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ABSTRACT. Trees are among the most studied data structures, and have been used in many ap-
plications where several techniques have been developed for comparing two trees belonging to the
same category. Until the end of year 2020, there was a serious lack of metrics for comparing two
weighted trees and the problem of comparing two tree sets was not specifically addressed. These
limitations have been overcome in a paper published in 2021 where a customizable metric based on
hidden Markov models have been proposed for comparing two tree sets, each containing a mixture
of trees belonging to various categories. Unfortunately, that metric does not allow the use of non
metric-dependent classifiers which take descriptor vectors as inputs. This paper addresses this draw-
back by deriving a descriptor vector for each tree set from the behavior of its associated models after
a sufficiently long time. The comparison between two tree sets is then realized by comparing their
associated descriptor vectors. Classification experiments involving many classifiers carried out on the
databases FirstLast-L and FirstLast-LW showed an accuracy of 99.75%, which is close to the optimal
value 100% exhibited by the original metric. Additional clustering experiments exhibited 54.25% and
98.75% of correctly clustered instances respectively for FirstLast-L and FirstLast-LW.

RÉSUMÉ. Les arbres sont parmi les structures de données les mieux étudiées dans de nombreux
domaines et plusieurs techniques ont été développées pour comparer deux arbres appartenant à
la même catégorie. Jusqu’en fin 2020, il y avait un sérieux manque de métriques pour comparer
deux arbres pondérés et le problème de la comparaison de deux ensembles d’arbres n’était pas
spécifiquement abordé. Ces limites ont été surmontées dans un article publié en 2021 dans lequel
une métrique adaptative basée sur des modèles de Markov cachés a été proposée pour comparer
deux ensembles d’arbres, chacun contenant un mélange d’arbres appartenant à diverses catégories.
Malheureusement, cette métrique ne permet pas l’utilisation de classificateurs ne dépendant pas
d’une métrique et prenant des vecteurs de descripteurs en entrée. Le présent article s’attaque à cette
limite en dérivant un vecteur descripteurs pour chaque ensemble d’arbres à partir du comportement
de ses modèles associés sur le long terme. La comparaison entre deux ensembles d’arbres est
alors réalisée en comparant leurs vecteurs de descripteurs associés respectifs. Des expériences de
classification impliquant de nombreux classificateurs effectuées sur les bases de données FirstLast-L
et FirstLast-LW ont permi d’obtenir une meilleure précision de 99.75%, ce qui est presqu’identique aux
100% obtenus par la métrique d’origine. Des expériences de clustering supplémentaires ont exhibé
54.25% et 98.75% d’instances correctement groupées respectivement pour FirstLast-L et FirstLast-
LW.
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1. Introduction
Trees are among the most common and well-studied data structures in a great vari-

ety of applications, including compiler design, graph transformation, automatic theorem
proving, information retrieval, structured text database, pattern recognition, and signal
processing [1, 2]. Consequently, several techniques have been developed for comparing
two labeled or unlabeled trees belonging to the same category (i.e: rooted or unrooted,
ordered or unordered). Until the end of year 2020, these existing techniques were based
on one of the 5 following concepts: tree Edit [3–23], tree Alignment [24, 25], tree Inclu-
sion [26–30], tree pattern matching [31–36] and Subtrees/supertrees similarity [37–42].
These existing techniques unfortunately embedded the three following main drawbacks:

1) There was a serious lack of metrics for comparing two weighted trees.
2) The problem of comparing two tree sets was not specifically addressed.
3) Existing techniques did not enable to explicitly specify the targeted nodes prop-

erties on which the tree comparison must be performed.
In 2021, these drawbacks have been overcome in [43] where a customizable metric

based on Hidden Markov Models (HMMs) was proposed for comparing two tree sets,
each containing a mixture of trees belonging to various categories. The metric proposed
in that paper handles labeled and unlabeled trees, as well as weighted and unweighted
trees where each node/arc can have several attributes (labels, weights). Unlike previous
techniques, it allows the user to explicitly specify the targeted nodes properties on which
the comparison should be performed and there is no boundary on the possible choices of
these properties. The author of that paper relied on the Depth-First Search (DFS) traver-
sal of a tree [44] to design the HMMs. The comparison between two tree sets was finally
performed by comparing their associated HMMs. That metric showed perfect accuracies
of 100% during flat classification experiments carried out on two online available syn-
thetic databases 1 named FirstLast-L and FirstLast-LW using the Nearest Neighbor (NN)
classifier. This performance was 41% higher than the one exhibited when the tree Edit
distance was selected for FirstLast-L.

