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Abstract
Trees have been topics of much interest since many decades due to various emerging applications using data represented 
as trees. Several techniques have been developed to compare two trees. But there is a serious lack of metrics to compare 
weighted trees. Existing approaches do not also allow to explicitly specify the targeted nodes properties on which the com-
parison should be performed. Furthermore, the problem of comparing two tree sets is not specifically addressed by existing 
techniques. This paper attempts to solve these problems by first proposing a distance and a similarity for the comparison of 
two finite sets of rooted ordered trees which can be labeled or not, as well as weighted or unweighted. To achieve this goal, a 
hidden Markov model is associated with each tree set for each targeted nodes property. The model associated with a tree set 
T for the targeted nodes property p learns how much the nodes of the trees in T verify property p. The resulting models are 
finally compared to derive a distance and similarity between the two sets of trees. The previous measures are then general-
ized for the comparison of unrooted and unordered trees. Flat classification experiments were carried out on two synthetic 
databases named FirstLast-L and FirstLast-LW available online. They both contain four classes of 100 rooted ordered trees 
whose specific and non-trivial nodes properties are clearly defined. When the distance proposed in this paper is selected as 
metric for the Nearest Neighbor classifier, a perfect accuracy of 100% is obtained for these two databases. This performance 
is 41% higher than the accuracy exhibited when the widespread tree Edit distance is selected for FirstLast-L.

Keywords  Trees · Comparison of tree sets · Distance between trees · Hidden Markov Models

1  Introduction

Trees have been topics of much interest since many decades 
due to several emerging applications using data represented 
as trees. This involves applications in compiler design, graph 
transformation, automatic theorem providing, information 
retrieval, structured text database, pattern recognition, as 
well as signal processing [1, 2]. The analysis of data in these 
areas often requires some form of dissimilarity or distance 
measure to compare trees. In image processing for example, 
tree matching techniques are used to evaluate the similarity 

between 2D shapes [3]. Another interesting example is found 
in e-Business where tree similarity algorithms enable the 
match-making of agents in multi-agent systems [4]. For 
these reasons, developing measures for comparing two trees 
have become the goal of several researchers.

Depending on the category of the trees (rooted or 
unrooted, ordered or unordered) many metrics are available 
for the comparison of labeled or unlabeled trees. Most of 
the existing metrics are based on one of the three following 
widespread principles: 

1.	 Tree Edit [5–25].
2.	 tree Alignment [26, 27].
3.	 Tree Inclusion [28–32].

The major differences between the existing measures based 
on one of these three principles are generally related to the 
time cost and the space complexity. These differences are 
analyzed in the survey proposed in [2]. Beside these three 
major principles, few measures based on other principles 
have also been proposed [3, 33–43].
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The first observation that can be made is the serious 
lack of measures for comparing weighted  trees. This may 
be due to the fact that node  and arc weights are continu-
ous real numbers, unlike node and arc labels which always 
belong to finite sets.

The next drawback of existing measures is that they do 
not enable to explicitly specify the targeted nodes prop-
erties on which the tree comparison must be performed. 
Indeed, all the actual algorithms are only intended to 
evaluate how identical are the two trees regarding the 
exact values of their nodes degrees and their eventual 
nodes or arcs labels. This is a serious limitation because 
two trees can have completely different topologies, labels 
or weights, but still remain very similar regarding other 
properties verified by these same characteristics. As an 
example, all the labels appearing in two trees can be odd 
integers, but no identical label is found in both trees. Con-
sequently, the two trees are completely different regarding 
the exact values of their labels, but they are very similar 
regarding the parity of these labels.

Another significant limitation of existing approaches is 
the fact that no existing work has yet specifically addressed 
the problem of comparing two tree sets. A coarse way to 
perform this task is to first consider each tree set as a cluster 
of trees and then to apply existing cluster distances like the 
minimum, the maximum, the average or the centroid linkage 
distances [44]. But such an approach does not consider the 
individual properties of the trees of each set.

This paper attempts to provide a solution to all the afore-
mentioned limitations. Our contribution is thus composed 
of three main parts. In the first part, a customizable approach 
based on hidden Markov models (HMMs) is proposed for 
the comparison of two finite sets containing rooted ordered 
trees which can be labeled or unlabeled, as well as weighted 
or unweighted. The attribute ’customizable’ refers here to 
the fact that one must explicitly specify the targeted nodes 
properties on which the tree comparison will be performed. 
The principle is to traverse the trees of each set, while cap-
turing the values of the targeted properties for each node 
encountered during the traversal. These values are later used 
to initialize, then to train one HMM per property, for each 
tree set. The distance and the similarity between the two tree 
sets are finally derived from the similarity between these 
HMMs. An interesting advantage of this solution is that 
there is no boundary on the possible choices of the targeted 
nodes properties. The four properties listed below are exam-
ples of properties which can be targeted for a given node y. 

1.	 p(y) is the number of children of y.
2.	 p(y) is the label of y.
3.	 p(y) = 1 if y has more than three children, else p(y) = 0.

4.	 p(y) = 1 if y is not the root and the weight of the arc 
linking y to its father is lower than 55, else p(y) = 0.

In the second main part of our contribution, the former 
proposed distance and similarity between sets containing 
rooted ordered trees are generalized for the comparison of 
sets containing unrooted or unordered trees. In both cases, 
the comparison is realized after transforming each unrooted 
or unordered tree into one set of rooted ordered trees.

In the last main part of our contribution, the proposed dis-
tance  is first experimented for the comparison of sets of text 
documents. Then, a performance evaluation of the proposed 
distance is realized by evaluating how much it can empower 
the performances of the Nearest Neighbor (NN) classifier 
[45] when suitable targeted nodes properties are selected.

The rest of this paper is organized as follows: the state 
of the art is presented in Sect. 2, followed by a summarized 
presentation of HMMs in Sect. 3. The description of the 
proposed approach for tree sets comparison is realized in 
Sect. 4, while experimental results are exhibited in Sect. 5. 
The last section is dedicated to the conclusion.

2 � State of the art

2.1 � Basic tree‑related concepts

In this section, basic tree-related concepts that will be used 
throughout the paper are defined. Given that a tree is a spe-
cific type of graph, we start by defining few graph-related 
concepts that will later be required to define the tree-related 
concepts. A more detailed overview on graph theory and 
applications is available in [46]. After these definitions, 
the tree representation that will be used in this paper is 
presented. The section ends with the description of the 
algorithm dedicated to the traversal of a tree that has been 
selected in this paper.

2.1.1 � Graph‑related definitions

A graph G is a pair < V ,E > where: 

1.	 V is a finite set of objects called vertices.
2.	 E ⊆ V×V  is a set of edges, which are connections 

between vertices. More formally, E is a set of pairs (x, y) 
such that there exist in graph G a connection between the 
vertices x and y. If the pair (x, y) ∈ E , then x is adjacent 
to y.

Given a finite set L of labels, a label l∈L can be assigned to 
each vertex (resp. to each edge) of a graph G. In that case, 
the graph is vertex-labeled (resp. edge-labeled). Similarly, a 
positive continuous weight w can be assigned to each vertex 
(resp. to each edge) of a graph G. In that case, the graph 
is vertex-weighted (resp. edge-weighted). A graph which 
is neither vertex-labeled, nor edge-labeled is unlabeled. 
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Similarly, a graph which is neither vertex-weighted, nor 
edge-weighted is unweighted. A path in a graph G is a 
sequence of edges connecting a sequence of vertices which 
are all distinct from one another. A cycle in a graph is a path 
such that the first vertex of the path corresponds to the last 
vertex. A graph containing at least one cycle is cyclic, oth-
erwise the graph is acyclic. A graph where there exist a path 
from any vertex to any other vertex is connected, otherwise 
the graph is disconnected.

2.1.2 � Tree‑related definitions

A tree is a connected acyclic graph. Generally, the edges 
and the vertices of a tree are respectively called arcs and 
nodes. In this paper, the number of nodes of a tree t is noted 
|t|. A rooted tree t is a tree in which a special node called the 
‘root’ and denoted root(t) is singled out. If such a node is 
not specified, then the tree is unrooted. If a node y is adja-
cent to another node x in a rooted tree, then y is the father 
of x and x is a child for y. A node without children is called 
a leaf. An ordered tree is a tree where a left-to-right order 
is defined among the children of each node, otherwise the 
tree is unordered. In a tree, the depth of a node y, denoted 
depth(y), is the number of arcs in the path from the root to y. 
The depth of the root is 0. The degree of a node y, denoted 
deg(y), is its number of children. In the rest of this paper, 
the expression ‘tree’ without any other precision refers to a 
rooted ordered tree.

2.1.3 � Representation of a tree

There are various ways for representing trees. In this paper, 
only the schematic representation (i.e: a figure describing 
the tree) is privileged because it facilitates the explanation 
of the proposed approach. In this representation, nodes are 
represented with circles, each circle carrying the eventual 
attributes (label, weight) of the node it describes. Arcs are 
represented with lines, each line also carries the eventual 
attributes (label, weight) of the arc it describes.

2.1.4 � Traversal of a tree

To traverse a tree t means to visit all the nodes of t in some 
systematic order and there exist many algorithms for this 
purpose. In this paper, the Depth-First Search (DFS) algo-
rithm [47] is selected due to its simplicity. DFS is a recursive 
algorithm which traverses the tree t starting from a specific 
node. While traversing t, DFS manages an ordered list of 
visited nodes using a stack, this list is empty at the beginning 
of the algorithm and must contain all the nodes of t at the 
end. The formal principle of DFS is the following: 

1.	 Select a starting node and put it on top of the stack. If t 
is rooted, then root(t) is selected.

2.	 Remove the node x on top of the stack, use it, then insert 
it at the end of the visited list.

3.	 Browse the all the children of x and put each encoun-
tered child of x which is not yet in the visited list on top 
of the stack. If t is ordered, the children of x are browsed 
from left to right.

