
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2007, Article ID 92780, 11 pages
doi:10.1155/2007/92780

Research Article
The Mathematical Foundations of 3D Compton Scatter
Emission Imaging

T. T. Truong,1 M. K. Nguyen,2 and H. Zaidi3
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conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second
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1. INTRODUCTION

During the last fifty years, progress in imaging systems using
penetrating radiation for biomedical purposes has brought
about new topics in mathematics and fueled intense research
activities with far reaching results. The mathematics of imag-
ing science has evolved to a full fledged discipline [1]. Trans-
mission computer assisted tomography (CAT-scanning) is
based on an integral transform in two dimensions discovered
in the sixties by Cormack [2–4], who did not realize that J.
Radon had already introduced and studied it in his seminal
paper [5] in 1917. Subsequently, in an effort to reconstruct
directly in three dimensions an object without having to as-
semble its two-dimensional sections, one is led to consider
the so-called X-ray transform or cone beam transform. This
transform is an off-spring of the Radon transform and maps
a function inR3 to its (straight) line integrals inR3. One way
to reconstruct an object is to convert the line data into planar
data in R3 using the Grangeat technique [6]. Then applica-
tion of the inversion formula of the three-dimensional Radon
transform [7] yields the answer. A further generalization of
the Radon transform in emission imaging, called the atten-
uated X-ray transform, accounts for the radiation loss in the

traversed medium. The problem of its inversion has been a
mathematical challenge for decades and has been solved only
in 2001 [8], thanks to complex analysis methods applied to
the stationary photon transport problem [9]. The success of
this branch of mathematics, coined by Gelfand as integral ge-
ometry, goes far beyond the imaging science scope as it has
brought significant progress in group representation theory,
partial differential equations, boundary value problems, and
so forth [7].

The standard Radon transform and its variants are re-
lated to a process of data collection in an interaction free
propagation of radiation through matter, possibly affected by
attenuation. Thus, radiation energy is not altered from emis-
sion to detection. However, a sizable part of traveling radia-
tion does suffer an interaction with matter through Comp-
ton scattering [10]. Generally as the data quality is lowered,
Compton scattering effects have been treated as noise and
must be eliminated. So far, in most image processing meth-
ods, the aim is to deal away with it, for example, by fil-
tering or by geometric rejection using an antiscatter grid
of miniature lead septa. In conventional projection imag-
ing, most of the radiation have been scattered in the patient
body, the scatter-to-primary ratio can be as high as 10 [10].
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But throwing out all the scattered radiation may not be a
smart move since this also means a loss of sensitivity and cer-
tainly a loss of valuable information.

This is why we have recently advocated the use of scat-
tered radiation to improve quality in image processing [11]
as well as to construct new imaging principles [12]. This pro-
posal generalizes the concept of a Compton camera, pro-
posed by several workers some thirty years ago [13–15], in
which the idea of electronic collimation is implemented.
When radiation is detected at a lower energy than the orig-
inally emitted energy, there must be at least one Compton
scattering occurring along its propagation path. But the vast
majority of scattered radiation is due to mainly single scat-
tering events [16]. To an emerging ray detected at a definite
energy there corresponds an ensemble of incoming rays dis-
tributed on a circular cone of definite opening angle. The
measured data consisting of collected emerging radiation at
some detection point is viewed as the integral contribution
of a source function on specific circular cones; it may be also
called a conical projection of the source. The name of conical
Radon transform is attributed to such integral transform and
is added to the list of already known Radon transforms on ge-
ometric manifolds inR3: paraboloids [17], spheres [18], spe-
cial surfaces [19], second-order surfaces [20], and so forth.
Other proposals for use of scattered radiation in X-ray imag-
ing which do not rely on conical projections have been made
independently by [21].

Thus, the main topic addressed here is the mathematical
framework defining the working principles of a new imag-
ing technique. To keep the discussion transparent, we have
adopted an ideal working assumption whereby attenuation
is not taken into account. A well-known difficulty is that the
nonuniform attenuation along the radiation path leads to
tremendous mathematical complication. For a given projec-
tion, attenuation correction factors in SPECT rarely exceed
10 in virtually all clinical imaging situations [22]. An exact
solution is beyond the scope of the present study. It should
be pointed out that, in the case of the attenuated X-ray trans-
form in emission imaging, a comprehensive analytic solu-
tion has been attained only recently [9]. Therefore, in prac-
tical situations standard corrections for photon attenuation
should be envisaged.