An important limitation of the metric proposed in that paper is related to the fact
that it does not allow the use of non metric-dependent classifiers (i.e: Support Vector
Machines [45], Multilayer perceptron [46], Decision trees [47], etc.) which absolutely
require descriptor vectors as inputs. The current paper addresses this limitation by de-
riving a descriptor vector for each tree set from its associated models. Consider the set
P = {p1, . . ., pm} of targeted nodes properties. Given a targeted nodes property pi∈P
and the model λi(T ) associated with a tree set T according to pi, we capture the overall
proportion of time spent by λi(T ) observing each symbol after a sufficiently long time,
irrespective of the state from which this symbol is observed as a characteristic of T . We
apply this for all the properties in P and the resulting values are sequentially gathered
as the components of a descriptor vector

−→
T . Finally, the comparison between two tree

sets is realized by comparing their associated descriptor vectors. The accuracy of the pro-
posed descriptor vectors is evaluated through classification and unsupervised clustering
experiments carried out on the databases FirstLast-L and FirstLast-LW.

The rest of this paper is organized as follows: the state of the art is presented in
Section 2, followed by a summarized presentation of HMMs in Section 3. The description

1. http://perso-etis.ensea.fr/sylvain.iloga/FirstLast/index.html

http://perso-etis.ensea.fr/sylvain.iloga/FirstLast/index.html
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of the proposed approach is realized in Section 4, while experimental results are exhibited
in Section 5. The last section is dedicated to the conclusion.

2. State of the art

2.1. Related work
A tree can be defined as a connected acyclic graph. A detailed overview on graph

theory and applications is available in [48]. Many distances have yet been proposed for
comparing trees and they are based on one of the following concepts: tree edit, tree align-
ment, tree inclusion, tree pattern matching, subtrees/supertrees similarity and HMMs.

The tree edit distance [3–23] is based on the analysis of the number of edit operations
required to transform a tree t1 into another tree t2. The three following edit operations are
considered for a given node: insertion, deletion and substitution. Tree alignment [24, 25]
is a particular case of tree edit where insertions are always performed before deletions.
Let t1 and t2 be two rooted trees with labeled nodes. t1 is included in t2 if there is a
sequence S(t1, t2) of node deletions performed on t2 which makes t2 isomorphic to t1.
The tree inclusion problem is to decide if t1 can be included in t2 and the tree inclusion
distance [26–30] is the sum of the costs of the delete operations found in S(t1, t2). Tree
pattern matching [31–36] consists in finding the instances of a given pattern tree in a spe-
cific target tree. Subtrees/supertrees similarity [37–42] are generally realized by finding
the maximum agreement subtree, the largest common subtree or the smallest common
supertree.

Recently in 2021, a HMM-based technique have been proposed for comparing two
finite tree sets [43]. The author of that paper remarked that DFS sequentially transits
from one node depth to another and at each step, the algorithm observes the properties
of the visited node. Consider the set P = {p1, . . ., pm} of targeted nodes properties.
For every property pi∈P , the former observation enabled to transform any tree t into a
Markov chain δi(t) where the hidden states were the nodes depths, while the symbols
were the values of property pi for every node of t. When this principle was applied on
a tree set T = {t1, . . ., tn}, the set ∆i(T ) = {δi(t1), . . ., δi(tn)} of Markov chains was
obtained. The content of ∆i(T ) was later used to initialize then to train the HMM λi(T )
associated with T according to property pi. Finally, the comparison between two tree
sets was performed through the comparison of their associated HMMs for every property
pi∈P . The main assets of that technique are listed below:

1) It is designed for comparing finite tree sets.
2) It handles rooted/unrooted as well as ordered/unordered trees.
3) It compares weighted/unweighted as well as labeled/unlabeled trees.
4) It allows each node/arc to have many labels/weights.
5) It requires the specification of the targeted nodes properties.
6) It outperforms the tree edit distance with 41% of accuracy gain.

2.2. Problem statement
Until the end of year 2020, existing techniques for comparing two trees [3–42] em-

bedded many drawbacks which were overcome in 2021 by the customizable HMM-based
metric proposed in [43] for comparing two tree sets.
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An important limitation of the technique proposed in [43] is related to the fact that it
does not allow the use of non metric-dependent classifiers (i.e: Support Vector Machines,
Multilayer perceptron, Decision trees, etc.) which absolutely require descriptor vectors as
inputs. The current paper tackles this limitation by deriving a descriptor vector for each
tree set from its associated models. The comparison between two tree sets is then realized
by comparing their respective associated descriptor vectors.

