implies the selection 
according to the context, of a few number of higher cat-
egories and to further move down to more specific levels 
of lower subcategories. A bottom-up approach is generally 
applied for automatic taxonomy construction. This involves 
the selection of specific levels of categories to further move 
up to higher categories [1]. Manual taxonomy construction 
is a tedious process, and the resulting taxonomy is gener-
ally highly subjective [13]. Manually generated taxonomies 
generally use human semantics and are mainly suitable for 
human use, whereas automatically generated taxonomies 
are optimized for computational classifiers [19]. Further-
more, automatic approaches have the potential to enable 
humans or machines to easily understand a highly focused 
and potentially fast changing domain [13]. Details related 
to the advantages and limitations of these two approaches 
are presented in [1]. Semi-automated approaches generally 
share the advantages and drawbacks of manual and auto-
matic approaches. In [5] and [25], several criteria that should 
guide the design of a ‘good’ taxonomy are analyzed.

Some existing automatic techniques are applicable to 
multiple domains [4–8], but most of these techniques exhibit 
high hierarchical classification error rates. In some cases, 
the hierarchical classifiers derived from these techniques are 
even outperformed by the corresponding flat classifiers [4, 7, 
8]. Other existing techniques strongly depend on the specific 
properties of a particular domain, and their application in 
other domains is not straightforward [2, 3, 9–15].

The automatic design of a taxonomy requires the capabil-
ity of measuring the similarity between classes. When the 
elements of each class are observed as points scattered in 
the multidimensional affine space, the fact that two classes 
c1 and c2 are near intuitively induces that some elements of 
c1 (resp. c2 ) are found in the neighborhood of some elements 
of c2 (resp. c1 ). The probability to find elements of one class 
c2 in the neighborhood ℵ of another class c1 depends on the 
zone covered by ℵ . Therefore, when measuring the similar-
ity between two classes, the radius of the neighborhood that 
must be considered for each instance is a crucial parameter. 
Indeed, if ℵ is very large (resp. very narrow), then the prob-
ability is almost always equal to 1 (resp. 0). Unfortunately, 
none of the existing techniques for automatic taxonomy gen-
eration exploits this fundamental observation.

To overcome the aforementioned limitations, an efficient 
generic approach for automatic taxonomy generation based 
on hidden Markov models (HMMs) is proposed in this paper. 
In the proposed approach, one HMM is first designed for 
each class c. This model captures the global frequencies of 
the classes found in the neighborhood of the instances of c, 
from the most dominant class to the least dominant one. The 
similarities between these models are finally used to derive a 
taxonomy. The performances of the proposed approach are 

then evaluated in a hierarchical classification process on 20 
publicly available datasets from various domains.

The rest of this paper is organized as follows: The state 
of the art is presented in Sect. 2, followed by a summarized 
presentation of HMMs in Sect. 3. A detailed description 
of the approach proposed in this paper is given in Sect. 4. 
Experimental results are presented in Sect. 5, and the last 
section is devoted to the conclusion.

2 � State of the art

2.1 � Related work

An automatic taxonomy generation technique is generally 
based on algorithms designed to capture the hierarchical 
relationships existing between the categories found in a 
database. The performance of such a technique relies on: 

1.	 The experts’ opinion regarding the taxonomies.
2.	 The quality of the taxonomies.
3.	 The time complexity of the technique.

The problem of automatic taxonomy generation for speech 
archives was investigated in [11]. In that work, similar key 
terms manually extracted from the transcription of a speech 
archive are first grouped into clusters. Then, similar clusters 
are grouped into super clusters to form a taxonomy of the 
archive. The Agglomerative Hierarchical Clustering (AHC) 
[26] and the Hierarchical Cluster Partitioning (HCP) algo-
rithms are used to achieve this goal. The principle of HCP 
is fully described in [11]. AHC produces a binary tree of 
clusters, and HCP generates a multi-way tree from the out-
put of AHC. The F-measure was used as metric to evaluate 
the quality of the resulting taxonomies.

An automatic approach to extract information from 
the Web in order to build a taxonomy of terms and Web 
resources for a given domain was proposed in [15]. The most 
representative Web sites for each concept in the domain are 
first retrieved and categorized. Then, a Sequential Agglom-
erative Hierarchical Non-Overlapping (SAHN) cluster-
ing algorithm fully described in that paper is used to join 
the more similar terms, using the number of coincidences 
between their URLs sets as a similitude measure. Ontologi-
cal tests have been performed in the software PROTÉGÉ to 
evaluate the correctness of the resulting taxonomies from a 
logical point of view. Experts estimate that the taxonomy 
obtained with this approach really represents the state of the 
art on the Web for a given concept.

The problem of generating Attribute Value Taxonomies 
(AVTs) was tackled in [4] and [6]. In [4], AVT-Learner, an 
algorithm for automated construction of AVTs from data, 
was introduced. This algorithm uses the AHC algorithm 
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to cluster attribute values based on the distribution of the 
classes that co-occur with the values. Hierarchical classifica-
tion experiments on 37 datasets of the UCI Machine Learn-
ing Repository1 showed that the AVTs generated by AVT-
Learner were competitive with available human-generated 
AVTs. In [6], an adaptive genetic algorithm named MCM-
AVT-Learner is proposed to generate AVTs. This algorithm 
imports the mutations and crossover matrices which makes 
effective use of the fitness ranking and loci statistics infor-
mation. Experimented through hierarchical classification 
on eight datasets of the UCI Machine Learning Repository 
from diverse domains, MCM-AVT-Learner generated AVTs 
that were competitive with human-generated AVTs and also 
with AVTs generated by other algorithms including AVT-
Learner [4].

The problem of learning N-ary taxonomies with no 
user-defined parameters is analyzed in [5]. As a solution, a 
framework that categorizes a ‘good’ taxonomy is proposed 
and an algorithm named constructTaxonomy is developed 
to automatically find a good taxonomy. This algorithm is 
considerably less greedy than existing ones. The resulting 
taxonomies have been evaluated through hierarchical clas-
sification on several real-life datasets from diverse domains 
like text mining, hyper-spectral analysis and written char-
acter recognition. Linear support vector machines (SVMs) 
with Gaussian kernels and Bayesian classifiers were used in 
a fivefold cross-validation. The resulting taxonomies seemed 
to be more ‘natural’ and produced better classification accu-
racies than binary taxonomies.

An automatic taxonomy generation method on relational 
datasets is proposed in [2]. That work is based on the rela-
tional clustering algorithm DIVA [27] which consists of two 
steps: 

1.	 A divisive step where the dataset is divided into a user-
defined number of clusters so that the variance of each 
cluster is lower than a fixed threshold.

2.	 Based on these clusters, a hierarchical dendrogram is 
generated using an agglomerative algorithm.

The intra-node entropy and the inter-node entropy were 
used to measure the quality of the generated taxonomies. 
Comparisons were made with the taxonomies generated 
by the AHC and the bisecting K-means partitioning algo-
rithms on the synthetic Amazon dataset and a real movie 
dataset. The results showed that DIVA was slightly beaten 
by these two algorithms on the synthetic Amazon dataset 
with a quality loss reaching 4.2% . On the other hand, DIVA 
obtained a quality of 0.033 on the real movie dataset. This 

is considerably better than the two other approaches that 
produced solutions with qualities no higher than 0.026.

In [7], an algorithm named Propositionalized Attribute 
Learner (PAT-Learner) that automatically constructs tax-
onomies is introduced. This algorithm propositionalizes 
attributes and hierarchically clusters the propositionalized 
attributes based on the distribution of class labels that co-
occur with them, to generate a taxonomy. PAT-DTL, an 
inductive algorithm that exploits the taxonomy generated 
by PAT-Learner as prior knowledge to generate compact 
decision trees, is also introduced in [7]. Hierarchical clas-
sification experiments realized on 37 datasets from the UCI 
Machine Learning Repository showed that PAT-DTL gen-
erates decision trees that are more compact than standard 
decision trees.

Some authors focus on the automatic generation of tax-
onomies from a text corpus [3, 12–14]. For instance in [12], 
it is proposed to use a framework which incrementally clus-
ters terms from text documents based on ontology metric, 
in order to derive taxonomies. This approach combines the 
strengths of both lexico-syntactic patterns and clustering, 
through the use of heterogeneous features. More formally, a 
feature vector h(cx, cy) ∈ ℝ

n is initially calculated for every 
input terms cx and cy . These features include contextual 
information, co-occurrence, syntactic dependency, lexico-
syntactic patterns and miscellaneous. The resulting feature 
vectors are later used to incrementally insert the terms into 
the taxonomy. Experimental results reveal that this approach 
achieves higher F1-measure than other related approaches, 
when the hypernym and the meronym taxonomies extracted 
from WorldNet and ODP are considered as gold standards.

