
Vol.:(0123456789)1 3

Pattern Analysis and Applications
https://doi.org/10.1007/s10044-021-00971-3

THEORETICAL ADVANCES

Customizable HMM‑based measures to accurately compare tree sets

Sylvain Iloga1,2,3 

Received: 14 August 2020 / Accepted: 1 March 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Trees have been topics of much interest since many decades due to various emerging applications using data represented
as trees. Several techniques have been developed to compare two trees. But there is a serious lack of metrics to compare
weighted trees. Existing approaches do not also allow to explicitly specify the targeted nodes properties on which the com-
parison should be performed. Furthermore, the problem of comparing two tree sets is not specifically addressed by existing
techniques. This paper attempts to solve these problems by first proposing a distance and a similarity for the comparison of
two finite sets of rooted ordered trees which can be labeled or not, as well as weighted or unweighted. To achieve this goal, a
hidden Markov model is associated with each tree set for each targeted nodes property. The model associated with a tree set
T for the targeted nodes property p learns how much the nodes of the trees in T verify property p. The resulting models are
finally compared to derive a distance and similarity between the two sets of trees. The previous measures are then general-
ized for the comparison of unrooted and unordered trees. Flat classification experiments were carried out on two synthetic
databases named FirstLast-L and FirstLast-LW available online. They both contain four classes of 100 rooted ordered trees
whose specific and non-trivial nodes properties are clearly defined. When the distance proposed in this paper is selected as
metric for the Nearest Neighbor classifier, a perfect accuracy of 100% is obtained for these two databases. This performance
is 41% higher than the accuracy exhibited when the widespread tree Edit distance is selected for FirstLast-L.

Keywords  Trees · Comparison of tree sets · Distance between trees · Hidden Markov Models

1  Introduction

Trees have been topics of much interest since many decades
due to several emerging applications using data represented
as trees. This involves applications in compiler design, graph
transformation, automatic theorem providing, information
retrieval, structured text database, pattern recognition, as
well as signal processing [1, 2]. The analysis of data in these
areas often requires some form of dissimilarity or distance
measure to compare trees. In image processing for example,
tree matching techniques are used to evaluate the similarity

between 2D shapes [3]. Another interesting example is found
in e-Business where tree similarity algorithms enable the
match-making of agents in multi-agent systems [4]. For
these reasons, developing measures for comparing two trees
have become the goal of several researchers.

Depending on the category of the trees (rooted or
unrooted, ordered or unordered) many metrics are available
for the comparison of labeled or unlabeled trees. Most of
the existing metrics are based on one of the three following
widespread principles:

1.	 Tree Edit [5–25].
2.	 tree Alignment [26, 27].
3.	 Tree Inclusion [28–32].

The major differences between the existing measures based
on one of these three principles are generally related to the
time cost and the space complexity. These differences are
analyzed in the survey proposed in [2]. Beside these three
major principles, few measures based on other principles
have also been proposed [3, 33–43].

 *	 Sylvain Iloga
	 sylvain.iloga@gmail.com

1	 Department of Computer Science, Higher Teachers’ Training
College, University of Maroua, P.O.box 55, Maroua,
Cameroon

2	 CY Cergy Paris University, ENSEA, CNRS, ETIS UMR
8051, 95000 Cergy, France

3	 University of Sorbonne, IRD, UMMISCO, 93143 Bondy,
France

http://orcid.org/0000-0002-4603-7744
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-021-00971-3&domain=pdf

	 Pattern Analysis and Applications

1 3

The first observation that can be made is the serious
lack of measures for comparing weighted trees. This may
be due to the fact that node and arc weights are continu-
ous real numbers, unlike node and arc labels which always
belong to finite sets.

The next drawback of existing measures is that they do
not enable to explicitly specify the targeted nodes prop-
erties on which the tree comparison must be performed.
Indeed, all the actual algorithms are only intended to
evaluate how identical are the two trees regarding the
exact values of their nodes degrees and their eventual
nodes or arcs labels. This is a serious limitation because
two trees can have completely different topologies, labels
or weights, but still remain very similar regarding other
properties verified by these same characteristics. As an
example, all the labels appearing in two trees can be odd
integers, but no identical label is found in both trees. Con-
sequently, the two trees are completely different regarding
the exact values of their labels, but they are very similar
regarding the parity of these labels.

Another significant limitation of existing approaches is
the fact that no existing work has yet specifically addressed
the problem of comparing two tree sets. A coarse way to
perform this task is to first consider each tree set as a cluster
of trees and then to apply existing cluster distances like the
minimum, the maximum, the average or the centroid linkage
distances [44]. But such an approach does not consider the
individual properties of the trees of each set.

This paper attempts to provide a solution to all the afore-
mentioned limitations. Our contribution is thus composed
of three main parts. In the first part, a customizable approach
based on hidden Markov models (HMMs) is proposed for
the comparison of two finite sets containing rooted ordered
trees which can be labeled or unlabeled, as well as weighted
or unweighted. The attribute ’customizable’ refers here to
the fact that one must explicitly specify the targeted nodes
properties on which the tree comparison will be performed.
The principle is to traverse the trees of each set, while cap-
turing the values of the targeted properties for each node
encountered during the traversal. These values are later used
to initialize, then to train one HMM per property, for each
tree set. The distance and the similarity between the two tree
sets are finally derived from the similarity between these
HMMs. An interesting advantage of this solution is that
there is no boundary on the possible choices of the targeted
nodes properties. The four properties listed below are exam-
ples of properties which can be targeted for a given node y.

1.	 p(y) is the number of children of y.
2.	 p(y) is the label of y.
3.	 p(y) = 1 if y has more than three children, else p(y) = 0.

4.	 p(y) = 1 if y is not the root and the weight of the arc
linking y to its father is lower than 55, else p(y) = 0.

In the second main part of our contribution, the former
proposed distance and similarity between sets containing
rooted ordered trees are generalized for the comparison of
sets containing unrooted or unordered trees. In both cases,
the comparison is realized after transforming each unrooted
or unordered tree into one set of rooted ordered trees.

In the last main part of our contribution, the proposed dis-
tance is first experimented for the comparison of sets of text
documents. Then, a performance evaluation of the proposed
distance is realized by evaluating how much it can empower
the performances of the Nearest Neighbor (NN) classifier
[45] when suitable targeted nodes properties are selected.

The rest of this paper is organized as follows: the state
of the art is presented in Sect. 2, followed by a summarized
presentation of HMMs in Sect. 3. The description of the
proposed approach for tree sets comparison is realized in
Sect. 4, while experimental results are exhibited in Sect. 5.
The last section is dedicated to the conclusion.

2 � State of the art

2.1 � Basic tree‑related concepts

In this section, basic tree-related concepts that will be used
throughout the paper are defined. Given that a tree is a spe-
cific type of graph, we start by defining few graph-related
concepts that will later be required to define the tree-related
concepts. A more detailed overview on graph theory and
applications is available in [46]. After these definitions,
the tree representation that will be used in this paper is
presented. The section ends with the description of the
algorithm dedicated to the traversal of a tree that has been
selected in this paper.

2.1.1 � Graph‑related definitions

A graph G is a pair < V ,E > where:

1.	 V is a finite set of objects called vertices.
2.	 E ⊆ V×V is a set of edges, which are connections

between vertices. More formally, E is a set of pairs (x, y)
such that there exist in graph G a connection between the
vertices x and y. If the pair (x, y) ∈ E , then x is adjacent
to y.

Given a finite set L of labels, a label l∈L can be assigned to
each vertex (resp. to each edge) of a graph G. In that case,
the graph is vertex-labeled (resp. edge-labeled). Similarly, a
positive continuous weight w can be assigned to each vertex
(resp. to each edge) of a graph G. In that case, the graph
is vertex-weighted (resp. edge-weighted). A graph which
is neither vertex-labeled, nor edge-labeled is unlabeled.

Pattern Analysis and Applications	

1 3

Similarly, a graph which is neither vertex-weighted, nor
edge-weighted is unweighted. A path in a graph G is a
sequence of edges connecting a sequence of vertices which
are all distinct from one another. A cycle in a graph is a path
such that the first vertex of the path corresponds to the last
vertex. A graph containing at least one cycle is cyclic, oth-
erwise the graph is acyclic. A graph where there exist a path
from any vertex to any other vertex is connected, otherwise
the graph is disconnected.

2.1.2 � Tree‑related definitions

A tree is a connected acyclic graph. Generally, the edges
and the vertices of a tree are respectively called arcs and
nodes. In this paper, the number of nodes of a tree t is noted
|t|. A rooted tree t is a tree in which a special node called the
‘root’ and denoted root(t) is singled out. If such a node is
not specified, then the tree is unrooted. If a node y is adja-
cent to another node x in a rooted tree, then y is the father
of x and x is a child for y. A node without children is called
a leaf. An ordered tree is a tree where a left-to-right order
is defined among the children of each node, otherwise the
tree is unordered. In a tree, the depth of a node y, denoted
depth(y), is the number of arcs in the path from the root to y.
The depth of the root is 0. The degree of a node y, denoted
deg(y), is its number of children. In the rest of this paper,
the expression ‘tree’ without any other precision refers to a
rooted ordered tree.

2.1.3 � Representation of a tree

There are various ways for representing trees. In this paper,
only the schematic representation (i.e: a figure describing
the tree) is privileged because it facilitates the explanation
of the proposed approach. In this representation, nodes are
represented with circles, each circle carrying the eventual
attributes (label, weight) of the node it describes. Arcs are
represented with lines, each line also carries the eventual
attributes (label, weight) of the arc it describes.

2.1.4 � Traversal of a tree

To traverse a tree t means to visit all the nodes of t in some
systematic order and there exist many algorithms for this
purpose. In this paper, the Depth-First Search (DFS) algo-
rithm [47] is selected due to its simplicity. DFS is a recursive
algorithm which traverses the tree t starting from a specific
node. While traversing t, DFS manages an ordered list of
visited nodes using a stack, this list is empty at the beginning
of the algorithm and must contain all the nodes of t at the
end. The formal principle of DFS is the following:

1.	 Select a starting node and put it on top of the stack. If t
is rooted, then root(t) is selected.

2.	 Remove the node x on top of the stack, use it, then insert
it at the end of the visited list.

3.	 Browse the all the children of x and put each encoun-
tered child of x which is not yet in the visited list on top
of the stack. If t is ordered, the children of x are browsed
from left to right.

4.	 If the stack is empty, then stop, else goto step 2.

2.2 � Related work

2.2.1 � Tree Edit

There are three basic edit operations: node insertion, node
deletion and node substitution. We assume here that each
edit operation has a specific user-defined cost. An edit
script between two trees t1 and t2 is a sequence S(t1, t2) of
edit operations required for transforming t1 into t2 . The cost
of S(t1, t2) is the sum of the costs of the edit operations in
S(t1, t2) . An optimal edit script between t1 and t2 is an edit
script between t1 and t2 of minimum cost and this cost is the
tree Edit distance (TED). The first algorithm implementing
this principle for comparing ordered trees was proposed by
Tai [5]. This initial version was the generalization of the
well-known string edit distance problem addressed by Wag-
ner and Fischer [48]. An accelerated version which reduced
both space and time complexity was then proposed by Zhang
and Shasha [6]. In 1998, Klein proposed a more general ver-
sion which handled unrooted trees and enabled to have a bet-
ter worst case time bound while preserving the same space
complexity [9]. After this, a more complex version which
improved the previous bounds for certain kinds of trees was
proposed by Chen [10]. A version running in linear time
was later proposed by Touzet [11]. In 2009, Demaine et al.
proposed a decomposition algorithm for tree Edit distance
which exhibited a low worst-case time complexity when the
two trees have n nodes [12]. A Robust algorithm for the
Tree Edit Distance (RTED) which was both efficient and
worst-case optimal was introduced by Pawlik and Augsten
[13]. The same authors also proposed another version of the
former algorithm name AP-TED (All Path Tree Edit Dis-
tance) running at least as fast as RTED without trading in
memory efficiency [14]. A revised version of the proposal
of Chen [10] was proposed by Schwarz et al. [15]. In this
last version, the time complexity has been improved and a
new traversal strategy has been implemented to reduce the
memory complexity.