3. Hidden Markov models

3.1. HMM definition
A HMM λ = (A,B, π) is fully characterized by [49]:

1) The numberN of states of the model. The set of states is S = {s1, s2, . . . , sN}.
The state of the model at time x is generally noted qx ∈ S.

2) The number M of symbols. The set of symbols is ϑ = {v1, v2, . . . , vM}. The
symbol observed at time x is generally noted ox ∈ ϑ.

3) The state transition probability distribution A = {A[si, sj ]} where A[si, sj ] =
Prob(qx+1 = sj |qx = si) with 1≤i, j≤N .

4) The symbols probabilities distributions B = {B[si, vk]} where B[si, vk] =
Prob(vk at time x|qx = si) with 1≤i≤N and 1≤k≤M .

5) The initial state probability distribution π = {π[si]} where π[si] = Prob(q1 =
si) with 1≤i≤N .

3.2. Manipulation of a HMMs
Consider a sequence of symbols O = o1o2. . .oX and a HMM λ = (A,B, π). The

probability Prob(O|λ) to observe O given λ is efficiently calculated by the Forward-
Backward algorithm [49] which runs in θ(X.N2). Given a sequence of symbols O =
o1o2. . .oX , it is possible to iteratively re-estimate the parameters of a HMM λ = (A,B, π)
in order to maximize the value of Prob(O|λ), where λ = (A,B, π) is the re-estimated
model. The Baum-Welch algorithm [49] is generally used to perform this re-estimation.
This algorithm runs in θ(β.X.N2) where β is the user-defined maximum number of
iterations. The Baum-Welch algorithm can also train a HMM for multiple sequences.
The algorithm maximizes the value of Prob(O|λ) =

∑K
k=1 Prob(O

(k)|λ) where O =

{O(1), . . . , O(K)} is a set of K sequences of symbols and O(k) = o
(k)
1 . . .o

(k)
Xk

is the
kth sequence of symbols of O. In the case of multiple sequences, this algorithm runs in
θ
(
β.(
∑K
k=1Xk).N2

)
. In this paper, the value β = 100 is selected following [43].

3.3. Stationary distribution of a HMM
A vector ϕ = (ϕ[s1], . . . , ϕ[sN ]) is a stationary distribution of a HMM λ = (A,B, π)

if:
1) ∀j, (ϕ[sj ] ≥ 0) and

(∑
jϕ[sj ] = 1

)
2) ϕ = ϕ.A⇔ (ϕ[sj ] =

∑
iϕ[si]×A[si, sj ],∀j)
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ϕ[sj ] estimates the overall proportion of time spent by λ in state sj after a sufficiently
long time. ϕ can be extracted from any line of the matrix Aw = A×A×. . .×A (w times)
whenw→+∞. Therefore, the computation of ϕ requires θ(w.N3) arithmetic operations.

4. The proposed approach

4.1. Main idea
Consider the set P = {p1, . . ., pm} of targeted nodes properties and let us assume

that the DFS traversal of a tree t is executed by a robot r. According to the observation
made by the author of [43], for each property pi∈P , the robot r sequentially transits from
one node depth to another and at each step, r observes the value pi(y) of the currently
visited node y∈t. The MC δi(t) resulting from this traversal of t executed by the robot
r according to property pi embeds relevant information related to the overall behavior
(movements, observations) of r. Given a tree set T = {t1, . . ., tn} and its corresponding
set ∆i(T ) = {δi(t1), . . ., δi(tn)} of MCs, the HMM λi(T ) was trained in [43] with
the Baum-Welch algorithm to learn and to simulate the overall behavior of r during the
traversal of the trees in T .

The main idea of the current paper is that, one can capture the behavior of r from
λi(T ) by evaluating the overall proportion of time spent by r observing each possible
value of pi after a sufficiently long time, irrespective of the node depth from which this
value is observed. More precisely, we evaluate the probability γ(o|λi(T )) of observing
each symbol o after a sufficiently long time, given the model λi(T ), irrespective of the
state from which o is observed. When this principle is applied for every property pi∈P
and for every possible symbol, the resulting probabilities are sequentially saved as the
components of the descriptor vector

−→
T associated with the tree set T .