In conventional emission imaging, the data collected for
object reconstruction is formed by linear projections (cone
beam projections) of unscattered radiation filtered by an en-
ergy acquisition window which has already discarded from
70% to 80% of the incident photon flux. Moreover, among
the retained some have suffered scattering in the collimator
and hence must be discarded. It has been reported that col-
limator scatter increases as the energy of the photopeak of
interest increases from a low of 1.9% for Tc-99 m (141 keV)
to a high of 29.4% for I-131 (364 keV) with the usual high-
energy collimator. The penetration percentage also goes up
with energy. Therefore, correction for photons that penetrate
through, or scatter in, collimator septa is hardly important at
all for Tc-99 m tracers [23].

In the proposed imaging technique, data for reconstruc-
tion are provided by the so-called conical projections, which

gather radiation from point sources lying on large surfaces
inside the emitting object. Although contamination of the
scatter component by multiple scatter events may be as high
as 30% of the total scatter according to Monte Carlo investi-
gations [16, 24], we believe that the signal of single scattered
radiation is largely sufficient to make the new imaging prin-
ciples work, in particular when advanced semiconductor-
based detectors with better energy and spatial resolution and
sensitivity will become available. These interesting issues will
be explored in future work.

In this paper, we present a unified treatment of coni-
cal Radon transforms relevant in emission imaging by scat-
tered radiation. In fact, we will be concerned with two classes
of conical Radon transforms originating from image forma-
tion by Compton scattered radiation on a gamma camera
with and without collimator. The first class of conical Radon
transform uses circular cone sheets with fixed axis direction
(C1-cones) whereas the second class deals with circular cone
sheets with axis swinging around a point (C2-cones). Note
that if this point goes to infinity in a given spatial direction,
then the C2-cone goes over the C1-cone. In each case, we will
start by showing how the image formation process leads to
an integral transform and how this transform is related to
the conical Radon transforms. Each conical transform will
be introduced and its relevant properties for imaging pur-
poses, in particular their invertibility, discussed. Conclusions
and perspectives are given in the last section.

2. NOTATIONS

Let f be a real nonnegative integrable, smooth, with com-
pact support function on R3. The same function in cylindri-
cal (spherical) coordinates is noted f(f).

The definitions of various transforms of f (x, y, z) are as
follows:

(i) ̂fi: Conical Ci-Radon transform of f , i = 1, 2;
(ii) Fj : j-dimensional Fourier transform of f , j = 1, 2, 3.

Special functions [25] are as follows:

(i) Y(x): Heaviside unit step function;
(ii) jl(kr): spherical Bessel function of order l and variable

(kr);
(iii) Pl(cos θ): Legendre polynomial of order l and of vari-

able cos θ;
(iv) Yl,m(Ωk): spherical harmonic (l,m) with argument Ωk,

solid angle in the direction of the unit vector k.

3. WORK SETTING

In this article, we consider the emission imaging problem,
that is, the problem of reconstructing in R3 a gamma-ray
radiating object from its Compton scattered radiation data.
This object is described by its activity volume density func-
tion f . Detection of scattered radiation is performed by a
gamma camera in two instances: with or without collimator.
The recorded data consists of the coordinates of the detection
site, the surface flux density of photons at this site (pixel), and
the value of their energy (list mode). Between the radiating
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Figure 1: Two imaging modalities using scattered radiation with and without collimation.

object and the detector stands a scattering medium: it may
be a volume or a layer as illustrated by Figure 1. Note that the
object itself may also be a scattering medium, and for pho-
ton energies above 25 keV, over 50% of the interactions in
biological tissues are scatterings [26]. Higher-order scatter-
ing events (of much lower probability of occurrence) will be
the object in future studies.