The difficulties to solve the general ordered tree Edit
distance problem led to the study of a restricted version of
this problem named constrained Edit distance introduced
in 1995 and 1996 by Zhang [16, 17]. Here, the tree Edit
distance is defined under the restriction that disjoint subtrees

	 Pattern Analysis and Applications

1 3

should be mapped to disjoint subtrees. In 1997, Richter pro-
posed another solution to this problem which gave space
improvement over the former solutions of Zhang for trees
having small degrees and low depths [18]. Lu, Su, and Tang
proposed in 2001 to relax the constrained mapping by intro-
ducing the less constrained Edit distance [19]. A quotiented
tree is a tree defined with an additional equivalent relation on
arcs and such that the corresponding quotient graph is also a
tree. In 2007, Ouangraoua et al. proposed a constrained edit
scoring scheme based on [6] for comparing ordered quo-
tiented trees [20].

Beside these constrained versions, several other variants
of the ordered tree Edit distance have been proposed. This
was for example the case in 1977 when Selkow proposed the
1-degree Edit distance where insertions and deletions were
restricted to the leaves of the trees [21]. Another variant
where edit operations worked on subtrees instead of nodes
was proposed by Lu [22]. An analog implementation of this
variant was also proposed by Tanaka and Tanaka [23] . An
important difficulty in the use of the TED resides in the
choice of the cost of each edit operation. This is why in
1990, Shasha and Zhang proposed the unit cost Edit distance
defined as the number |S(t1, t2)| of edit operations needed
to turn t1 into t2 (i.e: the cost of each edit operation is 1.0)
[24]. Merge trees are important for applications related to
feature-directed visualization of time-varying data. In 2018,
a variant of the tree Edit distance for comparing merge trees
was proposed by Sridharamurthy et al. [25].

The general problem of evaluating the tree Edit dis-
tance for rooted unordered trees with label nodes has been
shown to be NP-Complete by Zhang and Shasha [6] and to
be MAX-SNP-hard by Zhang and Jiang [8]. Nevertheless,
Zhang et al. proved in 1992 that for some special cases,
polynomial algorithms can be implemented [7].

2.2.2 � Tree Alignment

The tree Alignment distance is a special case of the tree
Edit distance where all insertions must be performed before
any deletion. In 1995, Jiang et al. proposed the first imple-
mentation of the tree Alignment distance for rooted ordered
trees with labeled nodes which could be computed more effi-
ciently than the tree Edit distance for some trees with small
degree [26]. A faster version of tree Alignment designed for
similar trees was later proposed by Jansson and Lingas [27].

Consider two rooted unordered trees with labeled nodes
t1 and t2 . A modified version of the algorithm proposed by
Jiang et al. [26] enabled to compute the tree alignment dis-
tance between t1 and t2 . Jiang demonstrated that if t1 or t2 has
an arbitrary degree, the unordered tree Alignment between
these trees is NP-hard. However, if they both have bounded
degrees, their tree Alignment distance can be computed in

linear time, unlike the computation of their tree Edit distance
which remains MAX-SNP-hard in the same conditions.

2.2.3 � Tree inclusion

Let t1 and t2 be two rooted trees with labeled nodes. t1 is
included in t2 if there is a sequence S�(t1, t2) of node dele-
tions performed on t2 which makes t2 isomorphic to t1 . The
tree Inclusion problem is to decide if t1 can be included in t2
and the tree inclusion distance is the sum of the costs of the
deletions found in S�(t1, t2).

The first polynomial time algorithms for computing of
the tree inclusion distance between two rooted ordered trees
with labeled nodes were proposed by Kilpeläinen et al. [28]
then by Kilpeläinen and Mannila [30]. In 1997, Richter pro-
posed a modified version which improved the time complex-
ity if the number of pair of nodes having identical labels
is small [31]. Alonso and Schott also proposed an efficient
average case version in 1993 [29] while a more complex
version was developed by Chen [32].

Kilpeläinen and Mannila [30] also demonstrated that
the computation of the tree inclusion distance between two
rooted unordered trees with labeled nodes is NP-complete.
In 1992, Matoušek and Thomas independently exhibited
another proof of this NP-completeness [49].

2.2.4 � Other principles of comparison

Beside the three former principles based on edit operations,
other principles have been proposed for comparing two trees.
Some authors opted for tree pattern matching which consist
in finding the instances of a given pattern tree in a given tar-
get tree [3, 33–37]. Other authors rather preferred solutions
related to subtrees or to supertrees similarity. This choice
led them to find the maximum agreement subtree [38, 39],
the largest common subtree [40, 41] or the smallest common
supertree [42, 43]. Table 1 summarizes the main character-
istics of the related work reviewed in this paper.

2.3 � Problem statement

The first limitation of the state of the art is the serious lack
of techniques for comparing weighted trees. An attempt
for comparing unordered node-labeled trees with labeled
and weighted arcs was proposed in 2004 by Bhavsar et al.
[4]. But this measure was limited because arc weights must
always belong to the interval [0, 1] and arc labels must be
unique on each level.

Another major drawback of existing techniques for tree
comparison is that they do not enable the user to explic-
itly specify the set of targeted nodes properties on which
the comparison should be performed. The comparison is

Pattern Analysis and Applications	

1 3

generally based on the exact values of the nodes degrees and
the nodes or arcs labels.

Additionally, none of the existing techniques has yet
been specifically dedicated for the comparison of tree sets.
In 2006, Torsello and Hancock developed a clustering
method for learning the class prototype and class struc-
ture of a set of unlabeled trees [50], which was generalized

to graphs in 2011 [51]. In [50], a probabilistic model for
describing the distribution of tree data in each cluster (tree
set) was constructed under several simplifying assump-
tions. It is possible to use this method as a proxy for com-
paring two tree sets by evaluating the similarity between
their associated probabilistic models. But this will be
done without having the possibility of capturing specific

Table 1   Main characteristics of relevant existing techniques for comparing of two rooted or unrooted trees, that can be ordered or unordered, as
well as labeled or unlabeled. For each principle, references are listed chronologically

No. Authors [Ref.] Years Principle Specificity

1 Tai [5] 1979 General tree Edit Initial version
2 Zhang and Shasha [6] 1989 Reduces space and time complexity
3 Zhang et al. [7] 1992 NP-complete unordered versions
4 Zhang and Jiang [8] 1994
5 Klein [9] 1998 Better worst case time bound
6 Chen [10] 2001 Complexity improvements for some trees
7 Touzet [11] 2007 Runs in linear time
8 Demaine et al. [12] 2009 Low time complexity for trees having n nodes
9 Pawlik and Augsten [13] 2015 (RTED) Efficient and worst-case optimal
10 Pawlik and Augsten [14] 2016 (AP-TED) Memory efficient version of RTED
11 Schwarz et al. [15] 2017 Improves the proposal of [10]
12 Zhang [16] 1995 Constrained tree Edit Disjoint subtrees are mapped to disjoint subtrees
13 Zhang [17] 1996
14 Richter [18] 1997 Gives space improvement
15 Lu et al. [19] 2001 Relaxes the constrained mapping
16 Ouangraoua et al. [20] 2007 Designed for quotiented trees
17 Selkow [21] 1977 Other variants of tree Edit Deletions are restricted to the leaves
18 Lu [22] 1979 Edit operations work on subtrees
19 Tanaka and Tanaka [23] 1988
20 Shasha and Zhang [24] 1990 Each edit operation costs 1.0
21 Sridharamurthy et al. [25] 2018 Edit distance between merge trees
22 Jiang et al. [26] 1995 tree Alignment Initial version, works on unordered trees
23 Jansson and Lingas [27] 2001 Faster version
24 Kilpeläinen et al. [28] 1992 Tree inclusion Initial version
25 Alonso and Schott [29] 1993 Efficient average version
26 Kilpeläinen and Mannila [30] 1995 Polynomial version
27 Richter [31] 1997 Improves the time complexity
28 Chen [32] 1998 More complex version
29 Hoffmann and O’Donnell [33] 1982 Tree pattern matching Research of the instances of a pattern tree in a target tree
30 Kosaraju [34] 1989
31 Dubiner et al. [35] 1990
32 Ramesh and Ramakrishnan [36] 1992
33 Zhang et al. [37] 1994
34 Liu and Geiger [3] 1999
35 Farach and Thorup [38] 1995 Maximum agreement subtree Comparison related to subtrees or supertrees
36 Amir and Keselman [39] 1997
37 Khanna et al. [40] 1995 Largest common subtree
38 Akutsu and Halldórsson [41] 2000
39 Gupta and Nishimura [42] 1998 Smallest common supertree
40 Nishimura et al. [43] 2000

	 Pattern Analysis and Applications

1 3

user-defined targeted nodes properties during the modeling
process.

The goal of this paper is to attempt to provide solutions
for these problems by initially proposing one distance and
one similarity, both based on HMMs, to compare two finite
sets containing rooted ordered trees which can be labeled or
unlabeled, as well as weighted or unweighted. These meas-
ures are finally generalized for the comparison of two finite
sets containing unrooted or unordered trees.

3 � Hidden Markov Models

3.1 � HMM definition

A HMM � = {A,B,�} is fully characterized by [52]:

1.	 The number N of states of the model. The set of states is
S = {s1, s2,… , sN} . The state of the model at time x is
generally noted qx ∈ S.

2.	 The number M of symbols. The set of symbols is
� = {v1, v2,… , vM} . The symbol observed at time x is
generally noted Ox ∈ �.

3.	 The state transition probability distribution A = {aij}
where each aij = P(qx+1 = sj|qx = si) with 1≤i, j≤N.

4.	 T h e s y m b o l s p ro b a b i l i t i e s d i s t r i b u t i o n s
B = {bi(k)} in each state si where each distribution
bi(k) = P(vk at time x|qx = si) with 1≤i≤N and 1≤k≤M.

5.	 The initial state probability distribution � = {�i} where
�i = P(q1 = si) with 1≤i≤N.

3.2 � HMM used as sequence generator

A HMM � = {A,B,�} can be used to generate a sequence
O = O1O2…OX composed of X symbols observed by the
sequence of states q = q1q2…qX as described in the Markov
chain (MC) shown in Fig. 1.

In order to obtain the MC presented in Fig. 1, the follow-
ing algorithm is executed:

1.	 Select the initial state sj ∈ S according to the distribution
� and set x = 0.

2.	 Set x = x + 1 and change the current state to qx = sj

3.	 Select the symbol Ox ∈ � to be observed at state qx
according to the distributions in B.

4.	 If ( x < X) go to step 5, else terminate.
5.	 Select the state transition to be realized from the current

state qx to another state sj ∈ S according to the distribu-
tion A, then go to step 2.

3.3 � Manipulation of a HMMs

Consider a sequence of symbols O = O1O2…OX and a
HMM � = {A,B,�} . The probability P(O|�) to observe O
given � is efficiently calculated by the Forward-Backward
algorithm [52] which runs in �(X.N2) . Given a sequence of
symbols O = O1O2…OX , it is possible to iteratively re-esti-
mate the parameters of a HMM � = {A,B,�} in order to
maximize the value of P(O|�) , where � = {A,B,�} is the
re-estimated model. The Baum-Welch algorithm [52] is gen-
erally used to perform this re-estimation. This algorithm
runs in �(� .X.N2) where � is the user-defined maximum num-
ber of iterations. In this paper, the value � = 100 is selected
following [53]. The Baum-Welch algorithm can also train a
HMM for multiple sequences. The algorithm maximizes the
value of P(O��) =

∑K

k=1
P(O(k)��) where O = {O(1),… ,O(K)}

is a set of K sequences of symbols and O(k) = O
(k)

1
…O

(k)

Xk
 is

the kth sequence of symbols of O. In the case of multiple
sequences, this algorithm runs in �

�
� .(

∑K

k=1
Xk).N

2

�
.