4.	 If the stack is empty, then stop, else goto step 2.

2.2 � Related work

2.2.1 � Tree Edit

There are three basic edit operations: node insertion, node 
deletion and node substitution. We assume here that each 
edit operation has a specific user-defined cost. An edit 
script between two trees t1 and t2 is a sequence S(t1, t2) of 
edit operations required for transforming t1 into t2 . The cost 
of S(t1, t2) is the sum of the costs of the edit operations in 
S(t1, t2) . An optimal edit script between t1 and t2 is an edit 
script between t1 and t2 of minimum cost and this cost is the 
tree Edit distance (TED). The first algorithm implementing 
this principle for comparing ordered trees was proposed by 
Tai [5]. This initial version was the generalization of the 
well-known string edit distance problem addressed by Wag-
ner and Fischer [48]. An accelerated version which reduced 
both space and time complexity was then proposed by Zhang 
and Shasha [6]. In 1998, Klein proposed a more general ver-
sion which handled unrooted trees and enabled to have a bet-
ter worst case time bound while preserving the same space 
complexity [9]. After this, a more complex version which 
improved the previous bounds for certain kinds of trees was 
proposed by Chen [10]. A version running in linear time 
was later proposed by Touzet [11]. In 2009, Demaine et al. 
proposed a decomposition algorithm for tree Edit distance 
which exhibited a low worst-case time complexity when the 
two trees have n nodes [12]. A Robust algorithm for the 
Tree Edit Distance (RTED) which was both efficient and 
worst-case optimal was introduced by Pawlik and Augsten 
[13]. The same authors also proposed another version of the 
former algorithm name AP-TED (All Path Tree Edit Dis-
tance) running at least as fast as RTED without trading in 
memory efficiency [14]. A revised version of the proposal 
of Chen [10] was proposed by Schwarz et al. [15]. In this 
last version, the time complexity has been improved and a 
new traversal strategy has been implemented to reduce the 
memory complexity.

The difficulties to solve the general ordered tree Edit 
distance problem led to the study of a restricted version of 
this problem named constrained Edit distance introduced 
in 1995 and 1996 by Zhang [16, 17]. Here, the tree Edit 
distance is defined under the restriction that disjoint subtrees 
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should be mapped to disjoint subtrees. In 1997, Richter pro-
posed another solution to this problem which gave space 
improvement over the former solutions of Zhang for trees 
having small degrees and low depths [18]. Lu, Su, and Tang 
proposed in 2001 to relax the constrained mapping by intro-
ducing the less constrained Edit distance [19]. A quotiented 
tree is a tree defined with an additional equivalent relation on 
arcs and such that the corresponding quotient graph is also a 
tree. In 2007, Ouangraoua et al. proposed a constrained edit 
scoring scheme based on [6] for comparing ordered quo-
tiented trees [20].

Beside these constrained versions, several other variants 
of the ordered tree Edit distance have been proposed. This 
was for example the case in 1977 when Selkow proposed the 
1-degree Edit distance where insertions and deletions were 
restricted to the leaves of the trees [21]. Another variant 
where edit operations worked on subtrees instead of nodes 
was proposed by Lu [22]. An analog implementation of this 
variant was also proposed by Tanaka and Tanaka [23] . An 
important difficulty in the use of the TED resides in the 
choice of the cost of each edit operation. This is why in 
1990, Shasha and Zhang proposed the unit cost Edit distance 
defined as the number |S(t1, t2)| of edit operations needed 
to turn t1 into t2 (i.e: the cost of each edit operation is 1.0) 
[24]. Merge trees are important for applications related to 
feature-directed visualization of time-varying data. In 2018, 
a variant of the tree Edit distance for comparing merge trees 
was proposed by Sridharamurthy et al. [25].

The general problem of evaluating the tree Edit dis-
tance for rooted unordered trees with label nodes has been 
shown to be NP-Complete by Zhang and Shasha [6] and to 
be MAX-SNP-hard by Zhang and Jiang [8]. Nevertheless, 
Zhang et al. proved in 1992 that for some special cases, 
polynomial algorithms can be implemented [7].

2.2.2 � Tree Alignment

The tree Alignment distance is a special case of the tree 
Edit distance where all insertions must be performed before 
any deletion. In 1995, Jiang et al. proposed the first imple-
mentation of the tree Alignment distance for rooted ordered 
trees with labeled nodes which could be computed more effi-
ciently than the tree Edit distance for some trees with small 
degree [26]. A faster version of tree Alignment designed for 
similar trees was later proposed by Jansson and Lingas [27].

Consider two rooted unordered trees with labeled nodes 
t1 and t2 . A modified version of the algorithm proposed by 
Jiang et al. [26] enabled to compute the tree alignment dis-
tance between t1 and t2 . Jiang demonstrated that if t1 or t2 has 
an arbitrary degree, the unordered tree Alignment between 
these trees is NP-hard. However, if they both have bounded 
degrees, their tree Alignment distance can be computed in 

linear time, unlike the computation of their tree Edit distance 
which remains MAX-SNP-hard in the same conditions.

2.2.3 � Tree inclusion

Let t1 and t2 be two rooted trees with labeled nodes. t1 is 
included in t2 if there is a sequence S�(t1, t2) of node dele-
tions performed on t2 which makes t2 isomorphic to t1 . The 
tree Inclusion problem is to decide if t1 can be included in t2 
and the tree inclusion distance is the sum of the costs of the 
deletions found in S�(t1, t2).

The first polynomial time algorithms for computing of 
the tree inclusion distance between two rooted ordered trees 
with labeled nodes were proposed by Kilpeläinen et al. [28] 
then by Kilpeläinen and Mannila [30]. In 1997, Richter pro-
posed a modified version which improved the time complex-
ity if the number of pair of nodes having identical labels 
is small [31]. Alonso and Schott also proposed an efficient 
average case version in 1993 [29] while a more complex 
version was developed by Chen [32].

Kilpeläinen and Mannila [30] also demonstrated that 
the computation of the tree inclusion distance between two 
rooted unordered trees with labeled nodes is NP-complete. 
In 1992, Matoušek and Thomas independently exhibited 
another proof of this NP-completeness [49].

2.2.4 � Other principles of comparison

Beside the three former principles based on edit operations, 
other principles have been proposed for comparing two trees. 
Some authors opted for tree pattern matching which consist 
in finding the instances of a given pattern tree in a given tar-
get tree [3, 33–37]. Other authors rather preferred solutions 
related to subtrees or to supertrees similarity. This choice 
led them to find the maximum agreement subtree [38, 39], 
the largest common subtree [40, 41] or the smallest common 
supertree [42, 43]. Table 1 summarizes the main character-
istics of the related work reviewed in this paper.

2.3 � Problem statement

The first limitation of the state of the art is the serious lack 
of techniques for comparing weighted trees. An attempt 
for comparing unordered node-labeled trees with labeled 
and weighted arcs was proposed in 2004 by Bhavsar et al. 
[4]. But this measure was limited because arc weights must 
always belong to the interval [0, 1] and arc labels must be 
unique on each level.

Another major drawback of existing techniques for tree 
comparison is that they do not enable the user to explic-
itly specify  the set of targeted nodes properties on which 
the comparison should be performed. The comparison is 
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generally based on the exact values of the nodes degrees and 
the nodes or arcs labels.

Additionally, none of the existing techniques has yet 
been specifically dedicated for the comparison of tree sets. 
In 2006, Torsello and Hancock developed a clustering 
method for learning the class prototype and class struc-
ture of a set of unlabeled trees [50], which was generalized 

to graphs in 2011 [51]. In [50], a probabilistic model for 
describing the distribution of tree data in each cluster (tree 
set) was constructed under several simplifying assump-
tions. It is possible to use this method as a proxy for com-
paring two tree sets by evaluating the similarity between 
their associated probabilistic models. But this will be 
done without having the possibility of capturing specific 

Table 1   Main characteristics of relevant existing techniques for comparing of two rooted or unrooted trees, that can be ordered or unordered, as 
well as labeled or unlabeled. For each principle, references are listed chronologically