3.1. Compton scattering

As Compton scattering plays a key role, we will recall some
of its properties. The Compton effect discovered in 1923 [27]
had served to confirm the particle (photon) nature of radi-
ation, as proposed by A Einstein. Thus, energetic radiation
under the form of X- or gamma-rays behave like particles
and scatter with electrically charged particles in matter. In
biomedical domains, X- or gamma-photons scatter electrons
in the biological media they traverse. This scattering process
has cylindrical symmetry around the direction of the incom-
ing photon and the energy of the outgoing photon is given
by the Compton formula [28]

E = E0
1

1 + ε(1− cosω)
, (1)

where ω is the scattering angle as measured from the incident
photon direction, E0, the photon initial energy, ε = E0/mc2,
and mc2 the rest energy of the electron. Equation (1) shows
that single-scattered photons have a continuous energy spec-
trum in the range E0/(1 + 2ε) ≤ E ≤ E0.

Thus an emerging photon with an energy E in a direction
of unit vector n may originate from an incoming photon of
energy E0 emitted from a site on a sheet of a circular cone of
axis direction n and an opening angle ω.

3.2. Compton differential cross-section

At a scattering site M, the number of particles d2Nsc scattered
in a solid angle dΩsc along a direction making an angle ω
with the incident direction follows from the definition of the

differential scattering cross-section (see Figure 2)

dσC
dΩ

, (2)

when the following quantities are given:

(a) φin, the incident photon flux density,
(b) ne(M)dM, the number of scatterers (electrons) around

the scattering site M with volume dM.

We have

d2Nsc = φinne(M)dM
(

dσC
dΩ

)

dΩsc. (3)

The Compton differential cross-section has been computed
in 1929 by Klein and Nishina [29]. It appears as the product
of the area of a disk of radius re, the classical radius of the
electron, and a probability factor P(ω), that is,

(

dσC
dΩ

)

= (πr2
e

)

P(ω), (4)

where re = 2.82× 10−15 m and

P(ω)= 1
2π

1
[

1 + ε(1−cosω)
]2

(

1+cos2 ω +

(

1−cos2 ω
)

1+ε(1−cosω)

)

.

(5)

Thus, we see that, for a given incident energy, the angular
distribution of scattered photons is no longer isotropic [28].

Hence, the final form of this number of scattered photons
in the direction given by the angle ω is

d2Nsc = φinne(M)dMr2
e P(ω)dΩsc, (6)

this number is basic to the image formation by scattered ra-
diation.

3.3. Conical projections

In standard computer assisted tomography (CAT), the data
is gathered under the form of line projections or integrals
of a function (attenuation or activity) along straight lines.
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Figure 2: Compton scattering differential cross-section.
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Figure 3: Illustration of linear and conical projections.

Here following the scattering mechanism, the data would ap-
pear as conical projections or integrals of a function f on a
circular cone sheets. The integration is carried out with the
Lebesgue measure of the cone in a chosen coordinate system.
The result is a function of

(i) the coordinates of the cone vertex,
(ii) the parameters of the unit vector of the cone axis,

(iii) the opening angle of the cone, that is, ω the scattering
angle.

Figure 3 displays the representations of line projection
and conical projection. In the text we will have two types of
conical projections corresponding to the two cases of image
formation mentioned earlier. The question is now how to use
the conical projections to reconstruct the source function f .
We will treat the two cases separately in the coming sections.

4. THE C1-CONICAL RADON TRANSFORM

In this section, we consider the possibility of imaging a three-
dimensional object by collecting data on its scattered radi-
ation on a gamma camera equipped with a collimator and
show how the C1-conical Radon transform arises. Figure 1
shows the experimental arrangement with the location of the
radiating object, the scattering medium, and the collimated
gamma camera.

4.1. Image formation in gamma imaging
by scattered radiation

To concentrate on the scattered imaging principle, we make
some simplifying assumptions [12, 30]:

(1) absence of attenuation for the propagating radiation,
(2) constant density of the electrons ne in the scattering

medium,
(3) isotropic emission from original radioisotopes in ob-

ject.

To compute the photon flux density at a detection site
(pixel) D on the collimated camera we start from (6). Radia-
tion is emitted at point source S, will propagate to scattering
site M and reach detection site D.