3.4 � HMMs similarity measure

Several measures have yet been proposed for comparing two
HMMs � = {A,B,�} and �� = {A�,B�,��} [54–58]. Further
details related to these measures and their drawbacks are
available in [53, 59]. In this paper, we selected the accurate
low-complexity similarity measure between two HMMs �
and �′ originally proposed in [60] and later used in [53, 59].
In the current paper, this measure is noted dsim(�, ��) and
its summarized computation scheme can be found in [59].
dsim(�, �

�) evaluates the probability that � and �′ observe
identical sequences of symbols.

4 � The proposed approach

4.1 � Main idea

The main idea for comparing tree sets using HMMs in this
work arises from the following observation related to the tra-
versal of a tree using DFS: When DFS is executed on a tree
t, the algorithm sequentially transits from one visited node
located at a specific depth, to another visited node located at
another depth, starting from the root node until the last node
is visited. In other words, DFS sequentially transits from

symbols: O1 O2 . . . OX

↑ ↑
... ↑

states: q1 → q2 → . . . → qX

Fig. 1   HMM used as sequence generator

Pattern Analysis and Applications	

1 3

one node depth to another and at each step, the algorithm
observes the properties of the visited node. This observa-
tion enables us to transform t into a MC resulting from the
traversal of t using DFS. In this transformation, the hidden
states are the depths of the visited nodes and the observed
symbols are the values of a specific targeted nodes property
p. If we note depth(t) = max{depth(y)|y ∈ t} the depth of the
deepest node of t, then the depth of the node visited by DFS
at each step of the traversal is always between 0 (which is the
depth of the root node) and depth(t). Therefore, the hidden
states belong to {0, 1,… , depth(t)} . In practice, if y1y2…yk
is the ordered list of visited nodes outputted by DFS (with
root(t) = y1 ), then Fig. 2 shows the MC named �(t) generated
for t considering the property p.

The MC of Fig. 2 is later used to initialize and to train a
HMM which learns how much the nodes of t verify property
p. Given that HMMs can be trained for multiple sequences,
this principle can be generalized to a tree set. Consider a
finite set T composed of |T|≥1 trees. We transform the trees
in T into MCs, before training one HMM for T using these
MCs.

4.2 � Methodology

Let T = {t1,… , tn} and T � = {t�
1
,… , t�

k
} be two tree sets.

Consider now the set P = {p1, p2,…, pm} composed of m
user-defined targeted nodes properties. As it is shown in
Fig. 3, the methodology applied in the proposed approach
to compare T and T ′ can be summarized in the two follow-
ing steps:

1.	 Tree modeling: For each property pi (1≤i≤m) ,
the principle presented in Sect. 4.1 is applied to
obtain the two sets �i(T) = {�i(t1),… , �i(tn)} and
�i(T

�) = {�i(t
�
1
),… , �i(t

�
k
)} containing the MCs associ-

ated with the trees in T and T ′ . Thereafter, two HMMs
�i(T) and �i(T �) are respectively initialized then trained
according to the contents of �i(T) and �i(T

�) . Figure 4
describes the principle of tree modeling for a tree set T.

2.	 Tree comparison: The point �P(T ,T
�)∈ℝm whose

ith component is the similarity rate between T and T ′
according to property pi (1≤i≤m) is initially calculated.
Finally, the distance dP(T ,T �) , then the similarity rate
�P(T ,T

�) between T and T ′ are computed based on the

components of �P(T ,T
�) . Figure 5 summarizes the prin-

ciple of tree comparison.

4.3 � Tree modeling

4.3.1 � Example of transformation into MC

Consider the singleton T = {t} where t is the node-labeled
and arc-labeled tree presented in Fig. 6a. The node labels
of t belong to the set {1, 2, 3, 4, 5, 7} and the arc labels
belong to the set {a, b, c, e, f } . Given that the root of a
tree has no father, we conventionally assume that if a tree
is arc-weighted, then the weight of the arc linking the
root to its father is 0.0. If a tree is arc-labeled, we also

symbols: p(y1) p(y2) . . . p(yk)

↑ ↑
... ↑

states: depth(y1) → depth(y2) → . . . → depth(yk)

Fig. 2   MC �(t) of tree t considering property p 

Fig. 3   Proposed methodology for comparing tree sets

Fig. 4   The tree modeling principle

	 Pattern Analysis and Applications

1 3

conventionally assume that the label of the root is any
valid label (symbol, integer, etc.) that does not belong to
the initial set of labels. In this paper, the symbol ′#′ is
selected as conventional label for this purpose. Thus, the
set of labels becomes {a, b, c, e, f }∪{#} . For each node y of
t, if we consider that the targeted nodes property is:

1.	 p1(y) : The degree of y, then the resulting MC is �1(t)
presented in Fig. 6a.

2.	 p2(y) : The label of y, then the resulting MC is �2(t) pre-
sented in Fig. 6b.

3.	 p3(y) : The label of the arc linking y to its father, then the
resulting MC is �3(t) shown in Fig. 6c.

4.	 p4(y) : A Boolean which is true when the label of y is an
odd number greater or equal to 3, then the resulting MC
is �4(t) presented in Fig. 6d.

5.	 p5(y) : A Boolean which is true when y is not a leaf and
the label of y is the sum of the labels of its children, then
the resulting MC is �5(t) presented in Fig. 6e.

Let us now explain how to handle properties whose
values are positive continuous numbers like nodes or arcs
weights. Indeed, for such properties, the set of possible
values is infinite. This is a serious obstacle because the set
� of symbols of a HMM must be finite. Let us note � the
set of nodes properties whose values are positive continu-
ous numbers. Consider now a tree set T and a property
p ∈ � . To overcome the former obstacle, the algorithm
below composed of four main steps is applied following
an analog algorithm used in [59] for a similar purpose:

Step 1: Compute the MCs of the trees in T using prop-
erty p.

Step 2: Modify the MCs obtained at step 1 by normal-
izing the values of p(y) in order the move them in the
interval [0, 100]. This is done by replacing the value of
p(y) in each MC by p̂(y) calculated in Eq. 1. The effect of
this normalization will be canceled when the distance will
be computed.

Fig. 5   The principle of tree comparison for two tree sets T and T ′

7
4

1 3
1

2

5 4

c

c
a

f

e

c
b

(a) The tree t (b) δ1(t)

(c) δ2(t) (d) δ3(t)

(e) δ4(t) (f) δ5(t)

Fig. 6   Transformation of the tree set T = {t} into a MC depending on the targeted nodes property

Pattern Analysis and Applications	

1 3

Step 3: Split the interval [0, 100] into (N + 1) slices
{v0, v1,… , vN} as shown in Eq. 2, where N is a user-defined
integer.

Step 4: If the value of N used at step 3 to split the inter-
val [0, 100] is very high, then the width of each slice vk
becomes tiny and all the elements in vk become very near to
one unique value which is 100

N
×k . In that case, the elements

of vk can be approximated by this single value which we
identify here by the index k of the slice vk . This reasoning
enables to define a new MC by replacing p̂(y) in the MC
obtained at step 2 with the value p̃(y) which is the index k
the slice vk containing p̂(y) as shown in Eq. 3.

Following this algorithm, property p whose values are con-
tinuous numbers is finally replaced by property p̃ whose
values belong to the finite set � = {0, 1,… ,N} . Consider for
example the singleton T � = {t�} containing the node-labeled
and arc-weighted tree t′ presented in Fig. 7a. The tree t′ is
quite similar to the tree t of Fig. 6a, the only difference is
that the arc labels are transformed into arc weights as fol-
lows: # becomes 0.0, a becomes 1.0, b becomes 2.0, … and
f becomes 6.0 . If we consider that for each node y ∈ t� , p(y)
is the weight of the arc linking y to its father, then the former
algorithm is executed on T ′ as follows:

1.	 The MC of Fig. 7b is computed for t′ using p.
2.	 The arc weights are replaced by their normalized val-

ues using �(p,T �) = 6 . The resulting MC is presented
in Fig. 7c.

(1)
p̂(y) = 100×

p(y)

𝛼(T , p)
where

𝛼(T , p) = max{p(z)|∀z ∈ t and ∀t ∈ T}.

(2)v0 = {0} and vk =

]
100

N
×(k − 1),

100

N
×k

]
, 1≤k≤N.

(3)p̃(0) = 0 and (p̃(y) = k) ⇔
(
p̂(y) ∈ vk

)
, 1≤k≤N

3.	 If we select for this example the value (N = 10) ,
then the interval [0, 100] is split to gener-
ate the set {v0, v1,… , v10} of s l ices where:
v0 = {0}, v1 =]0, 10], v2 =]10, 20],… , v10 =]90, 100].

4.	 Each normalized arc weight is replaced by the index of
the slice to which it belongs. The resulting MC is pre-
sented in Fig. 7d.

One can remark that the choice of N is crucial in this algo-
rithm. On the one hand, low values of N cannot enable to
accurately separate the property values. But on the other
hand, huge values of N induce a considerable augmenta-
tion of the HMM training time due to the elevated number
of symbols. In this paper, the value N = 50 is selected
following a recommendation made in [59].

Another important remark is that the proposed approach
can be used for comparing two tree sets containing trees
which are both, unlabeled and unweighted. In that case,
the set P of targeted nodes properties must only contain
properties related to the tree topologies like the value of
the degree of each node or the parity of this degree for
example.

4.3.2 � HMM initialization

Consider a tree set T = {t1,… , tn} and a nodes property pi .
The parameters of the initial HMM �i0 (T) = (AT

i0
,BT

i0
,�T

i0
)

associated with T are calculated as described below to sta-
tistically capture the states transitions and the symbols
probabilit ies distr ibutions from the content of
�i(T) = {�i(t1),… , �i(tn)} :

1.	 Given that the states are the node depths,
the number of states is (depth(T) + 1) where
depth(T) = max{depth(t)|t∈T} . Therefore, the set of
states is S = {0, 1,… , depth(T)}.

7
4

1 3
1

2

5 4

3

3
1

6
5

3
2

(a) The tree t′ (b) The initial MC of t′

(c) The MC of t′ after normalization (d) The final MC of t′

Fig. 7   MC of the tree set T � = {t�} for a property p ∈ � . Here, p(y) is the weight of the arc linking y to its father

	 Pattern Analysis and Applications

1 3

2.	 The content of the set � of symbols depends on the val-
ues that can be taken by the property pi . Some particular
cases are listed below:

Case 1: If pi is a Boolean, then � = {0, 1}.
Case 2: If pi∈� , the algorithm presented in Sect. 4.3.1
is applied to obtain the finite set � = {0, 1,… ,N} ,
where N is a user-defined integer.
Case 3: If pi is the degree of each node, then
� = {0, 1,… , degmax} where degmax is a user-defined
constant representing the maximum possible degree.
In this paper, the value degmax = 30 is selected.
Case 4: If pi is the value of the label of a node (resp.
arc), � must contain all the node (resp. arc) labels
appearing in T, augmented by all the possible labels
that can appear in any other tree set that can be com-
pare to T. In other words, if we want to compare two
tree sets T and T ′ , � must contain at least all the labels
appearing in both, T and T ′.

3.	 The probability of transiting from state j to state k is
calculated in Eq. 4. In that equation, the expression
transit(j, k,�i(T)) is the number of transitions from state
j to state k in �i(T) and the expression transit(j,−,�i(T))
is the number of transitions from state j to any destina-
tion in �i(T) .