The Bayesian Rose Tree (BRT) algorithm has been used 
to build a multi-branch taxonomy from a given set of key-
words phrases [13]. This algorithm reduces the complex-
ity of previous hierarchical clustering algorithms from 
O(n2logn) to O(nlogn) . The Normalized Mutual Information 
is then used as metric to access the quality of the generated 
taxonomies.

A graph-based solution for automatic taxonomy genera-
tion from a large text corpus is also proposed in [3]. This 
algorithm, GraBTax, uses statistical co-occurrences and 
lexical similarity to optimize the structure of the taxonomy. 
After extracting topical terms and their relationships from 
the text corpus, GraBTax constructs a weighted graph repre-
senting topics and their associations. Finally, the multilevel 
graph partitioning algorithm proposed in [28, 29] is used to 
generate the taxonomy. This algorithm finds the partition-
ing that minimizes the edge-cut while keeping the vertex 
strength balanced. The quality of the resulting taxonomies 
was manually evaluated by human experts. This evalua-
tion was combined with the automatic calculation of the 
semantic precision. Experimented on 1.1 Million papers 
with titles and abstracts from the CiteSeerX database gave 1  https​://archi​ve.ics.uci.edu/ml/.
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a semantic precision of 0.69. This is significantly higher 
than the semantic precision of 0.44 exhibited by the AHC 
algorithm.

A recent deep reinforcement learning approach for auto-
matic taxonomy induction from a set of terms has been pro-
posed in [14]. The aim of that approach is to unify hypern-
ymy detection (i.e., extraction of term pairs from ‘is-a’ 
relation) and hypernymy organization (i.e., organizing ‘is-a’ 
term pairs into a tree structure hierarchy), in an end-to-end 
manner. To achieve this goal, the authors first design a policy 
neural network to incorporate semantic information of term 
pairs. They then use cumulative rewards to holistically meas-
ure the quality of the resulting taxonomies. Experimented on 
two public datasets [30, 31], this approach performed 19.6% 
better than existing techniques on the ancestor F1 which is a 
metric that compares ancestors (‘is-a’ pairs) from the gener-
ated taxonomy with those from a gold taxonomy.

The authors of [8] use equal-depth discretization 
approach [32] and entropy-based Kononenko discretization 
[33] approach to generate taxonomies over data described by 
continuous attributes. For data described by nominal attrib-
utes, taxonomies are analyst-provided. Hierarchical classi-
fication experiments on 20 datasets from the UCI Machine 
Learning Repository show the effectiveness of this approach 
which improves the accuracy of state-of-art classifiers.

Other authors rather tackle the problem of automatic 
generation of music genre taxonomies [9, 10]. An overview 
of relevant existing techniques is available in [9] where a 
sequential pattern mining approach to automatically gener-
ate music genre taxonomies is proposed as follows. Con-
sider a music database composed of M genres gi (1≤i≤M) . 
Each song of gi is initially transformed into a sequential pat-
tern using the k-means [34] and the K-NN [35] algorithms. 
Thereafter, the characteristic sequential patterns of genre gi 
are extracted using the PrefixSpan [36] and the FeatureMine 
[37] algorithms. These characteristic sequential patterns are 
then used to compute a descriptor vector ��⃗Vi for genre gi . 
The jth component of ��⃗Vi is the percentage of characteristic 
sequential patterns of genre gj (1≤j≤M) that are contained 
in those of genre gi . Finally, the AHC algorithm is applied 
on these vectors to derive the taxonomy. Hierarchical clas-
sification experiments applied to the music database GTZAN 
which belongs to the MARSYAS repository 2 exhibit the 
actual best accuracy.

An accurate HMM-based similarity measure between 
two sets of histograms is proposed in [10]. A model is first 
trained with the Baum–Welch algorithm [38] for each set 
of histograms. This HMM captures the bin values and the 
visual shapes of the histograms in the considered set, irre-
spective of their bin sizes. The similarity between the two 

input sets of histograms is then obtained by evaluating the 
similarity between their respective models. This similarity 
measure is then experimented in the automatic generation 
of music genres taxonomies as follows. Consider a music 
database composed of M genres gi (1≤i≤M) . The 60-bin 
Rhythm Histogram (RH) [39] corresponding to each song 
of a genre gi is first calculated, and a model �i is trained to 
capture the visual shape of these RHs. Then, a descriptor 
vector ���⃗Wi is associated with gi in such a way that the jth 
component of ���⃗Wi is the similarity between the models �i 
and �j (1≤j≤M) . Similar to what was done in [9], the AHC 
algorithm is also applied on these vectors to derive the tax-
onomy. Experimental results show the actual best hierarchi-
cal classification accuracy for the music database GTZAN+ 3 
which is an extension of GTZAN. Table 1 summarizes the 
main information about the papers surveyed in this section.

2.2 � Problem statement

As previously stated in this paper, the spatial proximity 
between two classes means that some elements of one class 
are scattered in the neighborhood of certain elements of the 
other class. None of the existing techniques for automatic 
taxonomy generation relies on this fundamental observation.

As it can be observed in Table 1 and in the surveys pre-
sented in [16, 17], a high number of existing techniques for 
automatic taxonomy generation strongly depend on the spe-
cific properties of a particular domain and are consequently 
hard to apply to other domains. For example, the techniques 
proposed in [9, 10] for music genre recognition strongly rely 
on the natural sequentiality of music excerpts. This property 
is not valid for the text documents manipulated in [3, 12–14]. 
Although a technique may be applicable to multiple domains 
[4–8], at present, no technique performs well in multiple 
domains. Indeed, most of these techniques exhibit high hier-
archical classification error rates for some datasets. Table 2 
presents the highest error rates of these existing works for 
the datasets involved in the experiments of the current work.

In some cases, existing work is even outperformed by the 
corresponding flat classifiers. This is the case, for example, 

1.	 In [4] for the datasets Iris, Primary-tumor, Vowel and 
Waveform-5000.

2.	 In [7] for the datasets Anneal, Audiology, Autos, Car, 
Glass, Hypothyroid, Letter, Lymph, Nursery, Segment, 
Vehicule and Vowel.

3.	 In [8] for the dataset Satimage.

Table 3 summarizes the aforementioned specificities of the 
existing techniques. The content of this Table 3 leads us 

2  http://marsy​as.info/downl​oads/datas​ets.html. 3  https​://perso​-etis.ensea​.fr/sylva​in.iloga​/GTZAN​+/.
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to the following question: Is it possible to develop an effi-
cient generic approach for automatic taxonomy generation 
based on the topological analysis of the neighborhood of 
each instance? This paper attempts to provide a positive 
answer to this question.

Given a database composed of many classes, we propose 
an approach that uses HMMs to model each class. HMMs 
generally deal with temporality in the data representation 
of the considered domain. Therefore, our biggest challenge 

Table 1   Specificities of relevant related papers in automatic taxonomy generation

Authors [references] Year Domain Algorithms Interest of the approach Evaluation of the taxonomy

Chien et al. [11] 2002 Speech processing Manual extraction of 
similar key terms , 
AHC, HCP

Reduces the complex-
ity by avoiding an 
automatic extraction of 
key terms

F-measure

Sánchez and Moreno [15] 2004 Web search SAHN The resulting taxonomies 
seemed to really repre-
sent the Web

Ontological tests in PRO-
TÉGÉ

Li and Anand [2] 2008 Relational datasets DIVA More efficient than exist-
ing works

Intra-node and inter-node 
entropy

Hui Y. and Jamie C. [12] 2009 Incremental term cluster-
ing based on ontology 
metric

Achieves higher F1

-measure than existing 
techniques

F1-measure

Liu et al. [13] 2012 Text processing Bayesian Rose Tree taking 
keywords as input

Reduces the complex-
ity from O(n2logn) to 
O(nlogn)

Normalized Mutual Infor-
mation

Treeratpituk et al. [3] 2013 GraBTax Better at discovering 
meaningful relationship 
compared to AHC