The incoming photon flux density φin on scattering site
M is now computed from the emission data from point
source. Let f (S)dS be the number of gamma photons emit-
ted per unit time by a volume dS in the object around site S.
The emission being isotropic, the number of photons emit-

ted in the direction
−−→
SM in a solid angle dΩS is

f (S)dS
4π

dΩS. (7)

Therefore, the incoming photon flux density at scattering
site M is

f (S)dS
4π

1
SM2

= φin, (8)

where SM = |−−→SM|.
Next, the number of scatterers around site M in a volume

dM is ne dM. The net number of photons emerging from the
scattering is

f (S)dS
4π

1
SM2

ne dMπr2
e P(ω)dΩM , (9)

this means that the detected photon flux density at site D is

f (S)dS
4π

1
SM2

ne dMπr2
e P(ω)

1
MD2

. (10)

Now, all the contributing point sources S, for given scat-
tering center M, lie on a circular cone sheet of axis identi-

fied with
−−→
MD and opening angle ω, thus we must integrate

with the measure δ(cone)dS first. Next, we must take into
account all the scattering sites in the scattering medium sit-
uated on the line parallel to the collimator axis at site D.
Hence, we must perform a second integration with the mea-
sure δ(line)dM. To sum up the detected photon flux density
at D is

g(D,ω) =
∫∫

δ(cone)
f (S)dS

4π
1

SM2
ne dMπr2

e P(ω)

× δ(line)
1

MD2
.

(11)

In the cylindrical coordinate system of Figure 4, the inte-
gration measure on the cone is r sinωdr dφ and the measure
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Figure 4: C1-cone and C1-conical Radon transform definition.

along the line is simply dzM , (11) becomes

g(D,ω) =πr2
e P(ω)

ne
4π

∫∫

r sinωdr dφ

× f
(

xD + r sinω cosφ, yD

+ r sinω sinφ, zM + r cosω
)dzM
z2
M

.

(12)

Remark 1. In practice as f and ne are volume densities, to
keep the physical dimensions right, we should think of the
cone sheet as having a small thickness e and the line on
which M moves as having a tiny section s. These are con-
stants and do not affect the mathematical reasoning, they will
be dropped for the sake of expression simplicity, but should
always be kept in mind.

Clearly this imaging equation is a compounded integral
transform. Assuming that integration interchange is valid, if
we define the first integral transform as

h
(

xD + r sinω cosφ, yD + r sinω sinφ, r cosω
)

=
∫

dzM
z2
M

f
(

xD + r sinω cosφ, yD

+ r sinω sinφ, zM + r cosω
)

,

(13)

we see that the imaging equation (12) is just a conical pro-
jection of the function h on the C1-cones with vertex on the
plane xOy.

Let us define an interaction factor which also includes e
and s:

K(ω) = πr2
e P(ω)

ne
4π

es, (14)

then (12) reads

g(D,ω)
K(ω)

=
∫∫

r sinωdr dφh
(

xD + r sinω cosφ, yD

+ r sinω sinφ, r cosω
)

,
(15)

or in terms of our notations (see Section 2)

g(D,ω)
K(ω)

= ̂h1
(

xD, yD,ω
)

. (16)

4.2. Properties of the C1-conical transform

The C1-conical Radon transform has been discussed in [31],
where some of its properties have been studied. However, the
problem of inversion will be handled here with a new ap-
proach. We will not go through the method of decomposi-
tion of functions in circular components but will show that
there exists a variant of the central slice theorem [28] which
provides the grounds to invert the transform as it is done in
the standard Radon transform [28].

First, we observe that by definition in the chosen cylin-
drical coordinate system the C1-conical Radon transform of
f , the cones having vertex on the xOy plane, is

̂f1
(

xD, yD,ω
) =

∫∫

r sinωdr dφ f
(

xD + r sinω cosφ, yD

+ r sinω sinφ, r cosω
)

.
(17)

This can be rewritten under the form of a Fredholm in-
tegral equation of the first kind with a delta function kernel
concentrated on the sheet of a circular cone [31]

̂f1
(

xD, yD,ω
)

=
∫∫

dx dy dzK1
(

xD, yD,ω | x, y, z
)

f (x, y, z),

(18)

with

K1
(

xD, yD,ω | x, y, z
)

= δ
(

cosω
√

(

x − xD
)2

+
(

y − yD
)2 − z sinω

)

.