4.	 The probability of observing symbol k at state j is cal-
culated in Eq. 5 where observe(k, j,�i(T)) is the number
of times where symbol k is observed at state j in �i(T) ,
and observe(−, j,�i(T)) is the number of occurrences of
state j in �i(T) , whatever is the symbol observed.

5.	 The probability that a sequence starts with state j is
given by Eq. 6 where start(j,�i(T)) is the number of
elements in �i(T) starting with state j.

The parameters of �T
i0
 are not probability distributions due to

the constant 1.0 added to the denominator of their compo-
nents. This value is intentionally introduced to avoid even-
tual divisions by zero in AT

i0
 and BT

i0
 . Zero probabilities are

also avoided in �T
i0
 . The model �T

i0
 is then readjusted by equi-

tably redistributing the missing quantity in each line to
obtain the model �i1 (T) = (AT

i1
,BT

i1
,�T

i1
) as follows:

(4)AT
i0
[j, k] =

transit(j, k,�i(T))

transit(j,−,�i(T)) + 1
.

(5)BT
i0
[j, k] =

observe(k, j,�i(T))

observe(−, j,�i(T)) + 1
.

(6)�T
i0
[j] =

start(j,�i(T))

|�i(T)| + 1
.

1.	 AT
i1
[j, k] = AT

i0
[j, k] +

1

�S�

�
1 −

∑�S�−1
l=0

AT
i0
[j, l]

�

2.	 BT
i1
[j, k] = BT

i0
[j, k] +

1

���

�
1 −

∑���−1
l=0

BT
i0
[j, l]

�

3.	 �T
i1
[j] = �T

i0
[j] +

1

�S�

�
1 −

∑�S�−1
l=0

�0

i
[l]
�

4.3.3 � HMM training phase

If |T| = 1 , then the readjusted initial HMM �i1 (T) is trained
with the Baum-Welch algorithm for one single sequence,
otherwise �i1 (T) is trained by the same algorithm for mul-
tiple sequences. In both situations, the resulting HMM is
�i(T) = (AT

i
,BT

i
,�T

i
) and the training sequences are the

sequences of symbols appearing in �i(T) . For example,
the initial HMMs associated with the MCs presented in
Fig. 6a and b will respectively be trained with the fol-
lowing sequences of symbols: 3, 2, 0, 0, 0, 2, 0, 0, 0 and
7, 4, 1, 3, 1, 2, 5, 4.

4.4 � Tree comparison

Let T and T ′ be two finite tree sets, and consider a finite set P
of nodes properties. In order to compare T and T ′ according
to the properties in P, the similarity rate �i(T ,T

�) between
T and T ′ according to each property pi ∈ P (1≤i≤|P|) is ini-
tially computed. The |P| resulting similarity rates are then
saved as the coordinates of a point �P(T , T

�) of ℝ|P| . This
point will be later used to derive the distance and the similar-
ity rate between T and T ′.

4.4.1 � Models similarity computation

In this work, �i(T , T
�) is obtained by calculating the value

of dsim
(
�i(T), �i(T

�)
)
 . Unlike most of the existing measures

which are based on the comparison of the exact visual con-
tent of the two trees, the measure proposed in this paper is
finer because dsim rather evaluates the probability that �i(T)
and �i(T �) observe an identical sequence of symbols. In our
context, this means that dsim evaluates the probability that
�i(T) and �i(T �) generate new trees with identical values of
pi(y) for every node y. Therefore, the trees of two tree sets
may not be too much similar visually, but their similarity
rate can still be high. This is possible because even when
two HMMs look ostensibly very different, their statistical
equivalence can still occur [52] 1.

Given that the values of pi(y) are normalized when
pi ∈ � , the similarity rate must in that case be weighted by a
coefficient �i(T ,T �)≤1 that will cancel the effects of normali-
zation. Such a coefficient was also used in [59] to cancel the
effects of histogram normalization. Equation 7 shows how to
compute this coefficient and Eq. 8 describes how to compute

1  See page 15, Section F

Pattern Analysis and Applications	

1 3

�i(T ,T
�) . Finally, the point �P(T ,T

�) whose ith component
is �i(T , T

�) is generated as shown in Eq. 9.

4.4.2 � The proposed distance between tree sets

The |P| components of �P(T , T
�) are percentages. Conse-

quently, their maximum value is 100% . This means that the
more the components of �P(T , T

�) are distant from 100% ,
the more T and T ′ are distant. This enables to calculate the
distance dP(T , T �) between T and T ′ according to the proper-
ties in P by computing any valid distance between the point
�P(T , T

�) and the point of ℝ|P| whose components are all
equal to 100. In this paper, the Euclidean and the Manhat-
tan distances whose formulas are presented in Eq. 10 have
been selected for this purpose. In unreported simulations,
the Tchebychev distance was also selected, but we finally
excluded it because it exhibited extremely poor classification
results (Cf. Section 5.2).

(7)
�i(T ,T

�) =
min

(
�(T , pi), �(T

�, pi)
)

max
(
�(T , pi), �(T

�, pi)
) if (pi∈�)

�i(T ,T
�) = 1 otherwise,

(8)�i(T , T
�) = 100×�i(T , T

�)×dsim
(
�i(T), �i(T

�)
)
(in%),

(9)�P(T , T
�) = [�1(T , T

�),�2(T , T
�),… ,�|P|(T , T

�)].

(10)

dP(T ,T
�) =

√√√√
|P|∑

i=1

(100 − �i(T ,T
�))2 (Euclidean)

dP(T ,T
�) =

|P|∑

i=1

|100 − �i(T ,T
�)| (Manhattan).

4.4.3 � The proposed similarity between tree sets

If T and T ′ are strongly similar (i.e: each component of
�P(T ,T

�) is near to 100), the distance dP(T ,T �) ≈ 0 irre-
spective of the selected distance between two points in
ℝ

|P| . In a similar way, when T and T ′ are strongly distant
(i.e: each component of �P(T , T

�) is near to 0), the upper-
bound d̃P of the distance dP(T ,T �) presented in Eq. 11 is
obtained depending on the selected distance between two
points in ℝ|P|.

The existence of this upper-bound is an asset because if we
divide dP(T ,T �) by d̃P as shown in Eq. 12, we obtain the dis-
similarity rate �P(T , T

�) between T and T ′ according to the
properties in P. The values computed in Eq. 12 are in (%) .
This finally enables to compute the similarity rate �P(T , T

�)
between T and T ′ according to the properties in P in Eq. 13.

4.5 � Example of tree sets comparison

Consider the three singletons T1 = {t1} , T2 = {t2} and
T3 = {t3} where t1, t2 , t3 are the node-labeled and arc-
weighted trees respectively presented in Fig. 8a–c. We
have applied the proposed measures to compare the trees
in the pairs (T1, T2) , (T1, T3) and (T2, T3) . The selected set
of targeted nodes properties is P = {p1, p2,… , p6} where
for each node y:

(11)
d̃P = 100

√
�P� (Euclidean)

d̃P = 100.�P� (Manhattan)

(12)

�P(T ,T
�) = 100×

�
dP(T ,T

�)

100
√
�P�

�
=

dP(T ,T
�)

√
�P�

(Euclidean)

�P(T ,T
�) = 100×

�
dP(T ,T

�)

100.�P�

�
=

dP(T ,T
�)

�P�
(Manhattan),

(13)�P(T ,T
�) = 100 − �P(T ,T

�) (in%).

7

4

1 3

1

2

5 4

3

3
1

6

5

3
2

(a) t1

12

3

24

4

1

8

12

3

9 12

20

3

16

12

9

(b) t2

15

2

8

3

3

5

513 7

5

2

3

10

(c) t3

Fig. 8   The node-labeled and arc-weighted trees t
1
 , t

2
 and t

3

	 Pattern Analysis and Applications

1 3

1.	 p1(y) is the degree of y.
2.	 p2(y) is the label of y, the set of possible labels being

{1, 2, 3, 4, 5, 7, 8, 12, 15, 24}

3.	 p3(y) is the weight of the arc linking y to its father.
4.	 p4(y) = 1 if y is not a leaf and the label of y is the sum

of the labels of its children, else p4(y) = 0.
5.	 p5(y) = 1 if the label of y is odd, else p5(y) = 0.
6.	 p6(y) = 1 if y is not a leaf and the label of y is strictly

greater than the labels of its children, else p6(y) = 0.

All the experiments realized in this paper have been exe-
cuted on a personal computer with the following properties:
(1) Processors: Intel(R) Core(TM) i7-8665U CPU @1.9GHz
2.11GHz (2) RAM: 16 GB. After executing the proposed
approach on the pairs (T1, T2) , (T1, T3) and (T2, T3) , we have
obtained the results presented in Table 2. These results reveal
that the highest similarity rate is always obtained for the pair
(T2, T3) , irrespective of the selected distance in ℝ6 . For each
pair of tree sets, Table 2 gives details related to the similarity
rates regarding each property. These results enable to make
several remarks. One can for example remark that the pair
(T2, T3) has the highest similarity rate regarding the topology
(property p1 ). This remark seems to be accurate when we
observe the high similarity between the visual shapes of the
trees in T2 and T3 . Table 2 also enables to remark the very
low similarity rates 8.75% and 13.46% respectively obtained
for the pairs (T1, T2) and (T1, T3) regarding the arc weights
(property p3 ), these values are far from the 40.63% obtained
for the pair (T2, T3) . This other remark also seems to be accu-
rate because all the arc weights in T1 are low while those
in T2 and T3 are mostly high. Other remarks regarding the

remaining properties can be made analogically. The global
processes of tree modeling and tree comparison respectively
took around 187 milliseconds and 20 ms for the three pairs
on the experimental computer.

4.6 � Generalization to unrooted and unordered
trees

The proposed measures can also be used to compare tree sets
containing unrooted trees and unordered trees. This is pos-
sible by initially transforming every unrooted or unordered
tree t into a set of rooted ordered trees, while preserving the
nodes and the arcs existing in t. Proceeding this way, all the
information embedded in t is transferred in the resulting tree
set. The node-labeled trees t1 , t2 and t3 respectively presented
in Figs. 9a–c will serve as examples in this section. Consider
a finite tree set T. The following transformations must be
applied to every tree t∈T before to compare T to any other
tree set:

1.	 If t is already a rooted ordered tree, no transformation is
applied to t.

2.	 If t is unrooted ordered, then t is transformed into the
tree set f(t) containing the |t| possible rooted ordered
trees that can be derived from t when each node is con-
sidered as the root, while preserving the left-to-right
order existing between the nodes of t in the resulting
trees. When this principle is applied to the unrooted
ordered tree t1 of Fig. 9a, the set f (t1) = {t11,… , t15}
whose content is depicted in Fig. 10a–e is obtained.

Table 2   Comparison of the
pairs (T

1
,T

2
) , (T

1
,T

3
) and

(T
2
,T

3
)

T T ′ �P(T ,T
�) Euclidean Mahattan

p1 p2 p3 p4 p5 p6 dP(T ,T
�) �P(T ,T

�)

in %

dP(T ,T
�) �P(T ,T

�)

in %

T1 T2 58.33 75.78 8.75 66.67 94.90 83.33 109.84 55.16 212.23 64.63
T1 T3 65.0 58.33 13.46 66.67 93.42 75.0 110.59 54.85 228.12 61.98
T2 T3 75.0 73.58 40.63 92.85 86.21 66.97 78.62 67.90 164.77 72.54

a

b

c

d

e

(a) t1: Unrooted ordered

b

c e

a

c

(b) t2: Rooted unordered

da

c

a

b

(c) t3: Unrooted un-
ordered

Fig. 9   Examples of trees unrooted and unordered trees

Pattern Analysis and Applications	

1 3

3.	 If t is rooted unordered, then t is transformed into the
tree set g(t) containing all the rooted ordered trees that
can be derived from t by realizing all the possible per-
mutations in t. Therefore, the size of g(t) is bounded by
the highest possible number of permutations in t which
is (|t| − 1)! When this principle is applied to the rooted
unordered tree t2 of Fig. 9b, the set g(t2) = {t21, t22, t23}
whose content is shown in Figs. 11a–c is obtained.