Human experts and seman-
tic precision

Mao et al. [14] 2018 Deep reinforcement 
learning

Performed 19.6% better 
than existing techniques 
on the ancestor F1

Ancestor F1

Iloga et al. [9] 2018 Music genre recognition PrefixSpan, k-means, K-
NN, FeatureMine, AHC

Actual best hierarchical 
classification accuracy 
in GTZAN

Hierarchical classification

Iloga et al. [10] 2018 Baum–Welch, HMMs 
similarity computation, 
AHC

Actual best hierarchical 
classification accuracy 
in GTZAN+

Kang et al. [4]
Kang et al. [4]

2004 AVT-Learner Generates AVTs that 
were competitive with 
human-generated AVTs

Punera et al. [5] 2006 Multiple domains constructTaxonomy that 
produces N-ary taxono-
mies, N ≥ 2

Exhibits better classifica-
tion accuracies than 
binary taxonomies

Jo et al. [6] 2008 MCM-AVT-Learner Generates AVTs that 
were competitive with 
human-generated 
AVTs and with other 
algorithms including 
AVT-Learner

Kang and Sohn [7] 2009 PAT-Learner and PAT-
DTL

Generates more compact 
decision trees than 
standard decision trees

Cagliero and Garza [8] 2013 Equal-depth and entropy-
based discretization

Improved the accuracy of 
state-of-art classifiers

Table 2   Highest error rates in hierarchical classification of relevant 
existing work for the datasets involved in the experiments of the cur-
rent work

Authors [references] Dataset Error rate (%)

Jo et al. [6] Anneal 26.33
Punera et al. [5] Glass 27
Kang et al. [4] Primary-tumor 52.22
Kang and Sohn [7] Primary-tumor 55.46
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is to provide a uniform temporal representation of the data, 
irrespective of the considered domain. Once this is done, 
the robust existing algorithms associated with HMMs can 
be used to learn the data in order to derive the taxonomy.

3 � Presentation of HMMs

HMMs are used in several domains such as the comparison 
of sets of histograms [10], handwriting recognition [40], 
texture retrieval and classification [41]. They are also thor-
oughly used in speech recognition. A detailed tutorial on 
HMMs and selected applications in speech recognition is 
available in [38].

3.1 � Definition of HMM

An HMM � = {A,B,�} is composed of [38]: 

1.	 The number N of states of the model. The set of states is 
S = {S1, S2,… , SN} , and the state of the model at time 
t≥1 is denoted qt∈S.

2.	 The number M of symbols. The set of symbols is 
V = {v1, v2,… , vM} , and the symbol observed at time t 
is denoted Ot∈V .

3.	 The state transition probability distribution A = {aij} , 
where aij is the probability P(qt+1 = Sj|qt = Si) , 1≤i, j≤N.

4.	 The symbols probability distribution B = {bi(k)} , 
where bi(k) i s  the condit ional  probabi l i ty 
P(vk at time t|qt = Si) , 1≤i≤N and 1≤k≤M .

5.	 The initial states probability distribution � = {�i} , where 
�i = P(q1 = Si) , 1≤i≤N .

3.2 � HMM as a sequence generator

An HMM � = {A,B,�} can be used to generate a sequence 
O = O1O2…OT composed of T symbols observed by the 
sequence of states Q = q1q2…qT as described in Fig. 1. In 
the rest of this paper, a diagram similar to that of Fig. 1 is 
called a Markov chain.

The Markov chain presented in Fig. 1 is obtained by exe-
cuting the following algorithm: 

1.	 Select the initial state Sj∈S with respect to the distribu-
tion � , and set t = 0.

2.	 Set t = t + 1 and then change the current state to qt = Sj
3.	 Select the symbol Ot∈V  to be observed at state qt 

according to the distributions in B.
4.	 If t < T  , go to step 5, or else terminate.
5.	 Perform the state transition from the current state qt to 

the next state Sj∈S according to the distribution A, and 
then, go to step 2.

3.3 � HMM probability computing and training

Consider a sequence O = O1O2…OT  and an HMM 
� = {A,B,�} . The probability P(O|�) to observe O given � 
is efficiently calculated by the Forward–Backward algorithm 
which has a time complexity of �(T .N2) [38]. The parameters 
A, B and � of the HMM � can be re-estimated in order to 
maximize the value of P(O|𝜆̄) , where 𝜆̄ = {Ā, B̄, 𝜋̄} is the 
re-estimated model. This re-estimation is done by the 
Baum–Welch algorithm [38]. This algorithm improves the 
probability to observe O from the model, by iteratively using 
𝜆̄ in place of � and repeating this re-estimation until 𝜆̄ = 𝜆 , 
or until a user-defined maximum number of iterations � is 
reached. For one iteration, the time complexity of the 
Baum–Welch algorithm is dominated by computation of 
P(O|𝜆̄) using the Forward–Backward algorithm. Therefore, 
the global algorithm runs in �(� .T .N2) . It is also possible to 
train � to maximize the value of the probability 
P(O�𝜆̄) = ∑K

k=1
P(O(k)�𝜆̄) where O = {O(1),… ,O(K)} is a set 

of K sequences and O(k) = O
(k)

1
…O

(k)

Tk
 is the kth sequence of 

O. In the case of multiple sequences, only the distributions 

Table 3   Specificities of the techniques reviewed in this paper. ‘S
1
 ’ 

to ‘S
4
 ,’ respectively, refer to ‘No topological analysis of the neigh-

borhood,’ ‘Strongly depend on the specific properties of a particular 
domain,’ ‘Outperformed by flat classifiers’ and ‘High error rates in 
hierarchical classification for some datasets’

Authors [references] Year S
1

S
2

S
3

S
4

Chien et al. [11] 2002 ✓ ✓
Kang et al. [4] 2004 ✓ ✓ ✓
Sánchez & Moreno [15] 2004 ✓ ✓
Punera et al. [5] 2006 ✓ ✓
Jo et al. [6] 2008 ✓ ✓
Li & Anand [2] 2008 ✓ ✓
Hui Y. & Jamie C. [12] 2009 ✓ ✓
Kang & Sohn [7] 2009 ✓ ✓ ✓
Liu et al. [13] 2012 ✓ ✓
Cagliero & Garza [8] 2013 ✓ ✓
Treeratpituk et al. [3] 2013 ✓ ✓
Iloga et al. [9] 2016 ✓ ✓ ✓
Iloga et al. [10] 2018 ✓ ✓ ✓
Mao et al. [14] 2018 ✓ ✓

(symbols) O1 O2 . . . OT

↑ ↑
... ↑

(states) q1 → q2 → . . . → qT

Fig. 1   A Markov chain
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A and B are re-estimated by the Baum–Welch algorithm 
because 𝜋̄ can be statistically determined from the initial 
states of the K observed sequences [38]. The time complex-
ity of the Baum–Welch algorithm for multiple sequences can 
be approximated by �

�
� .(

∑K

k=1
Tk).N

2
�
 . In the particular 

case where all the K sequences have the same length T, this 
time cost is given by �(� .K.T .N2)

The Baum–Welch algorithm tends to converge to a local 
optimum that does not correspond to the global best param-
eters of the model. Indeed, the quality of the solution pro-
duced depends on how the parameters of the initial model fit 
the statistical content of the training sequences.

3.4 � HMMs similarity measure

Numerous distance and similarity measures between two 
HMMs have been proposed [40–47]. For example, in order 
to compare two HMMs � = {A,B,�} and �� = {A�,B�,��} , 
one can compute the Euclidean distance between the rows 
of B and B′ or calculate their Kullback–Leibler divergence 
[42]. Techniques for fast computation of an upper-bound 
of the Kullback–Leibler divergence were proposed in [45] 
and [46]. It is also possible to evaluate their Monte Carlo 
approximation [44]. However, all these measures are limited. 
For example, the temporal structure of the models is not cap-
tured in the Euclidean distance, and the Kullback–Leibler 
divergence of two HMMs is not symmetric (symmetric alter-
natives have later been proposed). The Monte Carlo approx-
imation has a high computational cost, and the produced 
value may change from one computation to another. Other 
measures have been proposed to attenuate these limitations: 
the co-emission probability [43], the stationary cumulative 
distribution [47], the Bayes probability error [40] and the 
generalized probability product Kernel [41], among others.

In the current work, we opted for the accurate low-com-
plexity similarity measure between two HMMs � and �′ 
proposed in [44]. This similarity measure hereafter denoted 
dsim(�, �

�) is based on the probability that � and �′ gener-
ate identical sequences following the principle of Fig. 1. Its 
theoretical time complexity is �(N3 + N2.M2) , when both � 
and �′ have N states and M symbols. A detailed computation 
scheme of dsim can be found in [10].