No. Authors [Ref.] Years Principle Specificity

1 Tai [5] 1979 General tree Edit Initial version
2 Zhang and Shasha [6] 1989 Reduces space and time complexity
3 Zhang et al. [7] 1992 NP-complete unordered versions
4 Zhang and Jiang [8] 1994
5 Klein [9] 1998 Better worst case time bound
6 Chen [10] 2001 Complexity improvements for some trees
7 Touzet [11] 2007 Runs in linear time
8 Demaine et al. [12] 2009 Low time complexity for trees having n nodes
9 Pawlik and Augsten [13] 2015 (RTED) Efficient and worst-case optimal
10 Pawlik and Augsten [14] 2016 (AP-TED) Memory efficient version of RTED
11 Schwarz et al. [15] 2017 Improves the proposal of [10]
12 Zhang [16] 1995 Constrained tree Edit Disjoint subtrees are mapped to disjoint subtrees
13 Zhang [17] 1996
14 Richter [18] 1997 Gives space improvement
15 Lu et al. [19] 2001 Relaxes the constrained mapping
16 Ouangraoua et al. [20] 2007 Designed for quotiented trees
17 Selkow [21] 1977 Other variants of tree Edit Deletions are restricted to the leaves
18 Lu [22] 1979 Edit operations work on subtrees
19 Tanaka and Tanaka [23] 1988
20 Shasha and Zhang [24] 1990 Each edit operation costs 1.0
21 Sridharamurthy et al. [25] 2018 Edit distance between merge trees
22 Jiang et al. [26] 1995 tree Alignment Initial version, works on unordered trees
23 Jansson and Lingas [27] 2001 Faster version
24 Kilpeläinen et al. [28] 1992 Tree inclusion Initial version
25 Alonso and Schott [29] 1993 Efficient average version
26 Kilpeläinen and Mannila [30] 1995 Polynomial version
27 Richter [31] 1997 Improves the time complexity
28 Chen [32] 1998 More complex version
29 Hoffmann and O’Donnell [33] 1982 Tree pattern matching Research of the instances of a pattern tree in a target tree
30 Kosaraju [34] 1989
31 Dubiner et al. [35] 1990
32 Ramesh and Ramakrishnan [36] 1992
33 Zhang et al. [37] 1994
34 Liu and Geiger [3] 1999
35 Farach and Thorup [38] 1995 Maximum agreement subtree Comparison related to subtrees or supertrees
36 Amir and Keselman [39] 1997
37 Khanna et al. [40] 1995 Largest common subtree
38 Akutsu and Halldórsson [41] 2000
39 Gupta and Nishimura [42] 1998 Smallest common supertree
40 Nishimura et al. [43] 2000
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user-defined targeted nodes properties during the modeling 
process.

The goal of this paper is to attempt to provide solutions 
for these problems by initially proposing one distance and 
one similarity, both based on HMMs, to compare two finite 
sets containing rooted ordered trees which can be labeled or 
unlabeled, as well as weighted or unweighted. These meas-
ures are finally generalized for the comparison of two finite 
sets containing unrooted or unordered trees.

3 � Hidden Markov Models

3.1 � HMM definition

A HMM � = {A,B,�} is fully characterized by [52]: 

1.	 The number N of states of the model. The set of states is 
S = {s1, s2,… , sN} . The state of the model at time x is 
generally noted qx ∈ S.

2.	 The number M of symbols. The set of symbols is 
� = {v1, v2,… , vM} . The symbol observed at time x is 
generally noted Ox ∈ �.

3.	 The state transition probability distribution A = {aij} 
where each aij = P(qx+1 = sj|qx = si) with 1≤i, j≤N.

4.	 T h e  s y m b o l s  p ro b a b i l i t i e s  d i s t r i b u t i o n s 
B = {bi(k)} in each state si where each distribution 
bi(k) = P(vk at time x|qx = si) with 1≤i≤N and 1≤k≤M.

5.	 The initial state probability distribution � = {�i} where 
�i = P(q1 = si) with 1≤i≤N.

3.2 � HMM used as sequence generator

A HMM � = {A,B,�} can be used to generate a sequence 
O = O1O2…OX composed of X symbols observed by the 
sequence of states q = q1q2…qX as described in the Markov 
chain (MC) shown in Fig. 1.

In order to obtain the MC presented in Fig. 1, the follow-
ing algorithm is executed: 

1.	 Select the initial state sj ∈ S according to the distribution 
� and set x = 0.

2.	 Set x = x + 1 and change the current state to qx = sj

3.	 Select the symbol Ox ∈ � to be observed at state qx 
according to the distributions in B.

4.	 If ( x < X) go to step 5, else terminate.
5.	 Select the state transition to be realized from the current 

state qx to another state sj ∈ S according to the distribu-
tion A, then go to step 2.

3.3 � Manipulation of a HMMs

Consider a sequence of symbols O = O1O2…OX and a 
HMM � = {A,B,�} . The probability P(O|�) to observe O 
given � is efficiently calculated by the Forward-Backward 
algorithm [52] which runs in �(X.N2) . Given a sequence of 
symbols O = O1O2…OX , it is possible to iteratively re-esti-
mate the parameters of a HMM � = {A,B,�} in order to 
maximize the value of P(O|�) , where � = {A,B,�} is the 
re-estimated model. The Baum-Welch algorithm [52] is gen-
erally used to perform this re-estimation. This algorithm 
runs in �(� .X.N2) where � is the user-defined maximum num-
ber of iterations. In this paper, the value � = 100 is selected 
following [53]. The Baum-Welch algorithm can also train a 
HMM for multiple sequences. The algorithm maximizes the 
value of P(O��) =

∑K

k=1
P(O(k)��) where O = {O(1),… ,O(K)} 

is a set of K sequences of symbols and O(k) = O
(k)

1
…O

(k)

Xk
 is 

the kth sequence of symbols of O. In the case of multiple 
sequences, this algorithm runs in �

�
� .(

∑K

k=1
Xk).N

2

�
.

3.4 � HMMs similarity measure

Several measures have yet been proposed for comparing two 
HMMs � = {A,B,�} and �� = {A�,B�,��} [54–58]. Further 
details related to these measures and their drawbacks are 
available in [53, 59]. In this paper, we selected the accurate 
low-complexity similarity measure between two HMMs � 
and �′ originally proposed in [60] and later used in [53, 59]. 
In the current paper, this measure is noted dsim(�, ��) and 
its summarized computation scheme can be found in [59]. 
dsim(�, �

�) evaluates the probability that � and �′ observe 
identical sequences of symbols.

4 � The proposed approach

4.1 � Main idea

The main idea for comparing tree sets using HMMs in this 
work arises from the following observation related to the tra-
versal of a tree using DFS: When DFS is executed on a tree 
t, the algorithm sequentially transits from one visited node 
located at a specific depth, to another visited node located at 
another depth, starting from the root node until the last node 
is visited. In other words, DFS sequentially transits from 

symbols: O1 O2 . . . OX

↑ ↑
... ↑

states: q1 → q2 → . . . → qX

Fig. 1   HMM used as sequence generator
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one node depth to another and at each step, the algorithm 
observes the properties of the visited node. This observa-
tion enables us to transform t into a MC resulting from the 
traversal of t using DFS. In this transformation, the hidden 
states are the depths of the visited nodes and the observed 
symbols are the values of a specific targeted nodes property 
p. If we note depth(t) = max{depth(y)|y ∈ t} the depth of the 
deepest node of t, then the depth of the node visited by DFS 
at each step of the traversal is always between 0 (which is the 
depth of the root node) and depth(t). Therefore, the hidden 
states belong to {0, 1,… , depth(t)} . In practice, if y1y2…yk 
is the ordered list of visited nodes outputted by DFS (with 
root(t) = y1 ), then Fig. 2 shows the MC named �(t) generated 
for t considering the property p.

The MC of Fig. 2 is later used to initialize and to train a 
HMM which learns how much the nodes of t verify property 
p. Given that HMMs can be trained for multiple sequences, 
this principle can be generalized to a tree set. Consider a 
finite set T composed of |T|≥1 trees. We transform the trees 
in T into MCs, before training one HMM for T using these 
MCs.

4.2 � Methodology

Let T = {t1,… , tn} and T � = {t�
1
,… , t�

k
} be two tree sets. 

Consider now the set P = {p1, p2,…, pm} composed of m 
user-defined targeted nodes properties. As it is shown in 
Fig. 3, the methodology applied in the proposed approach 
to compare T and T ′ can be summarized in the two follow-
ing steps: 

1.	 Tree modeling: For each property pi (1≤i≤m) , 
the principle presented in Sect.  4.1 is applied to 
obtain the two sets �i(T) = {�i(t1),… , �i(tn)} and 
�i(T

�) = {�i(t
�
1
),… , �i(t

�
k
)} containing the MCs associ-

ated with the trees in T and T ′ . Thereafter, two HMMs 
�i(T) and �i(T �) are respectively initialized then trained 
according to the contents of �i(T) and �i(T

�) . Figure 4 
describes the principle of tree modeling for a tree set T.

2.	 Tree comparison: The point �P(T ,T
�)∈ℝm whose 

ith component is the similarity rate between T and T ′ 
according to property pi (1≤i≤m) is initially calculated. 
Finally, the distance dP(T ,T �) , then the similarity rate 
�P(T ,T

�) between T and T ′ are computed based on the 

components of �P(T ,T
�) . Figure 5 summarizes the prin-

ciple of tree comparison.

4.3 � Tree modeling

4.3.1 � Example of transformation into MC

Consider the singleton T = {t} where t is the node-labeled 
and arc-labeled tree presented in Fig. 6a. The node labels 
of t belong to the set {1, 2, 3, 4, 5, 7} and the arc labels 
belong to the set {a, b, c, e, f } . Given that the root of a 
tree has no father, we conventionally assume that if a tree 
is arc-weighted, then the weight of the arc linking the 
root to its father is 0.0. If a tree is arc-labeled, we also 

symbols: p(y1) p(y2) . . . p(yk)

↑ ↑
... ↑

states: depth(y1) → depth(y2) → . . . → depth(yk)

Fig. 2   MC �(t) of tree t considering property p 

Fig. 3   Proposed methodology for comparing tree sets

Fig. 4   The tree modeling principle
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conventionally assume that the label of the root is any 
valid label (symbol, integer, etc.) that does not belong to 
the initial set of labels. In this paper, the symbol ′#′ is 
selected as conventional label for this purpose. Thus, the 
set of labels becomes {a, b, c, e, f }∪{#} . For each node y of 
t, if we consider that the targeted nodes property is: 

1.	 p1(y) : The degree of y, then the resulting MC is �1(t) 
presented in Fig. 6a.