4.2. Methodology
Consider a tree set T = {t1, . . . , tn} and the set P = {p1, . . ., pm} composed of

m user-defined targeted nodes properties. The methodology applied in the current paper
for deriving the descriptor vector

−→
T associated with T can be summarized in the three

following steps:
1) Tree modeling: For each property pi∈P , the tree modeling principle proposed

in [43] 2 is preserved here to obtain the model λi(T ). Therefore, this step is not described
in the following sections.

2) Probability computing: Let ϑi be the set of symbols of λi(T ). For every prop-
erty pi and for every symbol o∈ϑi, we compute the probability γ(o|λi(T )) of observing o
after a sufficiently long time, given the model λi(T ), irrespective of the state from which
o is observed.

3) Construction of the descriptor vector: All the probabilities computed at step
2 are sequentially saved as the components of the descriptor vector

−→
T associated with T .

Figure 1 summarizes the main steps of the proposed methodology for deriving the
descriptor vector

−→
T associated with a tree set T .

2. See Section 4.3 and Figure 4 of [43]
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Figure 1 – Methodology for deriving the descriptor vector
−→
T associated with a tree set T .

4.3. Probability computing
Consider a tree set T and its associated model λi(T ) = (ATi , B

T
i , π

T
i ) according

to property pi∈P , where P = {p1, . . ., pm} is the user-defined set of targeted nodes
properties. In order to compute γ(o|λi(T )), one must first evaluate the overall proportion
of time spent by λi(T ) observing o in state sj after a sufficiently long time as follows:

1) Evaluate the overall proportion of time spent by λi(T ) in state sj after a suffi-
ciently long time. This proportion is given by the jth component ϕTi [sj ] of the stationary
distribution of λi(T ).

2) Multiply the result obtained at step 1 by the probability of observing o in state
sj which is BTi [sj , o].

The value of γ(o|λi(T )) is finally obtained by repeating this process for every state sj
and summing the resulting proportions as shown in Equation 1.

γ(o|λi(T )) =

N∑
j=1

ϕTi [sj ]×BTi [sj , o] (1)

4.4. Construction of the descriptor vector

The descriptor vector
−→
T associated with T is constructed by sequentially saving the

values of γ(o|λi(T )) for every property pi∈P and for every symbol o∈ϑi as described
in Algorithm 1. The first line of Algorithm 1 initializes the index of the components of
the descriptor vector. Line 2 browses the properties, while line 3 browses the symbols
for each property. The value of γ(o|λi(T )) is computed at line 4 according to Equation 1
and saved as the current component of the descriptor vector at line 5. Line 6 moves to
the index of the next component of the descriptor vector. The descriptor vector is finally
returned at line 9.
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Algorithm 1 V ector(T, P, {λi(T )}, {ϑi}, {ϕTi })
1: k ← 1
2: for each (pi ∈ P ) do
3: for each (o ∈ ϑi) do
4: γ(o|λi(T ))←

∑N
j=1 ϕ

T
i [sj ]×BTi [sj , o]

5:
−→
T [k]← γ(o|λi(T ))

6: k ← k + 1
7: end for
8: end for
9: return

−→
T

A consequence of Algorithm 1 is that the dimension of the descriptor vector
−→
T de-

noted in this paper as α is the sum of the numbers of symbols of all its |P | associated
models as precised in Equation 2. It can be easily demonstrated that Algorithm 1 requires
θ(α.N) arithmetic operations.

α =

|P |∑
i=1

|ϑi| (2)

The following conventional property is adopted here to associate a descriptor vector
with the empty set: ’The descriptor vector associated with ∅ according to the set P =

{p1, . . ., pm} of targeted nodes properties is (
−→
∅ =

−→
0 ∈Rα).’

4.5. Comparison of tree sets
The comparison between two tree sets T1 and T2 according to the setP = {p1, . . ., pm}

of targeted nodes properties is performed here by calculating the value of any existing
distance or similarity measure between their associated descriptor vectors

−→
T1 and

−→
T2.