4.	 If t is unrooted unordered, then t is first transformed
into a temporary tree set tmp(t) containing the |t| pos-
sible rooted unordered trees that can be derived from
t when each node is considered as the root. Each tree
t ∈ tmp(t) is then transformed into the tree set g(t) con-
taining all the rooted ordered trees that can be derived
from t by realizing all the possible permutations in
t . The final set h(t) =

⋃
t
g(t) of rooted ordered trees

derived from t is obtained by gathering all the tree sets

obtained for every t . The size of h(t) is consequently
bounded by |t|.(|t| − 1)! = |t|! When this principle is
applied to the unrooted unordered tree t3 of Fig. 9c, the
set h(t3) = {t31,… , t38} whose content is presented in
Fig. 12a–h is obtained.

The fact that the size of the tree set obtained after trans-
forming an unordered tree is exponential is not surpris-
ing because the NP-completeness and the NP-hardness
of the problem of comparing unordered trees has been
thoroughly demonstrated [6, 8, 26, 30, 49]. This exponen-
tial size highly increases the HMMs training time cost.
Nevertheless, the duration of the model training phase can
be considerably reduced in that case if a parallel version
of the Baum-Welch algorithm is used to train the models.

Table 3   Comparison of the
pairs ({t

1
}, {t

2
}) , ({t

1
}, {t

3
})

and ({t
2
}, {t

3
}) containing the

unrooted and unordered trees of
Fig. 9a–c

Each sigleton is transformed into a tree set of rooted ordered trees before the comparison

T T ′ �P(T ,T
�) Euclidean Mahattan

p1 p2 dP(T ,T
�) �P(T ,T

�)

in %

dP(T ,T
�) �P(T ,T

�)

in %

{t1} → f (t1) {t2} → g(t2) 68.06 50.59 58.84 58.40 81.35 59.32
{t1} → f (t1) {t3} → h(t3) 63.96 74.89 43.93 68.94 61.15 69.42
{t2} → g(t2) {t3} → h(t3) 78.03 69.24 37.80 73.27 52.73 73.64

a

b c

d e

(a) t11

b

a

c

d e

(b) t12

c

a

b

d e

(c) t13

d

c

e a

b

(d) t14

e

c

a

b

d

(e) t15

Fig. 10   The set f (t
1
) = {t

11
,… , t

15
} derived from the unrooted ordered tree t

1
 of Fig. 9a

Fig. 11   The set
g(t

2
) = {t

21
, t
22
, t
23
} derived

from the rooted unordered tree
t
2
 of Fig. 9b

b

c e

a

c

(a) t21

b

c c e

a

(b) t22

b

e

a

c c

(c) t23

	 Pattern Analysis and Applications

1 3

Details related to this issue are provided at the end of this
paper.

We have used the aforementioned principle to compare
the trees in the pairs ({t1}, {t2}) , ({t1}, {t3}) and ({t2}, {t3})
containing the unrooted and unordered trees of Fig. 9a–c.
The set of targeted nodes properties is limited here to
P = {p1, p2} where for each node y:

1.	 p1(y) is the degree of y.
2.	 p2(y) is the label of y, the set of labels being {a, b, c, d, e}

The results of the comparison presented in Table 3 reveal
that t2 and t3 are the most similar trees, irrespective of the
selected distance in ℝ2 . The overall tree modeling process
for these three pairs took around 1.5 seconds and the com-
putation of the similarities between these same pairs took
around 17 milliseconds.

The former example demonstrates that the proposed
measures are highly flexible compared to existing measures.
Indeed, unlike existing measures which can only compare
two trees of the same category (i.e: two rooted ordered trees,
two rooted unordered trees, etc.), the measures proposed in
this paper can compare two tree sets, each containing a mix-
ture of trees belonging to various categories. Furthermore,
the proposed measures can handle trees where each node and
each arc has many attributes (labels, weights). In that case,
the user must only define the suitable properties targeting the
various attributes to perform the comparison.

4.7 � The case of the empty set

�P and dP are applicable to finite tree sets. Therefore, their
behavior when they are applied to the empty set must be
described. It is in this perspective that the two following
conventional properties are adopted here:

Property 1  Given that ∅ is completely similar to itself, we
assume that for every set P of nodes properties we have:
�P(�, �) = 100% which implies that dP(�, �) = 0.

Property 2  For every tree set T≠∅ and for every set P of
nodes properties, given that ∅ is completely different from
T, we assume that : �P(T , �) = �P(�,T) = 0% which implies
that dP(T , �) = dP(�,T) = d̃P.

5 � Experimental results

5.1 � Comparison of sets of text documents

A text document is a sequence of symbols. Several tables
enable to match a symbol with a positive numeric code. The
most popular tables used for the English language are the
ASCII and EBCDIC tables 2. The ASCII table is preferred in
this paper. Text documents comparison has been an inter-
esting axis of research since many years and an overview of
some relevant existing methods to perform this task is avail-
able in [61]. Consider two text documents d1 and d2 . The
most widespread principle used in existing approaches con-
sists firstly in removing the ’stop words’ appearing in d1 and
d2 , these are words which are presumed to be not informa-
tive as to the meaning of the documents [62]. The result of
the deletion of stop words is the list of all the remaining
words appearing in both documents. A vector ���⃗d1 (resp. ���⃗d2 )
is then used to save the number of times each word of the list
appears in d1 (resp. d2 ). The final documents comparison is
performed by comparing ���⃗d1 and ���⃗d2 using existing similarity
measures between vectors. The two following limitations of
the techniques based on this principle have been stated in

a

d

a

b

c

(a) t31

a

c d

a

b

(b) t32

c

a

d

a

b

(c) t33

d

a

b

a

c

(d) t34

d

a

c

a

b

(e) t35

a

d

a

c

b

(f) t36

a

b d

a

c

(g) t37

b

a

d

a

c

(h) t38

Fig. 12   The set h(t
3
) = {t

31
,… , t

38
} derived from the unrooted unordered tree t

3
 of Fig. 9c

2  http://​www.​simot​ime.​com/​asc2e​bc1.​htm.

http://www.simotime.com/asc2ebc1.htm

Pattern Analysis and Applications	

1 3

[59] (1) the words appearing in d1 and d2 are both required
for the construction of each vector, (2) only two single text
documents can be compared. The authors of [59] solved
these problems by proposing a histogram-based approach
for comparing two sets of text documents using HMMs. The
main drawback of the technique proposed in [59] is that each
word is considered as an isolated word which has no link
with any other word in the document. However, many words
in a text document can be linked in various ways, they can
for example share the same prefix.

The goal of this section is to overcome this limitation of
[59] by performing the comparison while considering com-
mon prefixes. More precisely, the proposed measures are
adopted here to compare two sets D and D′ of text docu-
ments. Each document in D and D′ is initially transformed
into a prefix tree (described in the next section), after what
the comparison is performed.

5.1.1 � Transformation of a document into a prefix tree

Consider a text document d composed of many words, each
word being a sequence of characters. We propose to save all
the words appearing in d as a particular node-labeled and
arc-weighted tree td . The node labels in td are characters and
the root node is assigned the special label ′#′ . The children
of each node in td are ordered from left to right in increasing
order of the ASCII codes associated with their labels. Given
a node y, when we concatenate the node labels found in the
path starting from root(td) to y, we obtain the word w(y)

associated with y, the symbol ′#′ being ignored in w(y). The
tree td is constructed in such a way that for every child z of a
node y, the word w(z) is obtained by concatenating w(y) and
the label of z, i.e: w(y) is a prefix of w(z). The weight of the
arc linking a node y to its father is the number of occurrences
of w(y) in d. Consider for example the English document d
having the following content: “this student and a teacher are
talking about the student status in the actual society”. When
the above principle is applied on d, the tree td depicted in
Fig. 13 is obtain.

5.1.2 � Distance and similarity computation

Cons ide r two f in i t e se t s D = {d1,… , dn} and
D� = {d�

1
,… , d�

k
} of text documents that we want to com-

pare according to the set P = {p1,… , pm} of nodes proper-
ties. Each document in D and D′ is first transformed into a
prefix tree as described in Sect. 5.1.1. When this is done,
t he se t s o f p re f ix t rees TD = {td1 ,… , tdn} and
TD� = {td�

1

,… , td�
k
} are obtained. Finally, Eqs. 14 and 15 are

respectively used to compute the distance and the similar-
ity between D and D′.

(14)�P(D,D
�) = dP(TD, TD�),

(15)�P(D,D
�) = �P(TD, TD�) (in%),

Fig. 13   The node-labeled and arc-weighted prefix tree td associated with the text document d whose content is: “this student and a teacher are
talking about the student status in the actual society”

	 Pattern Analysis and Applications

1 3

5.1.3 � Example of text documents comparison

Consider the two following text documents d and d′ that
were also compared in [59]:

1.	 d : “yesterday morning, paul went to school after eating
because his school is away from home. at the end of the
day, paul left school and went home”

2.	 d
′ : “paul went to school yesterday after eating in the

morning, this is because his school is away from his
house. he went back to his house after classes.”

In this example, stop words have not been deleted fol-
lowing the experience realized in [59]. The comparison is
performed according to the set P = {p1, p2, p3} of targeted
nodes properties, where for each node y:

1.	 p1(y) is the degree of y.
2.	 p2(y) is the label of y, with p2(y)∈{#, a, b,… , z}.
3.	 p3(y) is the weight of the arc linking y to its father.

The comparison results presented in Table 4 reveal that the
proposed measures perform a finer analysis of text docu-
ments than the technique proposed in [59]. Indeed, when
these two documents were compared in [59], the low simi-
larity rate 39.63% was obtained because the common pre-
fixes were not considered. However, many words in d and
d′ share common prefixes. When these common prefixes
are now considered, the similarity rate between d and d′
increases to values greater than 56% . The HMMs training
took 700 milliseconds and the computation of the similarity
took 13 milliseconds.

5.2 � Nearest Neighbor classification

The goal of this section is to demonstrate the accuracy of the
proposed measures when the suitable set of targeted nodes
properties is selected. This can be achieved by evaluating
the performances of the proposed tree distance when it is
used by a metric-dependent classifier like the NN. Such an
evaluation has already been done for the tree distances based
on the edit operations [63].

5.2.1 � Experimental databases

We have constructed two online available synthetic tree data-
bases respectively named FirstLast-L and FirstLast-LW. 3
Each database contains four classes composed of 100 rooted
ordered trees. FirstLast-L contains node-labeled trees and
the set of node labels is {1, 2,… , 26} . FirstLast-LW con-
tains the same trees found in FirstLast-L, with weighted
arcs. The peculiarity of these databases is that they contain
trees which are neither characterized by the exact values of
the degrees/labels of the nodes, nor by the exact values of
the weights of the arcs. Rather, they are characterized by
specific and non-trivial properties verified by the degrees/
labels of the nodes, as well as the weights of the arcs. These
properties are presented in Table 5. Beside the properties
specified in that table, every tree t in these two databases
verifies (0<depth(t)≤4) . Figure 14a–fig14d depict examples
of node-labeled and arc-weighted trees verifying the proper-
ties presented in Table 5 for FirstLast-LW. The correspond-
ing trees verifying the properties presented in Table 5 for
FirstLast-L are obtained by ignoring the arc weights.