2.	 p2(y) : The label of y, then the resulting MC is �2(t) pre-
sented in Fig. 6b.

3.	 p3(y) : The label of the arc linking y to its father, then the 
resulting MC is �3(t) shown in Fig. 6c.

4.	 p4(y) : A Boolean which is true when the label of y is an 
odd number greater or equal to 3, then the resulting MC 
is �4(t) presented in Fig. 6d.

5.	 p5(y) : A Boolean which is true when y is not a leaf and 
the label of y is the sum of the labels of its children, then 
the resulting MC is �5(t) presented in Fig. 6e.

Let us now explain how to handle properties whose 
values are positive continuous numbers like nodes or arcs 
weights. Indeed, for such properties, the set of possible 
values is infinite. This is a serious obstacle because the set 
� of symbols of a HMM must be finite. Let us note � the 
set of nodes properties whose values are positive continu-
ous numbers. Consider now a tree set T and a property 
p ∈ � . To overcome the former obstacle, the algorithm 
below composed of four main steps is applied following 
an analog algorithm used in [59] for a similar purpose:

Step 1: Compute the MCs of the trees in T using  prop-
erty p.

Step 2: Modify the MCs obtained at step 1 by normal-
izing the values of p(y) in order the move them in the 
interval [0, 100]. This is done by replacing the value of 
p(y) in each MC by p̂(y) calculated in Eq. 1. The effect of 
this normalization will be canceled when the distance will 
be computed.

Fig. 5   The principle of tree comparison for two tree sets T and T ′

7
4

1 3
1

2

5 4

c

c
a

f

e

c
b

(a) The tree t (b) δ1(t)

(c) δ2(t) (d) δ3(t)

(e) δ4(t) (f) δ5(t)

Fig. 6   Transformation of the tree set T = {t} into a MC depending on the  targeted nodes property
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Step 3: Split the interval [0,  100] into (N + 1) slices 
{v0, v1,… , vN} as shown in Eq. 2, where N is a user-defined 
integer.

Step 4: If the value of N used at step 3 to split the inter-
val [0, 100] is very high, then the width of each slice vk 
becomes tiny and all the elements in vk become very near to 
one unique value which is 100

N
×k . In that case, the elements 

of vk can be approximated by this single value which we 
identify here by the index k of the slice vk . This reasoning 
enables to define a new MC by replacing p̂(y) in the MC 
obtained at step 2 with the value p̃(y) which is the index k 
the slice vk containing p̂(y) as shown in Eq. 3.

Following this algorithm, property p whose values are con-
tinuous numbers is finally replaced by property p̃ whose 
values belong to the finite set � = {0, 1,… ,N} . Consider for 
example the singleton T � = {t�} containing the node-labeled 
and arc-weighted tree t′ presented in Fig. 7a. The tree t′ is 
quite similar to the tree t of Fig. 6a, the only difference is 
that the arc labels are transformed into arc weights as fol-
lows: # becomes 0.0, a becomes 1.0, b becomes 2.0, … and 
f becomes 6.0 . If we consider that for each node y ∈ t� , p(y) 
is the weight of the arc linking y to its father, then the former 
algorithm is executed on T ′ as follows: 

1.	 The MC of Fig. 7b is computed for t′ using p.
2.	 The arc weights are replaced by their normalized val-

ues using �(p,T �) = 6 . The resulting MC is presented 
in Fig. 7c.

(1)
p̂(y) = 100×

p(y)

𝛼(T , p)
where

𝛼(T , p) = max{p(z)|∀z ∈ t and ∀t ∈ T}.

(2)v0 = {0} and vk =

]
100

N
×(k − 1),

100

N
×k

]
, 1≤k≤N.

(3)p̃(0) = 0 and (p̃(y) = k) ⇔
(
p̂(y) ∈ vk

)
, 1≤k≤N

3.	 If we select for this example the value (N = 10) , 
then the interval [0,  100] is split to gener-
ate the set  {v0, v1,… , v10} of  s l ices where: 
v0 = {0}, v1 =]0, 10], v2 =]10, 20],… , v10 =]90, 100].

4.	 Each normalized arc weight is replaced by the index of 
the slice to which it belongs. The resulting MC is pre-
sented in Fig. 7d.

One can remark that the choice of N is crucial in this algo-
rithm. On the one hand, low values of N cannot enable to 
accurately separate the property values. But on the other 
hand, huge values of N induce a considerable augmenta-
tion of the HMM training time due to the elevated number 
of symbols. In this paper, the value N = 50 is selected 
following a recommendation made in [59].

Another important remark is that the proposed approach 
can be used for comparing two tree sets containing trees 
which are both, unlabeled and unweighted. In that case, 
the set P of targeted nodes properties must only contain 
properties related to the tree topologies like the value of 
the degree of each node or the parity of this degree for 
example.

4.3.2 � HMM initialization

Consider a tree set T = {t1,… , tn} and a nodes property pi . 
The parameters of the initial HMM �i0 (T) = (AT

i0
,BT

i0
,�T

i0
) 

associated with T are calculated as described below to sta-
tistically capture the states transitions and the symbols 
probabilit ies distr ibutions from the content of 
�i(T) = {�i(t1),… , �i(tn)} : 

1.	 Given that the states are the node depths, 
the number of states is (depth(T) + 1) where 
depth(T) = max{depth(t)|t∈T} . Therefore, the set of 
states is S = {0, 1,… , depth(T)}.

7
4

1 3
1
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(a) The tree t′ (b) The initial MC of t′

(c) The MC of t′ after normalization (d) The final MC of t′

Fig. 7   MC of the tree set T � = {t�} for a property p ∈ � . Here, p(y) is the weight of the arc linking y to its father
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2.	 The content of the set � of symbols depends on the val-
ues that can be taken by the property pi . Some particular 
cases are listed below:

Case 1: If pi is a Boolean, then � = {0, 1}.
Case 2: If pi∈� , the algorithm presented in Sect. 4.3.1 
is applied to obtain the finite set � = {0, 1,… ,N} , 
where N is a user-defined integer.
Case 3: If pi is the degree of each node, then 
� = {0, 1,… , degmax} where degmax is a user-defined 
constant representing the maximum possible degree. 
In this paper, the value degmax = 30 is selected.
Case 4: If pi is the value of the label of a node (resp. 
arc), � must contain all the node (resp. arc) labels 
appearing in T, augmented by all the possible labels 
that can appear in any other tree set that can be com-
pare to T. In other words, if we want to compare two 
tree sets T and T ′ , � must contain at least all the labels 
appearing in both, T and T ′.

3.	 The probability of transiting from state j to state k is 
calculated in Eq. 4. In that equation, the expression 
transit(j, k,�i(T)) is the number of transitions from state 
j to state k in �i(T) and the expression transit(j,−,�i(T)) 
is the number of transitions from state j to any destina-
tion in �i(T) . 

4.	 The probability of observing symbol k at state j is cal-
culated in Eq. 5 where observe(k, j,�i(T)) is the number 
of times where symbol k is observed at state j in �i(T) , 
and observe(−, j,�i(T)) is the number of occurrences of 
state j in �i(T) , whatever is the symbol observed. 

5.	 The probability that a sequence starts with state j is 
given by Eq. 6 where start(j,�i(T)) is the number of 
elements in �i(T) starting with state j. 

The parameters of �T
i0
 are not probability distributions due to 

the constant 1.0 added to the denominator of their compo-
nents. This value is intentionally introduced to avoid even-
tual divisions by zero in AT

i0
 and BT

i0
 . Zero probabilities are 

also avoided in �T
i0
 . The model �T

i0
 is then readjusted by equi-

tably redistributing the missing quantity in each line to 
obtain the model �i1 (T) = (AT

i1
,BT

i1
,�T

i1
) as follows: 

(4)AT
i0
[j, k] =

transit(j, k,�i(T))

transit(j,−,�i(T)) + 1
.

(5)BT
i0
[j, k] =

observe(k, j,�i(T))

observe(−, j,�i(T)) + 1
.

(6)�T
i0
[j] =

start(j,�i(T))

|�i(T)| + 1
.

1.	 AT
i1
[j, k] = AT

i0
[j, k] +

1

�S�

�
1 −

∑�S�−1
l=0

AT
i0
[j, l]

�

2.	 BT
i1
[j, k] = BT

i0
[j, k] +

1

���

�
1 −

∑���−1
l=0

BT
i0
[j, l]

�

3.	 �T
i1
[j] = �T

i0
[j] +

1

�S�

�
1 −

∑�S�−1
l=0

�0

i
[l]
�

4.3.3 � HMM training phase

If |T| = 1 , then the readjusted initial HMM �i1 (T) is trained 
with the Baum-Welch algorithm for one single sequence, 
otherwise �i1 (T) is trained by the same algorithm for mul-
tiple sequences. In both situations, the resulting HMM is 
�i(T) = (AT

i
,BT

i
,�T

i
) and the training sequences are the 

sequences of symbols appearing in �i(T) . For example, 
the initial HMMs associated with the MCs presented in 
Fig. 6a and b will respectively be trained with the fol-
lowing sequences of symbols: 3, 2, 0, 0, 0, 2, 0, 0, 0 and 
7, 4, 1, 3, 1, 2, 5, 4.

4.4 � Tree comparison

Let T and T ′ be two finite tree sets, and consider a finite set P 
of nodes properties. In order to compare T and T ′ according 
to the properties in P, the similarity rate �i(T ,T

�) between 
T and T ′ according to each property pi ∈ P (1≤i≤|P|) is ini-
tially computed. The |P| resulting similarity rates are then 
saved as the coordinates of a point �P(T , T

�) of ℝ|P| . This 
point will be later used to derive the distance and the similar-
ity rate between T and T ′.