4 � The proposed approach

4.1 � Main idea

Let � = ∪ci, (1≤i≤M) be a database composed of M classes 
to be organized into a taxonomy, each class ci being repre-
sented by |ci| instances. The main idea of this work is based 
on the following hypothesis: ‘the similarity between two 

classes can be derived from the topological analysis of a 
fixed user-defined neighborhood of their instances.’ More 
formally, if the results of such an analysis for the instances of 
two classes c1 and c2 can be, respectively, captured into two 
models �1 and �2 , then the similarity between c1 and c2 can 
be obtained by calculating the similarity between �1 and �2.

In this paper, the topological analysis of the neighborhood 
of an instance X consists in detecting the classes appear-
ing in this neighborhood, from the most dominant class to 
the least dominant class. In order to analyze the neighbor-
hood of an instance, we assume that there exists a distance/
dissimilarity measure between any two elements of � . Let 
us define presence(ci,X) as the percentage of instances of 
class ci found in the neighborhood of X. In other words, 
presence(ci,X) = y% means that y. |ci|

100
 instances of class ci 

are located in the neighborhood of X. Let us, for example, set 
M = 3 and consider a particular instance X whose neighbor-
hood has the following composition: presence(c1,X) = 25% , 
presence(c2,X) = 5% and presence(c3,X) = 45% . When 
these values are sorted in decreasing order to arrange the 
classes according to their dominance in the neighborhood 
of X, this neighborhood can be transformed into the Markov 
chain shown in Fig. 2. This Markov chain contains classes 
(symbols) generated by the corresponding sequence of per-
centages (hidden states).

In Fig.  2, an up-arrow from y% to ci indicates that 
presence(ci,X) = y% . When the left arrows are browsed 
from left to right in that figure, the kth left arrow mate-
rializes the transition from the kth dominant class to the 
(k + 1) th dominant class in the neighborhood of X.

The main idea of the current work relies on the combi-
nation of the frequencies and the dominance of the classes 
found in the neighborhood of each instance. The dominance 
does not basically matter when each instance is considered 
individually, but combining the frequencies and the domi-
nance can enable to obtain finer results during the compari-
son of two instances. Indeed, two instances that are differ-
ent (resp. identical) regarding the frequencies of the classes 
appearing in their respective neighborhoods may be similar 
(resp. different) regarding the dominance of these classes. 
A typical situation that illustrates the importance of com-
bining the frequencies and the dominance is provided by 
the instances that are equidistant to a given instance. As an 
example, the instances B, C, D and E in Table 4 are equi-
distant to instance A considering the frequencies of the four 
classes appearing in their respective neighborhoods when 
the Euclidean or the Manhattan distance is applied. How-
ever, when the dominance is considered, B, C, D and E are 
not equidistant to A and one can obviously observe that the 
nearest neighbor of A is E.

The example of Table 4 illustrates the interest of combin-
ing the frequencies and the dominance during the compari-
son of two instances. Since the goal of the current work is to 
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compare the available classes (and implicitly their instances) 
to derive a taxonomy, we thus needed to select a formal 
representation (and consequently a formal model) that can 
capture both: the frequencies and the dominance in order 
to obtain finer results. Markov chains (and consequently 
HMMs) appear to be an accurate choice as described in 
Fig. 2, although each class appears only once in this rep-
resentation. Besides HMMs, probability distributions like 
multinomials may also be considered. However, probabil-
ity distributions will only consider the frequencies while 
neglecting the dominance, unlike HMMs that can capture 
both.

When several classes appear in identical proportions 
in the neighborhood of an instance X, X is transformed 
into z Markov chains, where z is the number of possible 

results of the decreasing sorting of its neighborhood. For 
M = 3 , if we have, for example, presence(c1,X) = 45% , 
presence(c2,X) = 5% and presence(c3,X) = 45% , then X is 
transformed into the Markov chains presented in Fig. 3a 
and b.

When the proposed transformation is applied to all the 
instances of class ci , a database �i of Markov chains is 
obtained. The content of �i is later used to initialize and 
train a model �i associated with class ci . These models are 
finally used to derive the taxonomy. The main obstacle in 
this approach is that the states are represented by percent-
ages that can take any value in the continuous interval 
[0, 100]. However, the number of states of an HMM is 
always finite. By analogy with what was done in [10] to 
overcome the same issue, the interval [0, 100] is split here 
into N slices as described in Equation 1 (Fig. 4):

In this equation, N is a user-defined number and each slice 
is now considered as a state after replacing each percentage 
appearing in the Markov chain by the identifier of the slice 
to which it belongs. For example, if N = 5 , then the slices 
are: S1 = [0, 20] , S2 =]20, 40] , S3 =]40, 60] , S4 =]60, 80] and 
S5 =]80, 100] . Using these five slices, Fig. 2 is transformed 
into Fig. 5.

4.2 � Methodology

The technique proposed in this paper requires an initial 
implicit step where each instance in the database must be 

(1)S1 = [0,
100

N
]andSj =

]100
N

×(j − 1),
100

N
×j
]
, 2≤j≤N

Table 4   Importance of 
combining the frequencies 
and the dominance during the 
comparison of two instances

Class 1 Class 2 Class 3 Class 4 Dominance

A 30% 20% 15% 35% Class 4 → Class 1 → Class 2 → Class 3
B 35% 15% 20% 30% Class 1 → Class 4 → Class 3 → Class 2
C 25% 15% 20% 40% Class 4 → Class 1 → Class 3 → Class 2
D 35% 25% 10% 30% Class 1 → Class 4 → Class 2 → Class 3
E 35% 15% 10% 40% Class 4 → Class 1 → Class 2 → Class 3

Classes (symbols) c3 c1 c2
↑ ↑ ↑

Percentages (states) 45% → 25% → 5%

Fig. 2   Initial Markov chain associated with X 

c3 c1 c2
↑ ↑ ↑

45% → 45% → 5%
(a) 1st Markov chain

c1 c3 c2
↑ ↑ ↑

45% → 45% → 5%
(b) 2nd Markov chain

Fig. 3   The two Markov chains associated with the instance X when 
classes c

1
 and c

3
 appear in identical proportions in its neighborhood

Fig. 4   Methodology of the proposed approach
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stored as a vector X ∈ ℝ
n . This initial step is generally 

straightforward. This happens, for instance, in the classi-
fication of vertebrates as mammals, birds, fishes, reptiles 
or amphibians. The database then contains pairs (x, y), 
where y is the category and x represents the attributes of 
a vertebrate including its body temperature, its skin cover, 
its method of reproduction, its ability to fly and its abil-
ity to live in water [48]. However, there are applications 
where this initial step needs a sophisticated analysis. For 
instance, in music genre recognition, the representation 
of a song c requires three main steps [9, 10]: (1) Define 
an elementary time interval t (for instance one second) 
and extract appropriate timbre or rhythm music features 
from excerpts within windows of duration t. (2) Represent 
each c as a sequence v1v2...vw of vectors of music features. 
(3) The last thing to do is to use the former sequences to 
derive a descriptor vector X ∈ ℝ

n for c.
Let us assume now that each instance in the database is 

stored as a vector X ∈ ℝ
n . Figure 4 describes the follow-

ing global process proposed in this paper to automatically 
generate a taxonomy: 

1.	 Each instance X∈ci is transformed into a Markov 
chain according to the content of its neighborhood as 
described in Sect. 4.3. This produces a database �i of 
Markov chains for each class ci.

2.	 A model �i associated with class ci is then initialized 
and trained according to the content of �i as described 
in Sect. 4.4.

3.	 Class ci is later associated with a descriptor vector ���⃗Ui 
whose components are the similarities between �i and 
the various models �j , 1≤j≤M . Section 4.5 presents the 
computation scheme of ���⃗Ui.

4.	 Finally, the descriptor vectors associated with all the M 
classes are used to generate the taxonomy as described 
in Sect. 4.6.