5.2.2 � Targeted nodes properties

We realized two experiments. During the first one, the
specific properties verified by each node in FirstLast-L
and FirstLast-LW are intentionally ignored as if they were
unknown. Therefore, the default sets of targeted nodes
properties PL = {p1, p2} and PLW = {p1, p2, p3} have been
selected respectively for FirstLast-L and for FirstLast-LW
where for each node y:

1.	 p1(y) is the degree of y.
2.	 p2(y) is the label of y, the set of labels being {1,… , 26}.
3.	 p3(y) is the weight of the arc linking y to its father.

Given that the trees in FirstLast-L and FirstLast-LW are
characterized by non-trivial properties, one can obviously
conjecture that the first experience will show poor classifi-
cation results.

During the second experience, the specific properties ver-
ified by each node in FirstLast-L and FirstLast-LW are con-
sidered. The content of Table 5 has therefore been used for
deriving the sets PL = {p1,… , p8} and PLW = {p1,… , p12}
of targeted nodes properties respectively for FirstLast-L and

Table 4   Results of the
comparison of the text
documents d and d′

T T ′ �P(T ,T
�) Euclidean Mahattan

p1 p2 p3 �P(T ,T
�) �P(T ,T

�)

in %

�P(T ,T
�) �P(T ,T

�)

in %

{d} {d�} 53.42 58.94 56.36 75.89 56.18 131.28 56.24

3  http://​perso-​etis.​ensea.​fr/​sylva​in.​iloga/​First​Last/​index.​html.

http://perso-etis.ensea.fr/sylvain.iloga/FirstLast/index.html

Pattern Analysis and Applications	

1 3

FirstLast-LW. For each node y, if l(y) and f(y) respectively
refer to the label of y and to the the label of its father, then:

	 1.	 p1(y) = 1 if y has at least three children among which
only the first child is not a leaf, else p1(y) = 0.

	 2.	 p2(y) = 1 if y has at least three children among which
only the last child is not a leaf, else p2(y) = 0.

	 3.	 p3(y) = 1 if y has at least three children among which
only the first and the last children are not leaves, else
p3(y) = 0

	 4.	 p4(y) = 1 if y has at least three children among which
only the first and the last children are leaves, else
p4(y) = 0

	 5.	 p5(y) = 1 if y has at least three children and the parity
of l(y) is identical to the parity of the label of its first
child, but different from the parity of the labels of its
other children, else p5(y) = 0.

	 6.	 p6(y) = 1 if y has at least three children and the parity
of l(y) is identical to the parity of the label of its last
child, but different from the parity of the labels of its
other children, else p6(y) = 0.

	 7.	 p7(y) = 1 if y has at least three children and the parity
of l(y) is identical to the parity of the labels of its first
and last children, but different from the parity of the
labels of its other children, else p7(y) = 0

	 8.	 p8(y) = 1 if y has at least three children and the parity
of l(y) is different from the parity of the labels of its
first and last children, but identical to the parity of the
labels of its other children, else p8(y) = 0

	 9.	 p9(y) = 1 if the weight of the arc linking y to its father
is
⌈
1

2
×(l(f (y)) + l(y))

⌉
 , else p9(y) = 0.

	10.	 p10(y) = 1 if the weight of the arc linking y to its father
is
�√

l(f (y))×l(y)
�
 , else p10(y) = 0.

	11.	 p11(y) = 1 if the weight of the arc linking y to its father
is |l(f (y)) − l(y)| + 1 , else p11(y) = 0.

	12.	 p12(y) = 1 if the weight of the arc linking y to its father
is
⌈
max (l(f (y)),l(y))

min (l(f (y)),l(y))

⌉
 , else p12(y) = 0.

5.2.3 � Classification results

A ten-folds cross-validation has been realized during the
classification phase where each tree t of the experimental
databases was considered as the singleton {t} . For each data-
base, the training and testing sets of each fold were obtained
after randomly shuffling the trees of each class. These train-
ing and testing sets have also been made available online 3.
For each of the two experiences, the NN classifier has been
executed using the proposed tree distance as metric.

In the conditions of the first experience where the specific
nodes properties have been ignored, the Manhattan distance
exhibited the best accuracies of 44.25% and 36% respectively

Ta
bl

e 
5  

S
pe

ci
fic

 p
ro

pe
rti

es
 v

er
ifi

ed
 b

y
ea

ch
 tr

ee
 in

 F
irs

tL
as

t-L
 a

nd
 F

irs
tL

as
t-L

W
 

Th
e

ex
pr

es
si

on
s l

(y
) a

nd
 f(

y)
 re

sp
ec

tiv
el

y
re

fe
r t

o
th

e
la

be
l a

nd
 to

 th
e

fa
th

er
 o

f a
 n

od
e

y

C
la

ss
 n

am
e

To
po

lo
gy

 in
 F

irs
tL

as
t-L

 a
nd

 F
irs

tL
as

t-L
W

La
be

ls
 in

 F
irs

tL
as

t-L
 a

nd
 F

irs
tL

as
t-L

W
W

ei
gh

ts
 in

 F
irs

tL
as

t-L
W

Fi
rs

t
Ev

er
y

no
n-

le
af

 n
od

e
ha

s a
t l

ea
st

th
re

e
ch

ild
re

n
am

on
g

w
hi

ch
 o

nl
y

th
e

fir
st

ch
ild

 is
 n

ot
 a

 le
af

Th
e

pa
rit

y
of

 th
e

la
be

l o
f e

ac
h

no
n-

le
af

 n
od

e
is

 id
en

tic
al

to

 th
e

pa
rit

y
of

 th
e

la
be

l o
f i

ts
 fi

rs
t c

hi
ld

, b
ut

 d
iff

er
en

t
fro

m
 th

e
pa

rit
y

of
 th

e
la

be
ls

 o
f i

ts
 o

th
er

 c
hi

ld
re

n

Th
e

w
ei

gh
t o

f t
he

 a
rc

 li
nk

in
g

ea
ch

 n
od

e
y

to
 it

s f
at

he
r i

s
⌈ 1 2

×
(l
(f
(y
))
+
l(
y)
)⌉

La
st

Ev
er

y
no

n-
le

af
 n

od
e

ha
s a

t l
ea

st
th

re
e

ch
ild

re
n

am
on

g
w

hi
ch

 o
nl

y
th

e
la

st
ch

ild
 is

 n
ot

 a
 le

af
Th

e
pa

rit
y

of
 th

e
la

be
l o

f e
ac

h
no

n-
le

af
 n

od
e

is
 id

en
tic

al

to
 th

e
pa

rit
y

of
 th

e
la

be
l o

f i
ts

 la
st

ch
ild

, b
ut

 d
iff

er
en

t
fro

m
 th

e
pa

rit
y

of
 th

e
la

be
ls

 o
f i

ts
 o

th
er

 c
hi

ld
re

n

Th
e

w
ei

gh
t o

f t
he

 a
rc

 li
nk

in
g

ea
ch

 n
od

e
y

to
 it

s f
at

he
r i

s
� √

l(
f(
y)
)×
l(
y)
�

Bo
th

Ev
er

y
no

n-
le

af
 n

od
e

ha
s a

t l
ea

st
th

re
e

ch
ild

re
n

am
on

g
w

hi
ch

 o
nl

y
th

e
fir

st
an

d
th

e
la

st
ch

ild
re

n
ar

e
no

t l
ea

ve
s

Th
e

pa
rit

y
of

 th
e

la
be

l o
f e

ac
h

no
n-

le
af

 n
od

e
is

 id
en

tic
al

to

 th
e

pa
rit

y
of

 th
e

la
be

ls
 o

f i
ts

 fi
rs

t a
nd

 la
st

ch
ild

re
n,

bu

t d
iff

er
en

t f
ro

m
 th

e
pa

rit
y

of
 th

e
la

be
ls

 o
f i

ts
 o

th
er

ch

ild
re

n

Th
e

w
ei

gh
t o

f t
he

 a
rc

 li
nk

in
g

ea
ch

 n
od

e
y

to
 it

s f
at

he
r i

s
|l(
f(
y)
)
−
l(
y)
|+

1

N
on

e
Ev

er
y

no
n-

le
af

 n
od

e
ha

s a
t l

ea
st

th
re

e
ch

ild
re

n
am

on
g

w
hi

ch
 o

nl
y

th
e

fir
st

an
d

th
e

la
st

ch
ild

re
n

ar
e

le
av

es
Th

e
pa

rit
y

of
 th

e
la

be
l o

f e
ac

h
no

n-
le

af
 n

od
e

is
 d

iff
er

en
t

fro
m

 th
e

pa
rit

y
of

 th
e

la
be

ls
 o

f i
ts

 fi
rs

t a
nd

 la
st

ch
ild

re
n,

bu

t i
de

nt
ic

al
 to

 th
e

pa
rit

y
of

 th
e

la
be

ls
 o

f i
ts

 o
th

er

ch
ild

re
n

Th
e

w
ei

gh
t o

f t
he

 a
rc

 li
nk

in
g

ea
ch

 n
od

e
y

to
 it

s f
at

he
r i

s
⌈ m

a
x
(l
(f
(y
))
,l
(y
))

m
in
(l
(f
(y
))
,l
(y
))

⌉

	 Pattern Analysis and Applications

1 3

for FirstLast-L and FirstLast-LW. Tables 6 and 7 respectively
present the confusion matrices for FirstLast-L and FirstLast-
LW. These poor performances confirm the former conjecture.

In the conditions of the second experience where the
specific nodes properties have been considered, the Euclid-
ean and the Manhattan distances both exhibited a perfect
accuracy of 100% for the two experimental databases. These
perfect performances demonstrate the power of the proposed
tree distance when the suitable set of targeted nodes proper-
ties is selected.

5.2.4 � Comparison with the tree Edit distance

We have compared the performance of the proposed tree
distance with the performance of the widespread tree Edit
distance when used as metrics for the NN classifier on
FirstLast-L. No comparison was realized for FirstLast-LW
because existing tree distances (including the tree Edit dis-
tance) are not applicable to arc-weighted trees. To achieve
our goal, we have first downloaded a Java executable pro-
gram available online 4 which implements the All Path tree
Edit Distance (AP-TED) proposed in [14]. This choice is
motivated by the fact AP-TED is a recent robust and memory
efficient version of the tree Edit distance. The Java execut-
able program we have downloaded takes as input two node-
labeled trees and returns their tree Edit distance. After
executing the NN classifier on FirstLast-L using AP-TED as

tree metric, a low accuracy of 59% was obtained. The cor-
responding confusion matrix is presented in Table 8.

Although the 59% of obtained by AP-TED are better than
the best accuracy (44.25%) exhibited by the proposed dis-
tance when the specific tree properties are ignored, these two
performances remain very unsatisfactory. But, the accuracy
obtained by AP-TED is 41% lower than the perfect accuracy
obtained by the proposed tree distance on this same database
when the suitable set of targeted nodes properties is selected.
This big gap is due to the fact that unlike the proposed tree
distance, existing tree distances (including the tree Edit dis-
tance) cannot consider the specific nodes properties, even
when these properties are clearly defined.

5.2.5 � The new challenge

As it has been demonstrated throughout this section, the
proposed tree distance can lead to a perfect NN classifier
if the suitable set of targeted nodes properties is chosen.
This choice was obvious for the databases FirstLast-L and
FirstLast-LW because the specific properties verified by the
content of each class were clearly specified. But this will
generally not be case for other tree sets. Thus, the new chal-
lenge resides now in the manual or automatic discovery of
the optimal set of targeted nodes properties that the best
describes the trees in each tree set. Once this is done, the
proposed tree distance may induce excellent classification
results.