4.4.1 � Models similarity computation

In this work, �i(T , T
�) is obtained by calculating the value 

of dsim
(
�i(T), �i(T

�)
)
 . Unlike most of the existing measures 

which are based on the comparison of the exact visual con-
tent of the two trees, the measure proposed in this paper is 
finer because dsim rather evaluates the probability that �i(T) 
and �i(T �) observe an identical sequence of symbols. In our 
context, this means that dsim evaluates the probability that 
�i(T) and �i(T �) generate new trees with identical values of 
pi(y) for every node y. Therefore, the trees of two tree sets 
may not be too much similar visually, but their similarity 
rate can still be high. This is possible because even when 
two HMMs look ostensibly very different, their statistical 
equivalence can still occur [52] 1.

Given that the values of pi(y) are normalized when 
pi ∈ � , the similarity rate must in that case be weighted by a 
coefficient �i(T ,T �)≤1 that will cancel the effects of normali-
zation. Such a coefficient was also used in [59] to cancel the 
effects of histogram normalization. Equation 7 shows how to 
compute this coefficient and Eq. 8 describes how to compute 

1  See page 15, Section F
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�i(T ,T
�) . Finally, the point �P(T ,T

�) whose ith component 
is �i(T , T

�) is generated as shown in Eq. 9.

4.4.2 � The proposed distance between tree sets

The |P| components of �P(T , T
�) are percentages. Conse-

quently, their maximum value is 100% . This means that the 
more the components of �P(T , T

�) are distant from 100% , 
the more T and T ′ are distant. This enables to calculate the 
distance dP(T , T �) between T and T ′ according to the proper-
ties in P by computing any valid distance between the point 
�P(T , T

�) and the point of ℝ|P| whose components are all 
equal to 100. In this paper, the Euclidean and the Manhat-
tan distances whose formulas are presented in Eq. 10 have 
been selected for this purpose. In unreported simulations, 
the Tchebychev distance was also selected, but we finally 
excluded it because it exhibited extremely poor classification 
results (Cf. Section 5.2).

(7)
�i(T ,T

�) =
min

(
�(T , pi), �(T

�, pi)
)

max
(
�(T , pi), �(T

�, pi)
) if (pi∈�)

�i(T ,T
�) = 1 otherwise,

(8)�i(T , T
�) = 100×�i(T , T

�)×dsim
(
�i(T), �i(T

�)
)
(in%),

(9)�P(T , T
�) = [�1(T , T

�),�2(T , T
�),… ,�|P|(T , T

�)].

(10)

dP(T ,T
�) =

√√√√
|P|∑

i=1

(100 − �i(T ,T
�))2 (Euclidean)

dP(T ,T
�) =

|P|∑

i=1

|100 − �i(T ,T
�)| (Manhattan).

4.4.3 � The proposed similarity between tree sets

If T and T ′ are strongly similar (i.e: each component of 
�P(T ,T

�) is near to 100), the distance dP(T ,T �) ≈ 0 irre-
spective of the selected distance between two points in 
ℝ

|P| . In a similar way, when T and T ′ are strongly distant 
(i.e: each component of �P(T , T

�) is near to 0), the upper-
bound d̃P of the distance dP(T ,T �) presented in Eq. 11 is 
obtained depending on the selected distance between two 
points in ℝ|P|.

The existence of this upper-bound is an asset because if we 
divide dP(T ,T �) by d̃P as shown in Eq. 12, we obtain the dis-
similarity rate �P(T , T

�) between T and T ′ according to the 
properties in P. The values computed in Eq. 12 are in (%) . 
This finally enables to compute the similarity rate �P(T , T

�) 
between T and T ′ according to the properties in P in Eq. 13.

4.5 � Example of tree sets comparison

Consider the three singletons T1 = {t1} , T2 = {t2} and 
T3 = {t3} where t1, t2 , t3 are the node-labeled and arc-
weighted trees respectively presented in Fig. 8a–c. We 
have applied the proposed measures to compare the trees 
in the pairs (T1, T2) , (T1, T3) and (T2, T3) . The selected set 
of targeted nodes properties is P = {p1, p2,… , p6} where 
for each node y: 

(11)
d̃P = 100

√
�P� (Euclidean)

d̃P = 100.�P� (Manhattan)

(12)

�P(T ,T
�) = 100×

�
dP(T ,T

�)

100
√
�P�

�
=

dP(T ,T
�)

√
�P�

(Euclidean)

�P(T ,T
�) = 100×

�
dP(T ,T

�)

100.�P�

�
=

dP(T ,T
�)

�P�
(Manhattan),

(13)�P(T ,T
�) = 100 − �P(T ,T

�) (in%).
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1.	 p1(y) is the degree of y.
2.	 p2(y) is the label of y, the set of possible labels being 

{1, 2, 3, 4, 5, 7, 8, 12, 15, 24}

3.	 p3(y) is the weight of the arc linking y to its father.
4.	 p4(y) = 1 if y is not a leaf and the label of y is the sum 

of the labels of its children, else p4(y) = 0.
5.	 p5(y) = 1 if the label of y is odd, else p5(y) = 0.
6.	 p6(y) = 1 if y is not a leaf and the label of y is strictly 

greater than the labels of its children, else p6(y) = 0.

All the experiments realized in this paper have been exe-
cuted on a personal computer with the following properties: 
(1) Processors: Intel(R) Core(TM) i7-8665U CPU @1.9GHz 
2.11GHz (2) RAM: 16 GB. After executing the proposed 
approach on the pairs (T1, T2) , (T1, T3) and (T2, T3) , we have 
obtained the results presented in Table 2. These results reveal 
that the highest similarity rate is always obtained for the pair 
(T2, T3) , irrespective of the selected distance in ℝ6 . For each 
pair of tree sets, Table 2 gives details related to the similarity 
rates regarding each property. These results enable to make 
several remarks. One can for example remark that the pair 
(T2, T3) has the highest similarity rate regarding the topology 
(property p1 ). This remark seems to be accurate when we 
observe the high similarity between the visual shapes of the 
trees in T2 and T3 . Table 2 also enables to remark the very 
low similarity rates 8.75% and 13.46% respectively obtained 
for the pairs (T1, T2) and (T1, T3) regarding the arc weights 
(property p3 ), these values are far from the 40.63% obtained 
for the pair (T2, T3) . This other remark also seems to be accu-
rate because all the arc weights in T1 are low while those 
in T2 and T3 are mostly high. Other remarks regarding the 

remaining properties can be made analogically. The global 
processes of tree modeling and tree comparison respectively 
took around 187 milliseconds and 20 ms for the three pairs 
on the experimental computer.

4.6 � Generalization to unrooted and unordered 
trees

The proposed measures can also be used to compare tree sets 
containing unrooted trees and unordered trees. This is pos-
sible by initially transforming every unrooted or unordered 
tree t into a set of rooted ordered trees, while preserving the 
nodes and the arcs existing in t. Proceeding this way, all the 
information embedded in t is transferred in the resulting tree 
set. The node-labeled trees t1 , t2 and t3 respectively presented 
in Figs. 9a–c will serve as examples in this section. Consider 
a finite tree set T. The following transformations must be 
applied to every tree t∈T  before to compare T to any other 
tree set: 

1.	 If t is already a rooted ordered tree, no transformation is 
applied to t.

2.	 If t is unrooted ordered, then t is transformed into the 
tree set f(t) containing the |t| possible rooted ordered 
trees that can be derived from t when each node is con-
sidered as the root, while preserving the left-to-right 
order existing between the nodes of t in the resulting 
trees. When this principle is applied to the unrooted 
ordered tree t1 of Fig. 9a, the set f (t1) = {t11,… , t15} 
whose content is depicted in Fig. 10a–e is obtained.

Table 2   Comparison of the 
pairs (T

1
,T

2
) , (T

1
,T

3
) and 

(T
2
,T

3
)

T T ′ �P(T ,T
�) Euclidean Mahattan

p1 p2 p3 p4 p5 p6 dP(T ,T
�) �P(T ,T

�)

in %

dP(T ,T
�) �P(T ,T

�)

in %

T1 T2 58.33 75.78 8.75 66.67 94.90 83.33 109.84 55.16 212.23 64.63
T1 T3 65.0 58.33 13.46 66.67 93.42 75.0 110.59 54.85 228.12 61.98
T2 T3 75.0 73.58 40.63 92.85 86.21 66.97 78.62 67.90 164.77 72.54

a

b

c

d

e

(a) t1: Unrooted ordered

b

c e

a

c

(b) t2: Rooted unordered

da

c

a

b

(c) t3: Unrooted un-
ordered

Fig. 9   Examples of trees unrooted and unordered trees
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3.	 If t is rooted unordered, then t is transformed into the 
tree set g(t) containing all the rooted ordered trees that 
can be derived from t by realizing all the possible per-
mutations in t. Therefore, the size of g(t) is bounded by 
the highest possible number of permutations in t which 
is (|t| − 1)! When this principle is applied to the rooted 
unordered tree t2 of Fig. 9b, the set g(t2) = {t21, t22, t23} 
whose content is shown in Figs. 11a–c is obtained.