4.3 � Transformation of an instance into a Markov 
chain

As it can be observed in Fig. 6, in order to transform an 
instance X into a Markov chain considering its neighbor-
hood ℵX of radius d, the composition of ℵX is first analyzed 
topologically. The result of this analysis is a vector �(X, d) 

whose components are the frequencies of the classes found 
in ℵX . The components of �(X, d) are then normalized to 
obtain the vector 𝜎̃(X, d) . Thereafter, the components of 
𝜎̃(X, d) are sorted in decreasing order. The resulting sorted 
vector 𝜎̄(X, d) is finally used to derive the Markov chain of 
X. The formal definitions of �(X, d) , 𝜎̃(X, d) and 𝜎̄(X, d) are 
given in the following subsections.

4.3.1 � Definition of new concepts

Definition 1  Consider a user-defined positive real number 
d, and let dist be the distance/dissimilarity between two 
instances of � . For each X∈� , we define in Equation 2 the 
set �j(X, d) containing the instances of class cj found in the 
neighborhood ℵX of X materialized by a ball of radius d 
centered at X:

A large value of d may lead to a situation where 
�j(X, d) ≈ � . To avoid this situation, we suggest to 
select the value of d in such way that d≤�.dmax , where 
dmax = max{dist(X, Y)|X, Y∈�} , and � is a user-defined real 
number lower than one. Note that d must not be too small; 
otherwise, we will have �j(X, d) ≈ �.

Definition 2  For each instance X∈� , we define in Equa-
tion 3 the M-dimensional vector �(X, d) whose jth com-
ponent is the percentage of instances of class cj found in 
�j(X, d):

Depending on the value of d, the components of �(X, d) 
can be very small real numbers. We thus propose to normal-
ize �(X, d) in the next definition.

Definition 3  For each instance X∈� , we define in Equa-
tion  4 the M-dimensional vector 𝜎̃(X, d) whose jth 

(2)�j(X, d) = {Y∈cj|Y≠X and dist(X, Y)≤d}

(3)
�(X, d) = (�1(X, d), �2(X, d),… , �M(X, d)), where

�j(X, d) =
100

|cj| ×|�j(X, d)|, 1≤j≤M

Classes (symbols) c3 c1 c2
↑ ↑ ↑

Intervals (states) S3 → S2 → S1

Fig. 5   The final Markov chain associated with the instance X when 
each percentage is replaced by the identifier of the slice to which it 
belongs

X →

d →

Topological
analysis
of ℵX

→ σ(X, d) → Normalize

↓
σ̃(X, d)

↓
Markov
chain
of X

←
Construction

of the
Markov chain

← σ̄(X, d) ← Sort

Fig. 6   Transformation of the instance X into a Markov chain consid-
ering its neighborhood ℵ

X
 of radius d 
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component is equal to �j(X, d) normalized according to the 
value �max = max{�j(X, d)|X∈� and 1≤j≤M}:

4.3.2 � Transformation of an instance

Given a radius d, the following steps are executed in order to 
transform the instances of � into Markov chains: 

1.	 For every instance X∈� and each class cj(1≤j≤M) , com-
pute �j(X, d) using Equation 3 and save the highest value 
�max.

2.	 For every instance X∈� , calculate the vector �(X, d) 
using Equation 3.

3.	 Use �max to normalize the components of every vector 
�(X, d) and save the result as the vector 𝜎̃(X, d) using 
Equation 4.

4.	 Sort the components of every vector 𝜎̃(X, d) in decreas-
ing order and save the result in the vector 𝜎̄(X, d).

5.	 For each vector 𝜎̄(X, d) : 

(a)	 Start browsing 𝜎̄(X, d) by initializing k to 1.
(b)	 Determine the interval Sjk containing the kth com-

ponent of 𝜎̄(X, d) and determine the class cik asso-
ciated with this component.

(c)	 Assign Sjk to the current state and cik to the current 
symbol.

(d)	 If k < M , then set k = k + 1 and go to step 5-(b).
(e)	 Stop the browsing of 𝜎̄(X, d) and return the 

Markov chain illustrated in Fig. 7.

4.3.3 � Example

Figure 8 depicts three classes c1, c2 and c3 represented by 
circles, stars and squares in the affine space ℝ2 . Let us 
consider that the value of d is 

√
74 which is the Euclidean 

distance between coordinates (13, 11) and (8, 4).
The algorithm presented in Sect. 4.3.2 can be applied 

as follows to construct the Markov chain associated with 
the instance X of class c1 located at coordinates (13, 11):

(4)

𝜎̃(X, d) =(𝜎̃1(X, d), 𝜎̃2(X, d),… , 𝜎̃M(X, d)), where

𝜎̃j(X, d) =
𝜎j(X, d)

𝜎max
×100, 1≤j≤M

–	 Steps 1 to 3: With Equation  3, we calculate 
�(X, d) = 100×(

8

16
,

4

16
,

9

15
) = (50, 25, 60) . After calcu-

lations, we obtained �max = 75% . This highest value is 
obtained for the instance of class c1 located at coordi-
nates (8, 9) whose neighborhood contains 12

16
 instances 

of class c1 . Equation 4 is then used to normalize �(X, d) 
to derive 𝜎̃(X, d) = 100×(

50

75
,
25

75
,
60

75
) = (66.6, 33.3, 80).

–	 Step 4: The components of 𝜎̃(X, d) are sorted in decreas-
ing order and saved into 𝜎̄(X, d) = (80, 66.6, 33.3) . It is 
important to note that the classes of the three compo-
nents of 𝜎̄(X, d) are c3 , c1 and c2 , respectively.

–	 Step 5: If we fix N = 10 , then the interval [0, 100] is 
split into the ten following slices using Equation 1: 
S1 = [0, 10], S2 =]10, 20],… , and S10 =]90, 100] . There-
fore, the three components of 𝜎̄(X, d) , respectively, 
belong to the slices (S8, S7, S4) . Finally, the Markov 
chain of Fig. 9 is derived.

4.3.4 � Time cost of the transformation

The goal of this section is to evaluate the time cost of the 
transformation of all the instances of � into Markov chains, 

Classes (symbols): ci1 . . . cik . . . ciM

↑
... ↑

... ↑
Slices (states): Sj1 → . . . → Sjk → . . . → SjM

Fig. 7   Markov chain associated with an instance X ∈�
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X
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Fig. 8   Example of three classes c
1
, c

2
 and c

3
 represented by circles, 

stars and squares in ℝ2 . The circled area represents the neighbor-
hood ℵ

X
 of the instance X∈c

1
 located at coordinates (13,  11) when 

d =
√
74

Classes (symbols) c3 c1 c2
↑ ↑ ↑

Slices (states) S8 → S7 → S4

Fig. 9   The Markov chain associated with the instance X of class c
1
 

located at coordinates (13, 11) in Fig. 8
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given a fixed radius d. Let us first evaluate the number of 
comparisons as follows: 

1.	 For each X∈� , the computation of �j(X, d) involves |cj| 
comparisons between dist(X, Y) and d.

2.	 The computation of �(X, d) therefore costs (
∑M

j=1
�cj�) 

which gives |�| comparisons for each instance. The 
global number of comparisons for all the instances of � 
is therefore |�|2.

3.	 There is no comparison during the calculation of 𝜎̃(X, d)
.

4.	 For each instance X∈� , the sorting of 𝜎̃(X, d) to obtain 
𝜎̄(X, d) costs around M2 comparisons (this can be 
reduced to M.log(M) depending on the selected sorting 
algorithm). The global cost for all the instances of � is 
therefore |�|.M2.

5.	 For each instance X∈� , the search of the interval asso-
ciated with the kth component of 𝜎̄(X, d) takes around 
N comparisons between that component and the lower 
bound of each interval, where N is the user-defined num-
ber used to split the interval [0,100]. This gives a cost 
of M.N comparisons for all the components of 𝜎̄(X, d) 
and, therefore, a cost of |�|.M.N comparisons for all the 
instances of �.

When we sum all the previously calculated values, we deduce 
that the algorithm takes around (|�|2 + |�|(M2 +M.N)) 
comparisons. If we now suppose that the computation of 
the distance/dissimilarity dist(X, Y) between two instances 
of � needs around � arithmetic operations, then the number 
of arithmetic operations required by the algorithm is evalu-
ated as follows: 

1.	 For each X∈� , the computation of �j(X, d) involves two 
arithmetic operations augmented by |cj| computations of 
the distance/dissimilarity between two instances of � . 
Therefore, this step costs (�.|cj| + 2) arithmetic opera-
tions.

2.	 The computation of �(X, d) needs 
∑M

j=1
(�.�cj� + 2) which 

gives �.|�| + 2M arithmetic operations per instance. 
Thus, global number of arithmetic operations for all the 
instances of � is �.|�|2 + 2M.|�|.