Table 6   Confusion matrix of
the Nearest Neighbor classifier
in FirstLast-L when the
proposed tree distance is used
as tree metric and when the
specific nodes properties are
ignored

The accuracies are 35.25% and 44.25% when the Euclidean and the Manhattan distances are respectively
selected in ℝ3

(a) Euclidean (b) Manhattan

First Last Both None First Last Both None

First 24 7 66 3 First 24 4 69 3
Last 28 35 14 23 Last 25 39 17 19
Both 30 0 41 29 Both 22 0 62 16
None 24 1 34 41 None 21 0 24 55

Table 7   Confusion matrix of
the Nearest Neighbor classifier
in FirstLast-LW when the
proposed tree distance is used
as tree metric and when the
specific nodes properties are
ignored

The accuracies are 34.75% and 36% when the Euclidean and the Manhattan distances are respectively
selected in ℝ3

(a) Euclidean (b) Manhattan

First Last Both None First Last Both None

First 9 9 81 1 First 8 11 80 1
Last 20 41 33 6 Last 17 41 34 8
Both 29 2 59 10 Both 23 2 66 9
None 6 7 57 30 None 8 6 57 29

4  http://​tree-​edit-​dista​nce.​dbres​earch.​uni-​salzb​urg.​at/.

http://tree-edit-distance.dbresearch.uni-salzburg.at/

Pattern Analysis and Applications	

1 3

22

4

14

8 13 25 9

7 21

3

17
5

1
13

9

11 14
20 12

6
13

13 20
14 12

(a) Example of tree verifying the properties of class First

17

2 10 13

4 6 5

12
18 14

23

6
14

15

8
9

9

8 10
9 11

(b) Example of tree verifying the properties of class Last

2

8

12

4 17 14

7 15
20

10 5 10

1 3
14

16
11 21

24

7

5

9
6

3
2

6 13

11
16

11

2
2 13

3 4
8 11

(c) Example of tree verifying the properties of class Both

7

16
11

6
17

14 3 4

23

2 1 8

10

223 2
4

2 2
3

12
23

3

2

2
6

5

(d) Example of tree verifying the properties of class None

Fig. 14   Examples of node-labeled and arc-weighted trees verifying the properties presented in Table 5 for FirstLast-LW. The corresponding
trees verifying the properties of FirstLast-L are obtained by ignoring the arc weights

	 Pattern Analysis and Applications

1 3

5.3 � Time cost

We experimentally observed that the time cost of the pro-
posed approach can be reduced to the time cost of the HMMs
training phases. Consider a tree set T = {t1,… , t|T|} and a
set P = {p1,… , pm} of targeted nodes properties. The Baum-
We l c h a l g o r i t h m t h e o r e t i c a l l y r u n s i n
Time(T) = �

�
m.� .(

∑�T�
k=1

�tk�).N2

�
 to train the m HMMs asso-

ciated with T. From this expression, one can deduce that the
overall training time of the m HMMs associated with T is
influenced by the following parameters:

1.	 The number m of targeted nodes properties.
2.	 The user-defined maximum number of iterations � of the

Baum-Welch algorithm.
3.	 The size |T| of the tree set T.
4.	 The number N = (depth(T) + 1) of states of the resulting

HMMs.
5.	 The size |tk| of each tree, with (1≤k≤|T|).

When two tree sets T and T ′ are compared, the global train-
ing time is (Time(T) + Time(T �)) . When the value of any of
the aforementioned parameters is high, the overall training
time increases. This can lead to a huge training time in some
situations. The values of the parameters |T|, N and |tk| cannot
be modified by the user since they are derived from the con-
tent of T. The two remaining parameters are user-dependent,
they must therefore be carefully selected. In order to reduce
the global training time cost, the following solutions can be
applied:

1.	 Before comparing two tree sets, one should discover the
optimal set of targeted nodes properties that the best
describes the content of the two tree sets (following what
is stated in Section 5.2.5). This will enable to avoid the
inclusion of unnecessary properties while optimizing the
comparison result.

2.	 The value of � must not necessarily be very high to
obtain accurate results. In this paper the value � = 100
has been selected. Nevertheless, lower values can be
experimented until a critical value under which the final
result is seriously affected is reached.

3.	 Finally, the m HMMs can be trained in parallel.

5.4 � Main assets of the proposed tree measures

The tree measures (distance and similarity) proposed in this
paper:

1.	 Compare two tree sets, unlike existing measures which
can only compare two single trees.

2.	 Compare two tree sets containing a mixture of trees
belonging to various categories (rooted or unrooted,
ordered or unordered), unlike existing measures which
can only compare two trees of the same category.

3.	 Compare two tree sets containing weighted trees, unlike
existing measures which can hardly accurately compare
two weighted trees.

4.	 Handle the comparison of tree sets containing trees
where each node and each arc can have several attributes
(labels, weights), none of the existing measures can do
this.

5.	 Are customizable because the targeted nodes proper-
ties on which the tree comparison is performed must be
explicitly specified and there is no particular boundary
on the possible choices of these properties. This is not
possible with existing measures.

6.	 Are simple to understand and robust because they are
based on DFS which is simple to understand and on
HMMs which are handled by robust algorithms.

7.	 Are accurate because the proposed distance seriously
outperformed the widespread tree Edit distance when
they were both used for the flat NN classification of the
database FirstLast-L.

8.	 Can naturally be implemented in parallel to reduce
their computation time cost by concurrently training
the HMMs associated with the various properties while
using a parallel version of the Baum-Welch algorithm.

6 � Conclusion

This paper addresses the problem of tree comparison.
Many existing techniques have yet been proposed for this
purpose, but they are all limited by several factors ana-
lyzed in Sect. 2.3. In order to overcome these limitations,
a HMM-based technique for comparing two finite sets of
rooted ordered trees which can be labeled or unlabeled, as
well as weighted or unweighted is proposed in this work.
The particularity of the proposed measures is that one must
explicitly specify the targeted nodes properties (related to
the topology, the labels and the weights) on which the tree
comparison should be performed. Given a tree t and a set
P = {p1,… , pm} of targeted nodes properties, the proposed

Table 8   Confusion matrix of
the Nearest Neighbor classifier
in FirstLast-L when AP-TED is
used as tree metric

The accuracy is 59%

First Last Both None

First 12 58 30 0
Last 0 98 2 0
Both 0 8 92 0
None 9 35 22 34

Pattern Analysis and Applications	

1 3

approach follows the principle of the DFS algorithm to
construct one Markov chain �i(t) for each property pi∈P
(1≤i≤m) . When this principle is applied for each property
pi∈P on each tree of a tree set T, the set �i(T) of Markov
chains is obtained. This set is then used to initialize and
to train a HMM �i(T) . Given two finite tree sets T and T ′ ,
their m associated HMMs are compared by calculating the
proposed distance dP(T ,T �) whose computation scheme is
based on existing distances in ℝm (i.e: Euclidean, Manhat-
tan). The proposed similarity �P(T ,T

�) is finally derived
from dP(T , T �) . These two measures have been generalized
for the comparison of unrooted and unordered trees after
transforming them into sets of rooted ordered trees.

The proposed measures have first been experimented for
the comparison of two sets D and D′ of text documents.
Here, the common prefixes appearing in the various docu-
ments are exploited for constructing one node-labeled and
arc-weighted prefix tree for each document. The resulting
sets of prefix trees associated with D and D′ are later com-
pared using the proposed measures. This approach exhibited
finer results than the recent technique proposed in [59].

We finally assessed the accuracy of the proposed tree dis-
tance by evaluating how it can empower the performances
of the metric-based NN classifier. To achieve this goal, we
constructed two synthetic tree databases named FirstLast-L
and FirstLast-LW, each composed of four classes of 100
rooted ordered trees. FirstLast-L contains node-labeled trees
and FirstLast-LW contains the same trees found in FirstLast-
L with weighted arcs. The trees in these two experimen-
tal databases are characterized by specific and non-trivial
properties presented in Table 5. The proposed distance has
been experimented as tree metric for the NN classification
of the trees in these two databases. When the specific nodes
properties of these two databases were ignored, the low best
accuracies of 44.25% and 36% were respectively obtained
for FirstLast-L and FirstLast-LW. But when these specific
properties were considered, a perfect accuracy of 100% was
obtained for the two experimental databases. This last per-
formance is 41% higher than performance obtained by the
widespread tree Edit distance for FirstLast-L. The following
interesting perspectives can be explored in future work:

1.	 Future work can conduct new experiments to evaluate
how the proposed tree distance can empower the per-
formances of other metric-dependent algorithms like
clustering algorithms.

2.	 Consider a set P = {p1,… , pm} of targeted nodes prop-
erties. In this paper, we granted the same importance
to every property pi ∈ P (1≤i≤m) during the computa-
tion of the distance and the similarity between two tree

sets. However, depending on the selected application,
it may be very interesting to grant different degrees of
importance to these properties. Future work can imple-
ment modified versions of the proposed measures which
consider the user-defined importance granted to each
property.

3.	 In this paper, given a tree set T and a nodes property pi ,
the number of states of the HMM �i(T) associated with
T for property pi is (depth(T) + 1) . This setting becomes
a problem when depth(T) is high because an explosive
number of states may lead to huge training time cost,
as well as to not meaningful probabilities inside �i(T) .
This limitation can be attenuated in future work by first
organizing the depths’ values as regular intervals, then
by rather considering each state as an interval of depths
(i.e: state s1 = [1, 3] , state s2 = [4, 6] , etc.).

4.	 Future work must focus on the design of manual and
automatic techniques for discovering the optimal set of
targeted nodes properties that the best describes the trees
in each tree set. Frequent tree mining techniques stand
as an excellent starting point to achieve this goal for the
case of labeled trees.

5.	 Future work can explore the possibility of adapting the
proposed approach for graph comparison. This can be
done by transforming each graph G into a particular tree
embedding all the information related to every vertex
and every edge of G.

6.	 In this work, only the Nearest Neighbor classifier was
experimented because it requires the use of a metric
between two trees. However, there exist several other
classifiers which are not metric-dependent and which
cannot actually be experimented (i.e: Support Vector
Machines, Multilayer perceptron, Decision trees, etc.).
Indeed, for each singleton {t} , these classifiers require
a descriptor vector t⃗ whose components belong to ℝ .
Future work must find a way to use all the HMMs asso-
ciated with {t} for deriving a descriptor vector t⃗ associ-
ated with each singleton {t} in order to enable the experi-
mentation of classifiers which are not metric-dependent.

7.	 The time cost of the proposed approach can be consid-
erably reduced if for each tree set, the HMMs training
phase is realized in parallel by |P| units of computations,
where P is the set of targeted nodes properties. This
parallel version theoretically divides the overall HMMs
training time cost by 2×|P|.

8.	 In addition to the former proposal, the HMMs training
time cost can be further reduced in future work if each
unit of computations is a cluster of processors. Here,
a parallel version of the Baum-Welch algorithm must
be executed by the members of the cluster. This can be

	 Pattern Analysis and Applications

1 3

implemented analogically to the recent technique pro-
posed in [64]. In that work, the authors used the Message
Passing Interface (MPI) framework to implement in C
language a parallel version of the HMM-based similarity
measure between two finite sets of histograms initially
proposed in [59]. That work exhibited an experimental
average speed-up of 7.42 while using eight processors.

9.	 An alternative to the former MPI-based parallel imple-
mentation running on a cluster of computers is an imple-
mentation running on a Field-Programmable Gate Array
(FPGA) chip. This can be realized following the prin-
ciple of the FPGA-based version of the Baum-Welch
algorithm proposed in [65].