4.	 If t is unrooted unordered, then t is first transformed 
into a temporary tree set tmp(t) containing the |t| pos-
sible rooted unordered trees that can be derived from 
t when each node is considered as the root. Each tree 
t ∈ tmp(t) is then transformed into the tree set g(t) con-
taining all the rooted ordered trees that can be derived 
from t by realizing all the possible permutations in 
t . The final set h(t) =

⋃
t
g(t) of rooted ordered trees 

derived from t is obtained by gathering all the tree sets 

obtained for every t . The size of h(t) is consequently 
bounded by |t|.(|t| − 1)! = |t|! When this principle is 
applied to the unrooted unordered tree t3 of Fig. 9c, the 
set h(t3) = {t31,… , t38} whose content is presented in 
Fig. 12a–h is obtained.

The fact that the size of the tree set obtained after trans-
forming an unordered tree is exponential is not surpris-
ing because the NP-completeness and the NP-hardness 
of the problem of comparing unordered trees has been 
thoroughly demonstrated [6, 8, 26, 30, 49]. This exponen-
tial size highly increases the HMMs training time cost. 
Nevertheless, the duration of the model training phase can 
be considerably reduced in that case if a parallel version 
of the Baum-Welch algorithm is used to train the models. 

Table 3   Comparison of the 
pairs ({t

1
}, {t

2
}) , ({t

1
}, {t

3
}) 

and ({t
2
}, {t

3
}) containing the 

unrooted and unordered trees of 
Fig. 9a–c

Each sigleton is transformed into a tree set of rooted ordered trees before the comparison

T T ′ �P(T ,T
�) Euclidean Mahattan

p1 p2 dP(T ,T
�) �P(T ,T

�)

in %

dP(T ,T
�) �P(T ,T

�)

in %

{t1} → f (t1) {t2} → g(t2) 68.06 50.59 58.84 58.40 81.35 59.32
{t1} → f (t1) {t3} → h(t3) 63.96 74.89 43.93 68.94 61.15 69.42
{t2} → g(t2) {t3} → h(t3) 78.03 69.24 37.80 73.27 52.73 73.64
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Fig. 10   The set f (t
1
) = {t

11
,… , t

15
} derived from the unrooted ordered tree t

1
 of Fig. 9a

Fig. 11   The set 
g(t

2
) = {t

21
, t
22
, t
23
} derived 

from the rooted unordered tree 
t
2
 of Fig. 9b

b

c e
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c
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Details related to this issue are provided at the end of this 
paper.

We have used the aforementioned principle to compare 
the trees in the pairs ({t1}, {t2}) , ({t1}, {t3}) and ({t2}, {t3}) 
containing the unrooted and unordered trees of Fig. 9a–c. 
The set of targeted nodes properties is limited here to 
P = {p1, p2} where for each node y: 

1.	 p1(y) is the degree of y.
2.	 p2(y) is the label of y, the set of labels being {a, b, c, d, e}

The results of the comparison presented in Table 3 reveal 
that t2 and t3 are the most similar trees, irrespective of the 
selected distance in ℝ2 . The overall tree modeling process 
for these three pairs took around 1.5 seconds and the com-
putation of the similarities between these same pairs took 
around 17 milliseconds.

The former example demonstrates that the proposed 
measures are highly flexible compared to existing measures. 
Indeed, unlike existing measures which can only compare 
two trees of the same category (i.e: two rooted ordered trees, 
two rooted unordered trees, etc.), the measures proposed in 
this paper can compare two tree sets, each containing a mix-
ture of trees belonging to various categories. Furthermore, 
the proposed measures can handle trees where each node and 
each arc has many attributes (labels, weights). In that case, 
the user must only define the suitable properties targeting the 
various attributes to perform the comparison.

4.7 � The case of the empty set

�P and dP are applicable to finite tree sets. Therefore, their 
behavior when they are applied to the empty set must be 
described. It is in this perspective that the two following 
conventional properties are adopted here:

Property 1  Given that ∅ is completely similar to itself, we 
assume that for every set P of nodes properties we have: 
�P(�, �) = 100% which implies that dP(�, �) = 0.

Property 2  For every tree set T≠∅ and for every set P of 
nodes properties, given that ∅ is completely different from 
T, we assume that : �P(T , �) = �P(�,T) = 0% which implies 
that dP(T , �) = dP(�,T) = d̃P.

5 � Experimental results

5.1 � Comparison of sets of text documents

A text document is a sequence of symbols. Several tables 
enable to match a symbol with a positive numeric code. The 
most popular tables used for the English language are the 
ASCII and EBCDIC tables 2. The ASCII table is preferred in 
this paper. Text documents comparison has been an inter-
esting axis of research since many years and an overview of 
some relevant existing methods to perform this task is avail-
able in [61]. Consider two text documents d1 and d2 . The 
most widespread principle used in existing approaches con-
sists firstly in removing the ’stop words’ appearing in d1 and 
d2 , these are words which are presumed to be not informa-
tive as to the meaning of the documents [62]. The result of 
the deletion of stop words is the list of all the remaining 
words appearing in both documents. A vector ���⃗d1 (resp. ���⃗d2 ) 
is then used to save the number of times each word of the list 
appears in d1 (resp. d2 ). The final documents comparison is 
performed by comparing ���⃗d1 and ���⃗d2 using existing similarity 
measures between vectors. The two following limitations of 
the techniques based on this principle have been stated in 
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Fig. 12   The set h(t
3
) = {t

31
,… , t

38
} derived from the unrooted unordered tree t

3
 of Fig. 9c

2  http://​www.​simot​ime.​com/​asc2e​bc1.​htm.

http://www.simotime.com/asc2ebc1.htm
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[59] (1) the words appearing in d1 and d2 are both required 
for the construction of each vector, (2) only two single text 
documents can be compared. The authors of [59] solved 
these problems by proposing a histogram-based approach 
for comparing two sets of text documents using HMMs. The 
main drawback of the technique proposed in [59] is that each 
word is considered as an isolated word which has no link 
with any other word in the document. However, many words 
in a text document can be linked in various ways, they can 
for example share the same prefix.

The goal of this section is to overcome this limitation of 
[59] by performing the comparison while considering com-
mon prefixes. More precisely, the proposed measures are 
adopted here to compare two sets D and D′ of text docu-
ments. Each document in D and D′ is initially transformed 
into a prefix tree (described in the next section), after what 
the comparison is performed.

5.1.1 � Transformation of a document into a prefix tree

Consider a text document d composed of many words, each 
word being a sequence of characters. We propose to save all 
the words appearing in d as a particular node-labeled and 
arc-weighted tree td . The node labels in td are characters and 
the root node is assigned the special label ′#′ . The children 
of each node in td are ordered from left to right in increasing 
order of the ASCII codes associated with their labels. Given 
a node y, when we concatenate the node labels found in the 
path starting from root(td) to y, we obtain the word w(y) 

associated with y, the symbol ′#′ being ignored in w(y). The 
tree td is constructed in such a way that for every child z of a 
node y, the word w(z) is obtained by concatenating w(y) and 
the label of z, i.e: w(y) is a prefix of w(z). The weight of the 
arc linking a node y to its father is the number of occurrences 
of w(y) in d. Consider for example the English document d 
having the following content: “this student and a teacher are 
talking about the student status in the actual society”. When 
the above principle is applied on d, the tree td depicted in 
Fig. 13 is obtain.

5.1.2 � Distance and similarity computation

Cons ide r  two  f in i t e  se t s  D = {d1,… , dn} and 
D� = {d�

1
,… , d�

k
} of text documents that we want to com-

pare according to the set P = {p1,… , pm} of nodes proper-
ties. Each document in D and D′ is first transformed into a 
prefix tree as described in Sect. 5.1.1. When this is done, 
t he  se t s  o f  p re f ix  t rees  TD = {td1 ,… , tdn} and 
TD� = {td�

1

,… , td�
k
} are obtained. Finally, Eqs. 14 and 15 are 

respectively used to compute the distance and the similar-
ity between D and D′.

(14)�P(D,D
�) = dP(TD, TD� ),

(15)�P(D,D
�) = �P(TD, TD� ) (in%),

Fig. 13   The node-labeled and arc-weighted prefix tree td associated with the text document d whose content is: “this student and a teacher are 
talking about the student status in the actual society”
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5.1.3 � Example of text documents comparison

Consider the two following text documents d and d′ that 
were also compared in [59]: 

1.	 d : “yesterday morning, paul went to school after eating 
because his school is away from home. at the end of the 
day, paul left school and went home”

2.	 d
′ : “paul went to school yesterday after eating in the 

morning, this is because his school is away from his 
house. he went back to his house after classes.”

In this example, stop words have not been deleted fol-
lowing the experience realized in [59]. The comparison is 
performed according to the set P = {p1, p2, p3} of targeted 
nodes properties, where for each node y: 

1.	 p1(y) is the degree of y.
2.	 p2(y) is the label of y, with p2(y)∈{#, a, b,… , z}.
3.	 p3(y) is the weight of the arc linking y to its father.

The comparison results presented in Table 4 reveal that the 
proposed measures perform a finer analysis of text docu-
ments than the technique proposed in [59]. Indeed, when 
these two documents were compared in [59], the low simi-
larity rate 39.63% was obtained because the common pre-
fixes were not considered. However, many words in d and 
d′ share common prefixes. When these common prefixes 
are now considered, the similarity rate between d and d′ 
increases to values greater than 56% . The HMMs training 
took 700 milliseconds and the computation of the similarity 
took 13 milliseconds.

5.2 � Nearest Neighbor classification

The goal of this section is to demonstrate the accuracy of the 
proposed measures when the suitable set of targeted nodes 
properties is selected. This can be achieved by evaluating 
the performances of the proposed tree distance when it is 
used by a metric-dependent classifier like the NN. Such an 
evaluation has already been done for the tree distances based 
on the edit operations [63].