3.	 For each instance X∈� , the calculation of the vector 
𝜎̃(X, d) involves 2M arithmetic operations. Therefore, the 
global cost for all the instances of � is therefore 2M.|�|.

4.	 For each instance X∈� , the sorting of 𝜎̃(X, d) to obtain 
𝜎̄(X, d) costs around M2 arithmetic operations. The 
global cost for all the instances of � is therefore |�|.M2.

5.	 No arithmetic operation is involved during this step.

When we sum all these values, we deduce that the algorithm 
takes around (�.|�|2 + 4M.|�| +M2) arithmetic opera-
tions. If we now consider both, comparisons and arithmetic 

operations, we obtain the following time complexity for the 
algorithm: |�|2(� + 1) + |�|(2M2 + 4M +M.N) . Given that 
the value of |�| will generally be very high compared to the 
values of M and N, then we conclude that the algorithm runs 
in �(�.|�|2 + |�|.M2).

4.4 � Design of the HMMs

In order to derive the HMM associated with a class ci whose 
Markov chains are contained in the set �i , the parameters 
of an initial HMM �0

i
 are first computed. These parameters 

must statistically capture the state transitions and the distri-
butions of symbols from the content of �i . The parameters 
of �0

i
 are later readjusted in order to avoid eventual divisions 

by zero and zero probabilities. The readjusted model �1
i
 is 

finally trained, using the content of �i and the Baum–Welch 
algorithm, to derive the final model �i . Figure 10 summa-
rizes this process, and the three main steps are formally pre-
sented in the following subsections.

4.4.1 � Initial HMMs

In order to guarantee that the initial models fit the raw data, 
the parameters of each initial HMM �0

i
 of class ci are set to 

statistically capture the state transitions and the distributions 
of symbols from the content of �i as follows: 

1.	 The number of states is the user-defined positive integer 
N, and the set of states is S = {S1, S2,… , SN} , as defined 
in Equation 1.

2.	 The number of symbols is the number M of classes, and 
the set of symbols is V = {c1, c2,… , cM}.

3.	 Given a user-defined floating-point number 𝜀 > 0 , 
the probability of transition from state Sj to state Sk is 
given by Equation 5, where transit(j, k, �i) is the num-
ber of transitions from state Sj to state Sk in �i and 
transit(j,−, �i) is the number of transitions from state Sj 
to any destination in �i : 

4.	 The probability to observe symbol ck at state Sj is 
given by Equation 6, where observe(k, j, �i) is the num-
ber of times symbol ck is observed at state Sj in �i and 
observe(−, j, �i) is the number of occurrences of state Sj 
in �i : 

(5)A0
i
[j, k] =

transit(j, k, �i)

transit(j,−, �i) + �

δi →
Initial
HMM
design

→ λ0
i → HMM

readj. → λ1
i → HMM

train. → λi

Fig. 10   Design of the HMM �
i
 of class c

i
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5.	 The probability that a sequence starts with state Sj is 
given by Equation 7, where start(j, �i) is the number of 
elements in �i starting with state Sj : 

4.4.2 � Readjustment of the initial HMMs

The parameters of �0
i
 are not probability distributions. This 

inconvenience was intentionally introduced by adding � to 
the denominators of each component of (A0

i
,B0

i
,�0

i
) in order 

to avoid eventual divisions by zero and zero probabilities. 
In this paper, the value � = 1.0 has been selected following 
[10, 49]. An equitable redistribution of the missing quan-
tity is done to each element of each line in �0

i
= (A0

i
,B0

i
,�0

i
) 

to obtain the readjusted model �1
i
= (A1

i
,B1

i
,�1

i
) of class ci 

whose parameters are: 

1.	 A1
i
[j, k] = A0

i
[j, k] +

1

N

�
1 −

∑N

l=1
A0
i
[j, l]

�

2.	 B1
i
[j, k] = B0

i
[j, k] +

1

M

�
1 −

∑M

l=1
B0
i
[j, l]

�

3.	 �1
i
[j] = �0

i
[j] +

1

N

�
1 −

∑N

l=1
�0
i
[l]
�

4.4.3 � Training of the HMMs

The readjusted initial HMM �1
i
 of class ci is trained to 

recognize the Markov chains in �i using the Baum–Welch 
algorithm. The resulting HMM �i is the final model associ-
ated with class ci . During this training phase, the training 
sequences are exclusively composed of symbols (classes). 
If we consider, for example, the Markov chain presented in 

(6)B0
i
[j, k] =

observe(k, j, �i)

observe(−, j, �i) + �

(7)�0
i
[j] =

start(j, �i)

|�i| + �

Fig. 9 obtained for the instance X of Fig. 8, then the training 
sequence is c3c1c2.

4.5 � Computation of descriptor vectors

Given that a model �i is now attached to each class ci , one 
can compute a descriptor vector ���⃗Ui for class ci . The jth com-
ponent uij of ���⃗Ui is the similarity rate between the models �i 
and �j as specified in Equation 8, where uij is the probability 
that �i and �j generate identical Markov chains:

4.6 � Taxonomy generation

To generate a taxonomy, we use the algorithm applied in 
[10]. This algorithm consists of two main phases: 

1.	 The hierarchical clustering: This phase is realized by the 
AHC algorithm [26] that outputs a binary dendrogram of 
the M classes. The principle of the AHC algorithm is as 
follows: Initially, each class ci is considered as a cluster 
of size 1. In consecutive steps, the two nearest clusters 
are merged into a new cluster. This process is repeated 
until one single cluster is obtained.

2.	 The taxonomy derivation: The taxonomy is finally 
derived from the dendrogram as follows: The taxonomy 
follows the general shape of the dendrogram, except for 
the sub-trees of the dendrogram in which each node that 
is not a leaf has exactly two children including at least 
one leaf. All the leaves of such sub-trees are merged into 
a k-ary cluster, where k is the number of leaves in the 

(8)

⎧⎪⎨⎪⎩

���⃗Ui = (ui1, ui2,… , uiM) where

uij = 100×dsim(𝜆i, 𝜆j) with 1≤j≤M

Fig. 11   Example of taxonomy 
derivation from a dendrogram
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sub-tree. When this principle is applied to the dendro-
gram of Fig. 11a, the taxonomy of Fig. 11b is obtained. 
In these figures, the leaves are the classes and the inner 
nodes are the clusters.

5 � Experimental results

5.1 � Experimental datasets

In order to evaluate the performance of the proposed 
approach, we performed hierarchical classification experi-
ments on 20 machine learning datasets from various applica-
tion domains, including 18 datasets from the UCI Machine 
Learning Repository. The selected datasets vary in the num-
ber of classes, in the type of variables (nominal, numerical) 
and in the sample size. The two last datasets are GTZAN 
and GTZAN+ used in [9, 10]. All the datasets have at least 
four classes, and the classes having no instances have been 
removed. Typically, class ‘4’ was removed from Anneal, 
class ‘-3’ was removed from Autos and class ‘vehic non 
float’ was removed from Glass. The full description of the 
datasets from the UCI Machine Learning Repository will 
not be presented here because of space constraints. Never-
theless, this description is available online. Short descrip-
tions of GTZAN and GTZAN+ are presented below. Table 5 
summarizes the main characteristics of the 20 experimental 
datasets. 

1.	 GTZAN: This dataset is among the most used data-
set in music genre recognition and is composed of ten 
music genres, each genre being represented by 100 
instances (songs). In this paper, the same timbre (34) 
and rhythm (401) music descriptors extracted in [9, 10] 
for each song of GTZAN and GTZAN+ are considered. 
The main difference between the characteristics of [9, 
10] and those used in this paper is that in [9] the tax-
onomy was generated using only timbre music descrip-
tors, while rhythm music descriptors were only used for 
the same purpose in [10]. But in this paper, timbre and 
rhythm music descriptors are both used to generate the 
taxonomy.

2.	 GTZAN+: This dataset is obtained from GTZAN by 
adding five new Afro genres. The music descriptors used 
in GTZAN are also used in GTZAN+.

5.2 � Experimental parameters

We used the distance presented in Equation 9 to handle data-
sets with nominal attributes, numeric attributes or both. This 
distance computes the sum of the discrete distances between 

all the nominal attributes and adds it to the Manhattan dis-
tance between all the numeric attributes. This measure is 
a special case of the weighted version presented in 2017 
by Yizhou Sun in his online course 4 (See page 25). The 
unweighted version is used here for two reasons. Firstly, if 
the weighted version was selected, the choice of each weight 
must objectively be justified. Additionally, the unweighted 
version has the nice property to coincide with the Manhattan 
distance when all the attributes are numeric. Missing values 
were considered as a nominal attributes with value ’?’.