References

	 1.	 Valiente G (2001) An efficient bottom-up distance between
trees. In: spire, pages 212–219

	 2.	 Bille P (2003) Tree edit distance, alignment distance and inclu-
sion. Technical report, Citeseer

	 3.	 Liu T-L, Geiger D (1999) Approximate tree matching and shape
similarity. In: Proceedings of the Seventh IEEE International
Conference on Computer Vision, volume 1, pages 456–462.
IEEE

	 4.	 Bhavsar VC, Boley H, Yang L (2004) A weighted-tree similarity
algorithm for multi-agent systems in e-business environments.
Comput Intell 20(4):584–602

	 5.	 Tai K-C (1979) The tree-to-tree correction problem. J ACM
(JACM) 26(3):422–433

	 6.	 Zhang K, Shasha D (1989) Simple fast algorithms for the editing
distance between trees and related problems. SIAM J Comput
18(6):1245–1262

	 7.	 Zhang K, Statman R, Shasha D (1992) On the editing distance
between unordered labeled trees. Inf Process Lett 42(3):133–139

	 8.	 Zhang K, Jiang T (1994) Some max snp-hard results concerning
unordered labeled trees. Inf Process Lett 49(5):249–254

	 9.	 Klein PN (1998) Computing the edit-distance between unrooted
ordered trees. In: European Symposium on Algorithms, pages
91–102. Springer

	10.	 Chen W (2001) New algorithm for ordered tree-to-tree correc-
tion problem. J Algorithms 40(2):135–158

	11.	 Touzet H (2007) Comparing similar ordered trees in linear-time.
J Discrete Algorithms 5(4):696–705

	12.	 Demaine ED, Mozes S, Rossman B, Weimann O (2009) An
optimal decomposition algorithm for tree edit distance. ACM
Trans Algorithms (TALG) 6(1):2

	13.	 Pawlik M, Augsten N (2015) Efficient computation of the tree
edit distance. ACM Trans Database Syst (TODS) 40(1):1–40

	14.	 Pawlik M, Augsten N (2016) Tree edit distance: robust and
memory-efficient. Inf Syst 56:157–173

	15.	 Schwarz S, Pawlik M, Augsten N (2017) A new perspective on
the tree edit distance. In: International Conference on Similarity
Search and Applications, pages 156–170. Springer

	16.	 Zhang K (1995) Algorithms for the constrained editing distance
between ordered labeled trees and related problems. Pattern
Recogn 28(3):463–474

	17.	 Zhang K (1996) A constrained edit distance between unordered
labeled trees. Algorithmica 15(3):205–222

	18.	 Richter T (1997) A new measure of the distance between ordered
trees and its applications. Inst für Informatik

	19.	 Lu CL, Su Z-Y, Tang CY (2001) A new measure of edit distance
between labeled trees. In: International Computing and Combi-
natorics Conference, pages 338–348. Springer

	20.	 Ouangraoua A, Ferraro P, Tichit L, Dulucq S (2007) Local simi-
larity between quotiented ordered trees. J Discrete Algorithms
5(1):23–35

	21.	 Selkow SM (1977) The tree-to-tree editing problem. Inf Process
Lett 6(6):184–186

	22.	 Shin-Yee L (1979) A tree-to-tree distance and its application to
cluster analysis. IEEE Trans Pattern Anal Mach Intell 2:219–224

	23.	 Tanaka E, Tanaka K (1988) The tree-to-tree editing problem.
Int J Pattern Recognit Artif Intell 2(02):221–240

	24.	 Shasha D, Zhang K (1990) Fast algorithms for the unit cost
editing distance between trees. J Algorithms 11(4):581–621

	25.	 Sridharamurthy R, Talha BM, Adhitya K, Vijay N (2018) Edit
distance between merge trees. In: IEEE transactions on visuali-
zation and computer graphics, pages 1–14

	26.	 Jiang T, Wang L, Zhang K (1995) Alignment of trees–an alter-
native to tree edit. Theoret Comput Sci 143(1):137–148

	27.	 Jansson J, Lingas A (2001) A fast algorithm for optimal align-
ment between similar ordered trees. In: Annual Symposium on
Combinatorial Pattern Matching, pages 232–240. Springer

	28.	 Kilpeläinen P, et al (1992) Tree matching problems with appli-
cations to structured text databases

	29.	 Alonso L, Schott R (1993) On the tree inclusion problem. In:
International Symposium on Mathematical Foundations of
Computer Science, pages 211–221. Springer

	30.	 Kilpeläinen P, Mannila H (1995) Ordered and unordered tree
inclusion. SIAM J Comput 24(2):340–356

	31.	 Richter T (1997) A new algorithm for the ordered tree inclu-
sion problem. In: Annual Symposium on Combinatorial Pattern
Matching, pages 150–166. Springer

	32.	 Chen W (1998) More efficient algorithm for ordered tree inclu-
sion. J Algorithms 26(2):370–385

	33.	 Hoffmann CM, O’Donnell MJ (1982) Pattern matching in trees.
J ACM 29(1):68–95

	34.	 Kosaraju SR (1989) Efficient tree pattern matching. In: 30th
Annual Symposium on Foundations of Computer Science, pages
178–183. IEEE

	35.	 Dubiner M, Galil Z, Magen E (1990) Faster tree pattern match-
ing. In: Proceedings [1990] 31st Annual Symposium on Foun-
dations of Computer Science, pages 145–150. IEEE

	36.	 Ramesh RAMAKRISHNAN, Ramakrishnan IV (1992) Nonlin-
ear pattern matching in trees. J ACM (JACM) 39(2):295–316

	37.	 Zhang KZ, Shasha D, Wang JT-L (1994) Approximate tree
matching in the presence of variable length don’t cares. J Algo-
rithms 16(1):33–66

	38.	 Farach M, Thorup M (1995) Fast comparison of evolutionary
trees. Inf Comput 123(1):29–37

	39.	 Amir A, Keselman D (1997) Maximum agreement subtree in a
set of evolutionary trees: metrics and efficient algorithms. SIAM
J Comput 26(6):1656–1669

	40.	 Khanna S, Motwani R, Yao FF (1995) Approximation algo-
rithms for the largest common subtree problem. Citeseer

	41.	 Akutsu T, Halldórsson MM (2000) On the approximation of
largest common subtrees and largest common point sets. Theor
Comput Sci 233(1–2):33–50

	42.	 Gupta A, Nishimura N (1998) Finding largest subtrees and
smallest supertrees. Algorithmica 21(2):183–210

	43.	 Nishimura N, Ragde P, Thilikos DM (2000) Finding smallest
supertrees under minor containment. Int J Found Comput Sci
11(03):445–465

	44.	 Tan P-N, Steinbach M, Kumar V et al (2006) Cluster analysis:
basic concepts and algorithms. Intro Data Min 8:487–568

Pattern Analysis and Applications	

1 3

	45.	 Mucherino A, Papajorgji PJ, Pardalos PM (2009) Data Mining
in Agriculture, volume 34, chapter k-Nearest Neighbor Clas-
sification. Springer, New York

	46.	 Bondy JA, Uppaluri SRM, et al (1976) Graph theory with appli-
cations, volume 290. Macmillan London

	47.	 Cheung T-Y (1983) Graph traversal techniques and the maxi-
mum flow problem in distributed computation. IEEE Trans
Software Eng 4:504–512

	48.	 Wagner RA, Fischer MJ (1974) The string-to-string correction
problem. J ACM (JACM) 21(1):168–173

	49.	 Matoušek J, Thomas R (1992) On the complexity of finding
iso-and other morphisms for partial k-trees. Discrete Math
108(1–3):343–364

	50.	 Torsello A, Hancock ER (2006) Learning shape-classes using
a mixture of tree-unions. IEEE Trans Pattern Anal Mach Intell
28(6):954–967

	51.	 Torsello A, Rossi L (2011) Supervised learning of graph struc-
ture. In: International Workshop on Similarity-Based Pattern
Recognition, pages 117–132. Springer

	52.	 Rabiner LR (1989) A tutorial on hidden markov models
and selected applications in speech recognition. Proc IEEE
77(2):257–286

	53.	 Iloga S, Romain O, Tchuenté M (2020) An efficient generic
approach for automatic taxonomy generation using HMMs. Pat-
tern Anal Appl 1–22

	54.	 Falkhausen M, Reininger H, Wolf D (1995) Calculation of dis-
tance measures between hidden markov models. In: Fourth Euro-
pean Conference on Speech Communication and Technology

	55.	 Do MN (2003) Fast approximation of kullback-leibler distance for
dependence trees and hidden markov models. IEEE Signal Process
Lett 10(4):115–118

	56.	 Silva J, Narayanan S (2008) Upper bound kullback-leibler diver-
gence for transient hidden markov models. IEEE Trans Signal
Process 56(9):4176–4188

	57.	 Lyngso RB, Pedersen CN, Nielsen H (1999) Metrics and similar-
ity measures for hidden markov models. In: Proc Int Conf Intell
Syst Mol Biol, pages 178–186

	58.	 Zeng J, Duan J, Chengrong W (2010) A new distance measure for
hidden markov models. Expert Syst Appl 37(2):1550–1555

	59.	 Iloga S, Romain O, Tchuenté M (2018) An accurate hmm-based
similarity measure between finite sets of histograms. Pattern Anal
Appl 1–26

	60.	 Sahraeian SME, Yoon B-J (2011) A novel low-complexity hmm
similarity measure. IEEE Signal Process Lett 18(2):87–90

	61.	 Huang A (2008) Similarity measures for text document cluster-
ing. In: Proceedings of the sixth new zealand computer science
research student conference (NZCSRSC2008), Christchurch, New
Zealand, pages 49–56

	62.	 Nothman J, Qin H, Yurchak R (2018) Stop word lists in free open-
source software packages. In: Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 7–12

	63.	 Rico-Juan JR, Micó L (2003) Some results about the use of tree/
string edit distances in a ∼ nearest neighbour classification task. In:
Iberian Conference on Pattern Recognition and Image Analysis,
pages 821–828. Springer

	64.	 Noussi JBB, Tchendji MT, Iloga S (2019) Parallel hmm-based
similarity between finite sets of histograms. http://​cri-​info.​cm/?​
page_​id=​148

	65.	 Espinosa-Manzo ALA, Arias-Estrada MO (2001) Implementing
hidden markov models in a hardware architecture. In: Proceed-
ings of the International Meeting of Computer Science (ENC’01),
Aguascalientes, Mexico, volume II, pages 1007–1016

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://cri-info.cm/?page_id=148
http://cri-info.cm/?page_id=148

	Customizable HMM-based measures to accurately compare tree sets
	Abstract
	1 Introduction
	2 State of the art
	2.1 Basic tree-related concepts
	2.1.1 Graph-related definitions
	2.1.2 Tree-related definitions
	2.1.3 Representation of a tree
	2.1.4 Traversal of a tree

	2.2 Related work
	2.2.1 Tree Edit
	2.2.2 Tree Alignment
	2.2.3 Tree inclusion
	2.2.4 Other principles of comparison

	2.3 Problem statement

	3 Hidden Markov Models
	3.1 HMM definition
	3.2 HMM used as sequence generator
	3.3 Manipulation of a HMMs
	3.4 HMMs similarity measure

	4 The proposed approach
	4.1 Main idea
	4.2 Methodology
	4.3 Tree modeling
	4.3.1 Example of transformation into MC
	4.3.2 HMM initialization
	4.3.3 HMM training phase

	4.4 Tree comparison
	4.4.1 Models similarity computation
	4.4.2 The proposed distance between tree sets
	4.4.3 The proposed similarity between tree sets

	4.5 Example of tree sets comparison
	4.6 Generalization to unrooted and unordered trees
	4.7 The case of the empty set

	5 Experimental results
	5.1 Comparison of sets of text documents
	5.1.1 Transformation of a document into a prefix tree
	5.1.2 Distance and similarity computation
	5.1.3 Example of text documents comparison

	5.2 Nearest Neighbor classification
	5.2.1 Experimental databases
	5.2.2 Targeted nodes properties
	5.2.3 Classification results
	5.2.4 Comparison with the tree Edit distance
	5.2.5 The new challenge

	5.3 Time cost
	5.4 Main assets of the proposed tree measures

	6 Conclusion
	References