5.2.1 � Experimental databases

We have constructed two online available synthetic tree data-
bases respectively named FirstLast-L and FirstLast-LW. 3 
Each database contains four classes composed of 100 rooted 
ordered trees. FirstLast-L contains node-labeled trees and 
the set of node labels is {1, 2,… , 26} . FirstLast-LW con-
tains the same trees found in FirstLast-L, with weighted 
arcs. The peculiarity of these databases is that they contain 
trees which are neither characterized by the exact values of 
the degrees/labels of the nodes, nor by the exact values of 
the weights of the arcs. Rather, they are characterized by 
specific and non-trivial properties verified by the degrees/
labels of the nodes, as well as the weights of the arcs. These 
properties are presented in Table 5. Beside the properties 
specified in that table, every tree t in these two databases 
verifies (0<depth(t)≤4) . Figure 14a–fig14d depict examples 
of node-labeled and arc-weighted trees verifying the proper-
ties presented in Table 5 for FirstLast-LW. The correspond-
ing trees verifying the properties presented in Table 5 for 
FirstLast-L are obtained by ignoring the arc weights.

5.2.2 � Targeted nodes properties

We realized two experiments. During the first one, the 
specific properties verified by each node in FirstLast-L 
and FirstLast-LW are intentionally ignored as if they were 
unknown. Therefore, the default sets of targeted nodes 
properties PL = {p1, p2} and PLW = {p1, p2, p3} have been 
selected respectively for FirstLast-L and for FirstLast-LW 
where for each node y: 

1.	 p1(y) is the degree of y.
2.	 p2(y) is the label of y, the set of labels being {1,… , 26}.
3.	 p3(y) is the weight of the arc linking y to its father.

Given that the trees in FirstLast-L and FirstLast-LW are 
characterized by non-trivial properties, one can obviously 
conjecture that the first experience will show poor classifi-
cation results.

During the second experience, the specific properties ver-
ified by each node in FirstLast-L and FirstLast-LW are con-
sidered. The content of Table 5 has therefore been used for 
deriving the sets PL = {p1,… , p8} and PLW = {p1,… , p12} 
of targeted nodes properties respectively for FirstLast-L and 

Table 4   Results of the 
comparison of the text 
documents d and d′

T T ′ �P(T ,T
�) Euclidean Mahattan

p1 p2 p3 �P(T ,T
�) �P(T ,T

�)

in %

�P(T ,T
�) �P(T ,T

�)

in %

{d} {d�} 53.42 58.94 56.36 75.89 56.18 131.28 56.24

3  http://​perso-​etis.​ensea.​fr/​sylva​in.​iloga/​First​Last/​index.​html.

http://perso-etis.ensea.fr/sylvain.iloga/FirstLast/index.html
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FirstLast-LW. For each node y, if l(y) and f(y) respectively 
refer to the label of  y and to the the label of its father, then: 

	 1.	 p1(y) = 1 if y has at least three children among which 
only the first child is not a leaf, else p1(y) = 0.

	 2.	 p2(y) = 1 if y has at least three children among which 
only the last child is not a leaf, else p2(y) = 0.

	 3.	 p3(y) = 1 if y has at least three children among which 
only the first and the last children are not leaves, else 
p3(y) = 0

	 4.	 p4(y) = 1 if y has at least three children among which 
only the first and the last children are leaves, else 
p4(y) = 0

	 5.	 p5(y) = 1 if y has at least three children and the parity 
of l(y) is identical to the parity of the label of its first 
child, but different from the parity of the labels of its 
other children, else p5(y) = 0.

	 6.	 p6(y) = 1 if y has at least three children and the parity 
of l(y) is identical to the parity of the label of its last 
child, but different from the parity of the labels of its 
other children, else p6(y) = 0.

	 7.	 p7(y) = 1 if y has at least three children and the parity 
of l(y) is identical to the parity of the labels of its first 
and last children, but different from the parity of the 
labels of its other children, else p7(y) = 0

	 8.	 p8(y) = 1 if y has at least three children and the parity 
of l(y) is different from the parity of the labels of its 
first and last children, but identical to the parity of the 
labels of its other children, else p8(y) = 0

	 9.	 p9(y) = 1 if the weight of the arc linking y to its father 
is 
⌈
1

2
×(l(f (y)) + l(y))

⌉
 , else p9(y) = 0.

	10.	 p10(y) = 1 if the weight of the arc linking y to its father 
is 
�√

l(f (y))×l(y)
�
 , else p10(y) = 0.

	11.	 p11(y) = 1 if the weight of the arc linking y to its father 
is |l(f (y)) − l(y)| + 1 , else p11(y) = 0.

	12.	 p12(y) = 1 if the weight of the arc linking y to its father 
is 
⌈
max (l(f (y)),l(y))

min (l(f (y)),l(y))

⌉
 , else p12(y) = 0.

5.2.3 � Classification results

A ten-folds cross-validation has been realized during the 
classification phase where each tree t of the experimental 
databases was considered as the singleton {t} . For each data-
base, the training and testing sets of each fold were obtained 
after randomly shuffling the trees of each class. These train-
ing and testing sets have also been made available online 3. 
For each of the two experiences, the NN classifier has been 
executed using the proposed tree distance as metric.

In the conditions of the first experience where the specific 
nodes properties have been ignored, the Manhattan distance 
exhibited the best accuracies of 44.25% and 36% respectively 
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for FirstLast-L and FirstLast-LW. Tables 6 and 7 respectively 
present the confusion matrices for FirstLast-L and FirstLast-
LW. These poor performances confirm the former conjecture.

In the conditions of the second experience where the 
specific nodes properties have been considered, the Euclid-
ean and the Manhattan distances both exhibited a perfect 
accuracy of 100% for the two experimental databases. These 
perfect performances demonstrate the power of the proposed 
tree distance when the suitable set of targeted nodes proper-
ties is selected.

5.2.4 � Comparison with the tree Edit distance

We have compared the performance of the proposed tree 
distance with the performance of the widespread tree Edit 
distance when used as metrics for the NN classifier on 
FirstLast-L. No comparison was realized for FirstLast-LW 
because existing tree distances (including the tree Edit dis-
tance) are not applicable to arc-weighted trees. To achieve 
our goal, we have first downloaded a Java executable pro-
gram available online 4 which implements the All Path tree 
Edit Distance (AP-TED) proposed in [14]. This choice is 
motivated by the fact AP-TED is a recent robust and memory 
efficient version of the tree Edit distance. The Java execut-
able program we have downloaded takes as input two node-
labeled trees and returns their tree Edit distance. After 
executing the NN classifier on FirstLast-L using AP-TED as 

tree metric, a low accuracy of 59% was obtained. The cor-
responding confusion matrix is presented in Table 8.

Although the 59% of obtained by AP-TED are better than 
the best accuracy (44.25%) exhibited by the proposed dis-
tance when the specific tree properties are ignored, these two 
performances remain very unsatisfactory. But, the accuracy 
obtained by AP-TED is 41% lower than the perfect accuracy 
obtained by the proposed tree distance on this same database 
when the suitable set of targeted nodes properties is selected. 
This big gap is due to the fact that unlike the proposed tree 
distance, existing tree distances (including the tree Edit dis-
tance) cannot consider the specific nodes properties, even 
when these properties are clearly defined.

5.2.5 � The new challenge

As it has been demonstrated throughout this section, the 
proposed tree distance can lead to a perfect NN classifier 
if the suitable set of targeted nodes properties is chosen. 
This choice was obvious for the databases FirstLast-L and 
FirstLast-LW because the specific properties verified by the 
content of each class were clearly specified. But this will 
generally not be case for other tree sets. Thus, the new chal-
lenge resides now in the manual or automatic discovery of 
the optimal set of targeted nodes properties that the best 
describes the trees in each tree set. Once this is done, the 
proposed tree distance may induce excellent classification 
results.

Table 6   Confusion matrix of 
the Nearest Neighbor classifier 
in FirstLast-L when the 
proposed tree distance is used 
as tree metric and when the 
specific nodes properties are 
ignored

The accuracies are 35.25% and 44.25% when the Euclidean and the Manhattan distances are respectively 
selected in ℝ3

(a) Euclidean (b) Manhattan

First Last Both None First Last Both None

First 24 7 66 3 First 24 4 69 3
Last 28 35 14 23 Last 25 39 17 19
Both 30 0 41 29 Both 22 0 62 16
None 24 1 34 41 None 21 0 24 55

Table 7   Confusion matrix of 
the Nearest Neighbor classifier 
in FirstLast-LW when the 
proposed tree distance is used 
as tree metric and when the 
specific nodes properties are 
ignored

The accuracies are 34.75% and 36% when the Euclidean and the Manhattan distances are respectively 
selected in ℝ3

(a) Euclidean (b) Manhattan

First Last Both None First Last Both None

First 9 9 81 1 First 8 11 80 1
Last 20 41 33 6 Last 17 41 34 8
Both 29 2 59 10 Both 23 2 66 9
None 6 7 57 30 None 8 6 57 29

4  http://​tree-​edit-​dista​nce.​dbres​earch.​uni-​salzb​urg.​at/.

http://tree-edit-distance.dbresearch.uni-salzburg.at/
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Fig. 14   Examples of node-labeled and arc-weighted trees verifying the properties presented in Table  5 for FirstLast-LW. The corresponding 
trees verifying the properties of FirstLast-L are obtained by ignoring the arc weights
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5.3 � Time cost

We experimentally observed that the time cost of the pro-
posed approach can be reduced to the time cost of the HMMs 
training phases. Consider a tree set T = {t1,… , t|T|} and a 
set P = {p1,… , pm} of targeted nodes properties. The Baum-
We l c h  a l g o r i t h m  t h e o r e t i c a l l y  r u n s  i n 
Time(T) = �

�
m.� .(

∑�T�
k=1

�tk�).N2

�
 to train the m HMMs asso-

ciated with T. From this expression, one can deduce that the 
overall training time of the m HMMs associated with T is 
influenced by the following parameters: 

1.	 The number m of targeted nodes properties.
2.	 The user-defined maximum number of iterations � of the 

Baum-Welch algorithm.
3.	 The size |T| of the tree set T.
4.	 The number N = (depth(T) + 1) of states of the resulting 

HMMs.
5.	 The size |tk| of each tree, with (1≤k≤|T|).