(9)

dist(x, y) =
∑

k
fk(x, y) where

fk(x, y) =

� �x(k) − y(k)� when the kth attribute is numeric

0 if x(k) = y(k) and 1 if x(k) ≠ y(k) otherwise

Table 5   Main characteristics of the 20 experimental datasets. Col-
umns 3, 4 and 5, respectively, contain the number of classes, the 
number of nominal attributes and the number of numeric attributes 
of each dataset

Dataset Authors #Classes #Nom. #Num. Size

Anneal Sterling & 
Buntine

5 23 9 798

Audiology Quinlan 24 69 0 226
Autos Schlimmer 6 9 16 205
Car Bohanec & 

Zupan
4 6 0 1728

Dermatology Ilter & Guvenir 6 33 1 366
Glass Spiehler 6 0 9 214
GTZAN Tzanetakis 10 0 435 1000
GTZAN+ Tzanetakis & 

Iloga
15 0 435 1500

Hypothyroid Quinlan 4 22 7 3772
Letter Slate 26 0 16 20000
Lymph Zwitter & Soklic 4 15 3 148
Nursery Bohanec & 

Zupan
5 8 0 12960

Pendigits Alpaydin & 
Alimoglu

10 0 16 10992

Primary-tumor Kononenko & 
Cestnik

21 17 0 339

Satimage Forsyth 6 0 36 6430
Segment Brodley 7 0 19 2310
Soybean Michalski & 

Chilausky
19 0 35 683

Vehicule Mowforth & 
Shepherd

4 0 18 846

Vowel Turney 11 3 10 990
Zoo Forsyth 7 16 1 101

4  http://web.cs.ucla.edu/~yzsun​/class​es/2017S​pring​_CS249​/Slide​
s/09Eva​luati​on_Clust​ering​.pdf.
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We experimented three different radii of the neighbor-
hood for each dataset: d1 = 0.1×dmax , d2 = 0.2×dmax and 
d3 = 0.3×dmax . The value N = 50 has been used to split the 
interval [0, 100] into slices following [10] where the authors 
used HMMs to compare finite sets of histograms. To justify 
this choice, the authors studied for a specific example, the 
splitting of the interval [0, 100] in N slices, with N ranging 
from 10 to 100 with step of 5. They finally recommended to 
use the value N = 50 . The Baum–Welch algorithm has been 
applied with a maximum number of iterations � = 100 to 
avoid too high training time cost. During the experiments, 
the presence of many classes in identical proportions in 
the neighborhood of an instance was rarely observed. AHC 
involves the use of a pair of distances: one distance between 
two vectors and one distance between two clusters. The fol-
lowing distances also used in [9] have initially been selected 
in this work: 

1.	 Between vectors: Manhattan, Euclidean, Tchebychev 
and Cosine distances.

2.	 Between clusters: Minimum, Maximum, Average and 
Centroid distances.

In unreported simulations, we observed that some of these 
distances always generate taxonomies with a high number of 
classes combined into one single cluster. Sometimes, a flat 
taxonomy (i.e., a taxonomy with a root that is the immedi-
ate parent of each class) was generated. We also observed 
that some distances often generate taxonomies containing a 
high number of isolated leaves, just like the isolated leaf d in 
Fig. 11b. Such taxonomies do not provide relevant informa-
tion regarding the aim of this work. We therefore decided 
to exclude the considered distances. Hereafter, the Centroid 
distance is the unique selected distance between clusters. For 
vectors, the Manhattan and the Euclidean distances where 
initially preserved, but since there was no real gap between 
their final performances, only the results obtained by the 
Manhattan distance are presented here.

The descriptor vectors associated with the classes of the 
various experimental datasets are not presented in this paper 
for space constraints.

5.3 � Hierarchical classification settings

Flat and hierarchical classification experiments were, respec-
tively, performed in WEKA [50] and MEKA 5. The two fol-
lowing basic classifiers have been selected for hierarchical 
classification (their corresponding names in WEKA/MEKA 
are in brackets): SVM with polynomial kernel (SMO) and 

multilayers perceptron (MLP). These classifiers have been 
used with their default settings, and a tenfold cross-valida-
tion ( 90% − 10% ) has been applied.

5.4 � Classification performances

For space constraints, only the best taxonomy derived 
for each dataset is graphically presented in Figs. 12a to o 
and 13a to e. In these figures, an identifier is assigned to 
each cluster and the names of the classes are attached to 
the leaves. Flat and hierarchical classification accuracies 
obtained for each dataset are presented in Table 6.

Table 6 reveals that for each dataset, the best hierarchical 
classification accuracy is always higher than the best flat 
classification accuracy, unlike what was observed in [4–8]. 
We experimentally observed that for few datasets, the same 
taxonomy was derived for different radii of the neighbor-
hood. The impact of the radius on the classification accuracy 
was different from one dataset to another. The best experi-
mental results were obtained 9/20 for the radius d1 , 10/20 for 
the radius d2 and 11/20 for the radius d3 . Therefore, for any 
new dataset, we recommend to perform experiments with 
these three values of the radius, and to preserve the radius 
that exhibits the best performance.

5.5 � Comparisons with related work

The approach proposed here has been compared with the 
techniques of Table 1 where hierarchical classification is 
performed [4–10]. The comparison with the remaining 
techniques found in Table 1 [2, 3, 11–13, 13–15] cannot be 
realized here because the terms (or key terms) involved in 
these works are not initially organized into separated classes. 
Indeed, the proposed approach relies on the topological anal-
ysis of the neighborhood of each instance. More precisely, 
the frequencies and the dominance of the various classes 
found in this neighborhood are captured. Consequently, 
this topological analysis cannot be performed for the terms 
appearing in [2, 3, 11–13, 13–15] due to the lack of classes. 
Table 7 presents the results of this comparison for the 20 
experimental datasets including 18 datasets from the UCI 
Machine Learning Repository.

In Table 7, only the best accuracy of each work for each 
dataset is presented and the last column contains the value 
of accuracy gain (i.e., the best accuracy of the current 
work minus the best accuracy of the existing works on 
the considered dataset). Table 7 reveals that the approach 
proposed here outperforms most of the existing approaches 
with accuracy gains reaching +38.62% for the dataset Pri-
mary-tumor. Nevertheless, existing approaches slightly 

5  https​://sourc​eforg​e.net/proje​cts/meka/.
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performed better than the proposed approach, for the data-
sets Hypothyroid and Pendigits with low accuracy gaps 
of −0.36 and −0.01 , respectively. But these two isolated 
cases do not have a major impact on the overall behavior 
of the proposed approach compared to existing techniques. 
Indeed, when the best hierarchical classification accuracy 
for each dataset is considered in the current work, an aver-
age best classification accuracy of 97.22% is obtained, with 
a standard deviation of 4.11%.

In Table 8, we reconsider the seven existing works pre-
sented in the columns of Table 7. For each of these exist-
ing works, we put :

–	 In column 1, the reference.
–	 In column 2, the number (#DS) of experimental data-

sets used in that paper.
–	 In column 3, the average accuracy ( ̄x ) obtained in that 

reference, for corresponding experimental datasets.
–	 In column 4, the average accuracy ( ̄xthis ) obtained with 

the method presented here, for the corresponding experi-
mental datasets.

–	 In column 5, the average standard deviations ( � ) obtained 
in that reference.

–	 In column 6, the average standard deviation ( �this ) 
obtained by the method presented here, for correspond-
ing experimental datasets.

Clearly, for the experimental datasets used in the existing 
works, and taking as criteria the average and the standard 
deviation of the accuracy, the method presented here outper-
forms all the existing works.