Equation 3 shows how this can be done with the Euclidean distance and the Manhattan
distance. Several other possible distance and similarity measures are online available 3.

dP (T1, T2) =

√√√√ α∑
k=1

(
−→
T1[k]−

−→
T2[k])2 (Euclidean)

dP (T1, T2) =

α∑
k=1

|
−→
T1[k]−

−→
T2[k]| (Manhattan)

(3)

5. Experimental results

5.1. Experimental tasks
The flat classification and clustering experiments realized in the current work are both

realized with the WEKA soft [50]. Unlike [43] where only the Nearest Neighbor classi-
fier was experimented, three additional non metric-dependent classifiers have also been
experimented here. Thus, the four following classifiers have been experimented, their

3. https://numerics.mathdotnet.com/Distance.html

https://numerics.mathdotnet.com/Distance.html
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corresponding names in WEKA are in brackets: Nearest Neighbor (IBk), Support Vector
Machines with polynomial kernels (SMO), Multilayer perceptron (MLP) and Decision
Trees (J48). These classifiers have been used in WEKA with their default settings and a
10 folds cross-validation (90%− 10%) has been applied for each experiment.

The Kmeans [51] and the Expectation-Maximization (EM) [52] clustering algorithms
have been selected here to evaluate how much the proposed descriptor vectors can en-
able to accurately organize the experimental data (trees) into their corresponding classes
(clusters) in an unsupervised process. The selected clustering algorithms have been used
in WEKA with their default settings except the desired number of clusters which was
initially fixed to the value 4 (the number of classes in each experimental database).

5.2. Experimental settings
The two synthetic tree databases selected during the experiments of the current work

are FirstLast-L and FirstLast-LW 1 which have both been constructed and experimented
in [43]. Each database contains 4 classes composed of 100 rooted ordered trees. FirstLast-
L contains node-labeled trees and the set of node labels is {1, 2, . . . , 26}. FirstLast-LW
contains the same trees found in FirstLast-L, with weighted arcs. The trees in these two
databases are characterized by specific and non-trivial properties listed in [43] 4.

We realized two main experiments. During the first one, the specific properties verified
by each node in FirstLast-L and FirstLast-LW are intentionally ignored as if they were un-
known. During the second main experience, these specific properties are considered. The
sets PL = {p1, p2}, PLW = {p1, p2, p3}, PL = {p1, . . . , p8} and PLW = {p1, . . . , p12}
of targeted nodes properties selected in [43] 5 for these experiences are also preserved in
the current work.

In the context of each main experiment and considering each tree t of the experimental
databases as the singleton {t}, we have executed Algorithm 1 to construct the descriptor
vector

−→
t associated with t. The resulting descriptor vectors have then been saved into 4

online available ’arff ’ files 1 which are taken as inputs by the soft WEKA.

5.3. Classification results
Classification results are presented in Tables 1a and 1b respectively for FirstLast-L and

FirstLast-LW. These tables reveal that best accuracy obtained for these two databases is
99.75%. This is quite equal to the 100% obtained in [43]. Table 1a also reveals that the NN
classifier performs better than the three non metric-dependent classifiers for FirstLast-L,
irrespective of the set of targeted nodes properties. But the opposite situation is observed
in Table 1b for FirstLast-LW where the three non metric-dependent classifiers show ac-
curacies at least equal to 89% when the 3 default properties in PLW are considered. This
performance demonstrates the accuracy of the proposed descriptor vectors which enable
to obtain good classification results, even with a default set of targeted nodes properties.
Finally, when the 12 properties in PLW are considered, all the classifiers exhibit compa-
rable performances.

5.4. Clustering results
Clustering results are presented in Tables 2a and 2b respectively for FirstLast-L and

FirstLast-LW. These tables reveal that best clustering performance obtained for FirstLast-

4. See Table 5 of [43]
5. See Section 5.2.2 of [43]
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Table 1 – Classification results. Accuracies are in (%)

(a)- FirstLast-L

IBk
SMO MLP J48

Euclid. Manhat.

PL 73.75 78 67.5 73.75 74.75

PL 99.75 99.75 87.5 90.5 93.75

(b)- FirstLast-LW

IBk
SMO MLP J48

Euclid. Manhat.

PLW 84 87.25 90.75 89 89.75

PLW 99.75 99.75 99.75 99.75 99.5

L is 54.25%, while a quasi perfect performance of 98.75% is obtained for FirstLast-
LW. Given that the trees in FirstLast-L are only characterized by properties related to the
topology and the node-labels, experimental results demonstrate that this database does not
embed enough information to distinguish the 4 classes during an unsupervised clustering
process. But when the arc-weights are additionally considered in FirstLast-LW, the 4
classes are accurately identified during the unsupervised clustering process with up to
98.75% correctly clustered instances when the 12 properties in PLW are considered.