When two tree sets T and T ′ are compared, the global train-
ing time is (Time(T) + Time(T �)) . When the value of any of 
the aforementioned parameters is high, the overall training 
time increases. This can lead to a huge training time in some 
situations. The values of the parameters |T|, N and |tk| cannot 
be modified by the user since they are derived from the con-
tent of T. The two remaining parameters are user-dependent, 
they must therefore be carefully selected. In order  to reduce 
the global training time cost, the following solutions can be 
applied: 

1.	 Before comparing two tree sets, one should discover the 
optimal set of targeted nodes properties that the best 
describes the content of the two tree sets (following what 
is stated in Section 5.2.5). This will enable to avoid the 
inclusion of unnecessary properties while optimizing the 
comparison result.

2.	 The value of � must not necessarily be very high to 
obtain accurate results. In this paper the value � = 100 
has been selected. Nevertheless, lower values can be 
experimented until a critical value under which the final 
result is seriously affected is reached.

3.	 Finally, the m HMMs can be trained in parallel.

5.4 � Main assets of the proposed tree measures

The tree measures (distance and similarity) proposed in this 
paper: 

1.	 Compare two tree sets, unlike existing measures which 
can only compare two single trees.

2.	 Compare two tree sets containing a mixture of trees 
belonging to various categories (rooted or unrooted, 
ordered or unordered), unlike existing measures which 
can only compare two trees of the same category.

3.	 Compare two tree sets containing weighted trees, unlike 
existing measures which can hardly accurately compare 
two weighted trees.

4.	 Handle the comparison of tree sets containing trees 
where each node and each arc can have several attributes 
(labels, weights), none of the existing measures can do 
this.

5.	 Are customizable because the targeted nodes proper-
ties on which the tree comparison is performed must be 
explicitly specified and there is no particular boundary 
on the possible choices of these properties. This is not 
possible with existing measures.

6.	 Are simple to understand and robust because they are 
based on DFS which is simple to understand and on 
HMMs which are handled by robust algorithms.

7.	 Are accurate because the proposed distance seriously 
outperformed the widespread tree Edit distance when 
they were both used for the flat NN classification of the 
database FirstLast-L.

8.	 Can naturally be implemented in parallel to reduce 
their computation time cost by concurrently training 
the HMMs associated with the various properties while 
using a parallel version of the Baum-Welch algorithm.

6 � Conclusion

This paper addresses the problem of tree comparison. 
Many existing techniques have yet been proposed for this 
purpose, but they are all limited by several factors ana-
lyzed in Sect. 2.3. In order to overcome these limitations, 
a HMM-based technique for comparing two finite sets of 
rooted ordered trees which can be labeled or unlabeled, as 
well as weighted or unweighted is proposed in this work. 
The particularity of the proposed measures is that one must 
explicitly specify the targeted nodes properties (related to 
the topology, the labels and the weights) on which the tree 
comparison should be performed. Given a tree t and a set 
P = {p1,… , pm} of targeted nodes properties, the proposed 

Table 8   Confusion matrix of 
the Nearest Neighbor classifier 
in FirstLast-L when AP-TED is 
used as tree metric

The accuracy is 59%

First Last Both None

First 12 58 30 0
Last 0 98 2 0
Both 0 8 92 0
None 9 35 22 34
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approach follows the principle of the DFS algorithm to 
construct one Markov chain �i(t) for each property pi∈P 
(1≤i≤m) . When this principle is applied for each property 
pi∈P on each tree of a tree set T,  the set �i(T) of Markov 
chains is obtained. This set is then used to initialize and 
to train a HMM �i(T) . Given two finite tree sets T and T ′ , 
their m associated HMMs are compared by calculating the 
proposed distance dP(T ,T �) whose computation scheme is 
based on existing distances in ℝm (i.e: Euclidean, Manhat-
tan). The proposed similarity �P(T ,T

�) is finally derived 
from dP(T , T �) . These two measures have been generalized 
for the comparison of unrooted and unordered trees after 
transforming them into sets of rooted ordered trees.

The proposed measures have first been experimented for 
the comparison of two sets D and D′ of text documents. 
Here, the common prefixes appearing in the various docu-
ments are exploited for constructing one node-labeled and 
arc-weighted prefix tree for each document. The resulting 
sets of prefix trees associated with D and D′ are later com-
pared using the proposed measures. This approach exhibited  
finer results than the recent technique proposed in [59].

We finally assessed the accuracy of the proposed tree dis-
tance by evaluating how it can empower the performances 
of the metric-based NN classifier. To achieve this goal, we 
constructed two synthetic tree databases named FirstLast-L 
and FirstLast-LW, each composed of four classes of 100 
rooted ordered trees. FirstLast-L contains node-labeled trees 
and FirstLast-LW contains the same trees found in FirstLast-
L with weighted arcs. The trees in these two experimen-
tal databases are characterized by specific and non-trivial 
properties presented in Table 5. The proposed distance has 
been experimented as tree metric for the NN classification 
of the trees in these two databases. When the specific nodes 
properties of these two databases were ignored, the low best 
accuracies of 44.25% and 36% were respectively obtained 
for FirstLast-L and FirstLast-LW. But when these specific 
properties were considered, a perfect accuracy of 100% was 
obtained for the two experimental databases. This last per-
formance is 41% higher than performance obtained by the 
widespread tree Edit distance for FirstLast-L. The following 
interesting perspectives can be explored in future work: 

1.	 Future work can conduct new experiments to evaluate 
how the proposed tree distance can empower the per-
formances of other metric-dependent algorithms like 
clustering algorithms.

2.	 Consider a set P = {p1,… , pm} of targeted nodes prop-
erties. In this paper, we granted the same importance 
to every property pi ∈ P (1≤i≤m) during the computa-
tion of the distance and the similarity between two tree 

sets. However, depending on the selected application, 
it may be very interesting to grant different degrees of 
importance to these properties. Future work can imple-
ment modified versions of the proposed measures which 
consider the user-defined importance granted to each 
property.

3.	 In this paper, given a tree set T and a nodes property pi , 
the number of states of the HMM �i(T) associated with 
T for property pi is (depth(T) + 1) . This setting becomes 
a problem when depth(T) is high because an explosive 
number of states may lead to huge training time cost, 
as well as to not meaningful probabilities inside �i(T) . 
This limitation can be attenuated in future work by first 
organizing the depths’ values as regular intervals, then 
by rather considering each state as an interval of depths 
(i.e: state s1 = [1, 3] , state s2 = [4, 6] , etc.).

4.	 Future work must focus on the design of manual and 
automatic techniques for discovering the optimal set of 
targeted nodes properties that the best describes the trees 
in each tree set. Frequent tree mining techniques stand 
as an excellent starting point to achieve this goal for the 
case of labeled trees.

5.	 Future work can explore the possibility of adapting the 
proposed approach for graph comparison. This can be 
done by transforming each graph G into a particular tree 
embedding all the information related to every vertex 
and every edge of G.

6.	 In this work, only the Nearest Neighbor classifier was 
experimented because it requires the use of a metric 
between two trees. However, there exist several other 
classifiers which are not metric-dependent and which 
cannot actually be experimented (i.e: Support Vector 
Machines, Multilayer perceptron, Decision trees, etc.). 
Indeed, for each singleton {t} , these classifiers require 
a descriptor vector t⃗ whose components belong to ℝ . 
Future work must find a way to use all the HMMs asso-
ciated with {t} for deriving a descriptor vector t⃗ associ-
ated with each singleton {t} in order to enable the experi-
mentation of classifiers which are not metric-dependent.

7.	 The time cost of the proposed approach can be consid-
erably reduced if for each tree set, the HMMs training 
phase is realized in parallel by |P| units of computations, 
where P is the set of targeted nodes properties. This 
parallel version theoretically divides the overall HMMs 
training time cost by 2×|P|.

8.	 In addition to the former proposal, the HMMs training 
time cost can be further reduced in future work if each 
unit of computations is a cluster of processors. Here, 
a parallel version of the Baum-Welch algorithm must 
be executed by the members of the cluster. This can be 
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implemented analogically to the recent technique pro-
posed in [64]. In that work, the authors used the Message 
Passing Interface (MPI) framework to implement in C 
language a parallel version of the HMM-based similarity 
measure between two finite sets of histograms initially 
proposed in [59]. That work exhibited an experimental 
average speed-up of 7.42 while using eight processors.

9.	 An alternative to the former MPI-based parallel imple-
mentation running on a cluster of computers is an imple-
mentation running on a Field-Programmable Gate Array 
(FPGA) chip. This can be realized following the prin-
ciple of the FPGA-based  version of the Baum-Welch 
algorithm proposed in [65].
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