6 � Conclusion

The main objective of this work was to propose an efficient 
generic approach for automatic taxonomy generation. The 
design of these taxonomies relies on the hypothesis that 
the similarity between two classes can be derived from the 
topological analysis of the neighborhood of their instances. 
This topological analysis of the neighborhood of an instance 
consists in detecting the classes appearing in this neighbor-
hood and to sort them from the most dominant class to 
the least dominant one. The result of this analysis is then 
saved as a Markov chain. Given a database � composed of 
many objects belonging to discrete classes, the collection of 
Markov chains resulting from the topological analysis of the 
content of each class ci∈� ( 1≤i≤M ) is used to train a model 
�i associated with ci . The similarities between the resulting 
models are then calculated to associate a descriptor vector 
to each class. Finally, a hierarchical clustering algorithm 

Table 6   Hierarchical 
classification performances 
using SMO and MLP as basic 
classifiers. Accuracies are in 
(%) , and the best accuracies are 
bold

Dataset Flat d
1

d
2

d
3

SMO MLP SMO MLP SMO MLP SMO MLP

Anneal 97.43 98.99 98.4 99.2 98.4 99.2 98.4 99.2
Audiology 81.85 83.18 92.0 90.7 90.3 91.2 90.7 91.6
Autos 71.22 80.0 88.8 88.3 81.5 87.3 94.6 94.1
Car 93.75 99.53 95.1 99.99 95.1 99.99 95.1 99.99
Dermatology 95.08 96.17 100 100 71.4 70.9 71.4 70.9
Glass 56.07 67.75 70.6 82.7 90.2 95.3 88.8 86
GTZAN 72.3 68.4 95.5 92.2 93.7 94.1 91.9 96.0
GTZAN+ 75.5 41.9 96.0 96.1 91.1 91.9 96.3 97.0
Hypothyroid 93.61 94.16 94.8 95.5 98.7 99.0 98.7 99.0
Letter 82.34 82.08 98.3 99.7 97.6 99.7 97.1 99.6
Lymph 86.48 84.45 86.48 84.45 87.2 83.8 87.2 83.8
Nursery 93.07 99.72 100 100 98.9 100 100 100
Pendigits 97.96 94.61 99.7 99.9 99.7 96.7 97.7 99.9
Primary-tumor 46.9 38.34 85.5 85.8 86.4 83.3 83.8 80.8
Satimage 86.78 89.73 98.8 99.5 95.0 96.0 96.1 97.0
Segment 93.07 96.14 97.8 99.1 95.4 98.2 99.4 99.7
Soybean 93.85 93.41 94.17 93.9 100 100 99.4 99.7
Vehicule 74.34 81.67 93.9 99.1 79.4 84.4 79.4 84.4
Vowel 71.41 92.82 85.6 99.3 87.0 99.2 96.1 99.99
Zoo 96.03 96.03 98.0 97.0 100 100 98.0 98.0
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Fig. 12   Best taxonomies generated for the datasets Anneal, Autos, Car, Dermatology, Glass, GTZAN, Hypothyroid, Lymph, Nursery, Pendigits, 
Satimage, Segment, Vehicule, Vowel and Zoo 
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Fig. 13   Best taxonomies generated for the datasets Audiology, GTZAN+, Letter, Primary-tumor and Soybean 
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combined with a specific merging algorithm is applied on 
these vectors to derive the taxonomy.

The proposed approach has been experimented on 20 
widespread datasets from various domains including 18 
datasets belonging to the UCI Machine Learning Repository. 
Classification results showed an average accuracy of 97.22% 
with a standard deviation of 4.11% . The proposed approach 
outperforms existing techniques with accuracy gains reach-
ing +38.62% for the dataset Primary-tumor.

The proposed approach is theoretically and experimen-
tally better than existing techniques because: 

1.	 It is based on the topological analysis of the neighbor-
hood of each instance in order to capture the frequencies 
and the dominance of the various classes found in this 
neighborhood. This is a robust principle for detecting 
the proximity between classes.

2.	 It is highly flexible because the following generic param-
eters can be customized: the number N of slices used 
to split the interval [0, 100], the selected distance dist 
between two instances, the positive real number � used 
during the design of the initial models and the radius d 
of the neighborhood of each instance. Future work may 
study the impact of the variation of these parameters on 
the performances of the proposed approach.

3.	 Unlike some existing techniques, it has never been 
beaten by any flat classifier.

4.	 It is efficient because it outperforms existing techniques 
in the hierarchical classification of the experimental 
datasets.

The fact that the proposed approach derives hierarchi-
cal classifiers that outperform the state of the art proves 
that the topological analysis of the neighborhood of each 
instance is a relevant idea. However, slightly significant 
error rates in hierarchical classification are observed for 
some datasets including Audiology ( 8% ), Autos ( 5.4% ), 
Glass ( 4.7% ), Lymph ( 12.8% ) and Primary-tumor ( 13.6% ). 

Table 7   Comparison with existing works for the 20 experimental datasets including 18 datasets from the UCI Machine Learning Repository. 
Accuracies are in (%) , and the best accuracies are bold

Dataset This work Kang et al. [4] Punera et al. [5] Kang et al. [7] Jo et al. [6] Cagliero 
et al. [8]

Iloga et al. [9] Iloga et al. [10] Acc.gain

Anneal 99.2 98.99 99.11 73.67 96.6 +0.09
Audiology 92.0 76.99 74.34 +15.01
Autos 94.6 86.82 77.56 +7.78
Car 99.9 86.16 96.59 88.63 +3.31
Dermatology  100 98.08 96.99 95.49 +1.92
Glass 95.3 80.84 73.0 71.96 +14.46
GTZAN 96.0 84.9 91.6 +4.4
GTZAN+ 97.0 92.0 85.2 +5.0
Hypothyroid 99.0 95.78 99.36 99.3 -0.36
Letter 99.7 70.53 81.72 93.6 +6.1
Lymph 87.2 84.45 77.03 +2.75
Nursery 100 90.32 99.06 98.86 98.7 +0.94
Pendigits 99.99 97.7 100 -0.01
Primary-tumor 86.4 47.78 44.54 +38.62
Satimage 99.5 88.7 +10.8
Segment 99.7 90.0 95.11 95.9 +3.8
Soybean 100 94.58 93.85 89.82 93.6 +5.42
Vehicule 99.1 67.84 70.21 +28.89
Vowel 99.9 42.42 76.87 90 +9.9
Zoo 100 96.03 93.07 91.41 +3.97

Table 8   Performances of existing works and the method presented in 
this paper. The values of x̄ , x̄

this
 , � and �

this
 are in (%) . The best values 

are in bold

Authors [references] # DS x̄ x̄
this

� �
this

Iloga et al. [9] 2 88.45 96.5 3.55 0.5
Iloga et al. [10] 2 88.4 96.5 3.2 0.5
Punera et al. [5] 3 82.52 98.39 10.84 2.18
Jo et al. [6] 6 89.64 99.85 7.94 0.29
Cagliero et al. [8] 8 95.8 99.62 3.58 0.34
Kang et al. [4] 16 81.72 97 16.52 4.49
Kang et al. [7] 16 85.03 97 14.62 4.49
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This justifies that a finer analysis of this neighborhood 
must be carried out in order to improve the hierarchical 
classification accuracy. This error rate may be due to the 
fact that the spatial distribution of the instances is ignored 
during the analysis of the neighborhood. Indeed, the fact 
that two instances are attached to identical Markov chains 
does not mean that the spatial distributions of the instances 
in their neighborhoods are the same. Such situations can 
introduce some bias during the analysis. Future work may 
propose a technique for neighborhood analysis that addi-
tionally takes into account the spatial distribution of the 
instances.

The technique proposed in Sect. 4.1 for the case where 
several classes are found in identical proportions in the 
neighborhood of an instance may lead to a combinato-
rial explosion of Markov chains. Such situations can con-
siderably increase the HMMs training time. One way to 
attenuate this inconvenience will be studied in future work 
by considering the sets of classes having identical propor-
tions in the neighborhood, as the symbols of the models. 
Let us, for example, assume that M = 6 and consider an 
instance X whose neighborhood has the following com-
position: Presence(c1,X) = 45% , Presence(c2,X) = 5% , 
Presence(c3,X) = 45%   ,  Presence(c4,X) = 25%   , 
Presence(c5,X) = 75% and Presence(c6,X) = 25% . The 
method actually used will generate the four Markov chains 
presented in Fig. 14a to d for X. If the newly proposed 
method is used instead, the unique Markov chain presented 
in Fig. 15a is initially obtained. The next step consists of 
renaming the distinct sets of classes found in the database, 
i.e., w1 = {c5} , w2 = {c1, c3} , w3 = {c4, c6} , w4 = {c2} , … 

Thereafter, the final unique Markov chain presented in 
Fig. 15b is obtained. In this way, only the number of sym-
bols may increase, while the number of Markov chains 
remains unchanged.
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