Table 2 – Clustering results. Correctly clustered instances are in (%)

(a)- FirstLast-L (b)- FirstLast-LW

Kmeans
EM

Euclid. Manhat.

PL 47.5 47.25 54.25

PL 45.5 44 42

Kmeans
EM

Euclid. Manhat.

PLW 54.25 55.25 42.25

PLW 86.5 92 98.75

5.5. Time cost
The time cost of the proposed technique for deriving the descriptor vector

−→
T of a tree

set T according to the set P of targeted nodes properties can be step-by-step estimated as
follows:

1) Design the |P | HMMs associated with T : According to [43] 6, this step runs in
θ
(
|P |.β.(

∑
t∈T |t|).N2

)
, where |t| is the number of nodes in the tree t.

2) Compute the stationary distributions of the |P | HMMs which runs in
θ(|P |.w.N3) with w→+∞. In the current work, the value w = 100 has been selected.

3) Construct the descriptor vector
−→
T associated with T using Algorithm 1 which

runs in θ(α.N).

6. Cf. Section 5.3 of [43]
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It is according to these partial results that Equation 4 gives the expression of the theo-
retical time cost Time(

−→
T ) of the proposed approach.

Time(
−→
T ) = θ(a.N3 + b.N2 + α.N) where

N = max{depth(t) | t∈T}+ 1

a = |P |.w

b = |P |.β.

(∑
t∈T
|t|

) (4)

5.6. Comparison with [43]
The technique proposed in the current paper:

1) Is based on the HMMs designed in [43] for comparing two tree sets. It conse-
quently inherits the main assets of that technique 7.

2) Unlike [43], it associates a descriptor vector
−→
T ∈Rα whose components are

interpretable with every tree set T such that all the operations that are applicable to vectors
in Rα are now also applicable to tree sets.

3) Performs a finer characterization of a tree set than [43]. Indeed, a tree set was
characterized in [43] by its associated HMMs themselves. In the current paper, a tree set
is rather characterized by meta-information related to the overall behavior of these HMMs
after a sufficiently long time.

4) Exhibits good classification performances (78% for FirstLast-L and 90.75% for
FirstLast-LW) with the default sets PL and PLW of targeted nodes properties, unlike [43]
where lower performances were obtained (44.25% for FirstLast-L and 36% for FirstLast-
LW) in identical conditions.

5) Shows an excellent classification accuracy of 99.75% for FirstLast-L and for
FirstLast-LW when the suitable sets PL and PLW of targeted nodes properties are se-
lected. This performance is quite identical to the 100% obtained in [43].

6) Is capable to correctly cluster 54.25% and 98.75% of the instances of FirstLast-
L and FirstLast-LW respectively. No clustering was performed in [43].

6. Conclusion
The goal of this paper was to improve the HMM-based technique recently proposed

in [43] for comparing two tree sets through the association of a descriptor vector with each
tree set. Given a tree set T and a set P = {p1, . . . , pm} of targeted nodes properties, the
author of [43] followed the principle of the DFS algorithm to associate |P | HMMs with
T , each HMM λi(T ) learned how much the nodes of the trees in T verify property pi.
The resulting models were finally compared to derive a distance and similarity between
the two sets of trees. The technique proposed in [43] overcame the main limitations of the
other existing techniques developed before its publication. Unfortunately, it did not allow
the use of non metric-dependent classifiers which absolutely require descriptor vectors as
inputs.

7. Cf. Section 5.4 of [43]
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In order to derive the descriptor vector
−→
T associated with a tree set T in the current

paper, we capture the behavior of its associated HMMs by evaluating the overall pro-
portion of time spent by every HMM at observing each symbol o after a sufficiently long
time, irrespective of the state from which o is observed. The resulting proportions are then
sequentially saved as the components of the descriptor vector. The comparison between
two tree sets is finally realized by comparing their associated descriptor vectors. Clas-
sification experiments involving four classifiers carried out on the databases FirstLast-L
and FirstLast-LW showed a best accuracy of 99.75%. This is quite equal to the 100% ob-
tained in [43]. Clustering experiments performed with the Kmeans and the Expectation-
Maximization algorithms exhibited 54.25% and 98.75% of correctly clustered instances
respectively for FirstLast-L and FirstLast-LW. Future work can focus on the application
of the proposed approach on real world datasets. Most of the perspectives stated at the
end of [43] remain valid here and must be explored by future work.
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