(19)

We use now the Fourier representation of the delta func-
tion

δ
(

cosω
√

(

x − xD
)2

+
(

y − yD
)2 − z sinω

)

=
∫∞

−∞
dν exp 2iπν

(

cosω
√

(

x − xD
)2

+
(

y − yD
)2

− z sinω
)

,

(20)

and the two-dimensional Fourier transform of f (x, y, z),

f (x, y, z) =
∫

dp dqe2iπ(px+qy)F2(p, q, z). (21)

We can perform the integration over z, which restores
a three-dimensional Fourier transform F3(p, q, r) of f and
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yields a new form of ̂f (xS, yS,ω),

̂f
(

xS, yS,ω
)

=
∫

dx dy
∫∞

−∞
dν exp 2iπν

(

cosω
√

(

x−xS
)2

+
(

y−yS
)2
)

×
∫

dp dqe2iπ(px+qy)F3(p, q, ν sinω).

(22)

Let ̂F2(p, q,ω) be Fourier component with respect to the

coordinates xS and yS of ̂f (xS, yS,ω), then

̂F2(p, q,ω) =
∫∞

−∞
dνF3(p, q, ν sinω)

∫∫

dx dy exp 2iπ

×
[

ν cosω
√

(

x − xS
)2

+
(

y − yS
)2

+
(

p
(

x − xS
)

+ q
(

y − yS
))

]

.

(23)

The last integral of (23) can be computed using polar co-
ordinates in (x, y) and (p, q) spaces, that is, (x−xS) = ρ cosβ,
(y − yS) = ρ sinβ, dx dy = ρ dρ dβ, and p = k cosα,
p = k sinα, k dk dα. Therefore,
∫∫

dx dy exp 2iπ
[

ν cosω
√

(

x − xS
)2

+
(

y − yS
)2

+
(

p
(

x − xS
)

+ q
(

y − yS
))

]

=
∫∫

ρ dρ dβe2iπ[νρ cosω+kρ cos (β−α)].

(24)

Integration on β yields a Bessel function of order zero in
the last integral of (24):

∫∫

ρ dρ dβe2iπ[νρ cosω+kρ cos (β−α)]

=
∫∞

0
ρ dρe2iπρν cosω2πJ0(2πkρ).

(25)

Thus, in two-dimensional Fourier space, the C1-conical
Radon transform appears as

̂F2(p, q,ω) =
∫∞

−∞
dν

∫∞

0
ρ dρ2πJ0

(

2πρ
√

p2 + q2
)

× F3(p, q, ν sinω)e2iπνρ cosω.

(26)

Now, we perform the integration on ν which brings back
the three-dimensional Fourier transform of f ,
∫∞

−∞
dνF3(p, q, ν sinω)e2iπνρ cosω = 1

sinω
F2(p, q, ρ cotω).

(27)

This step reduces the C1-conical Radon transform to a
Hankel of order zero:

sinω ̂F2(p, q,ω)

=
∫∞

0
ρ dρ2πJ0

(

2πρ
√

p2 + q2
)

F2(p, q, ρ cotω).

(28)

To perform the inversion of this Hankel transform, we
should switch to an appropriate variable, that is, ζ = ρ cotω.
But care must be exercised as far as the range of ω is con-
cerned. We will distinguish two cases.

(a) 0 < ω < π/2, then ζ > 0 as well as tanω > 0 and (28)
can be rewritten as

sinω cot2 ω ̂F2

(

p, q,ω <
π

2

)

=
∫∞

0
ζ dζ2πJ0

(

2πζ tanω
√

p2 + q2
)

F2(p, q, ζ).

(29)

(b) π/2 < ω < π, then ζ < 0 as well as tanω < 0 and (28)
can be rewritten as

sinω cot2 ω ̂F2

(

p, q,ω >
π

2

)

=
∫∞

0
ζ dζ2πJ0

(

2πζ tanω
√

p2 + q2
)

F2(p, q,−ζ).

(30)

Application of the Hankel identity [25]

1
k
δ(k − k′) =

∫∞

0
r dr2πJl(2πkr)2πJl(2πk′r) (31)

leads to the inversion of the Hankel transforms and yields
the three-dimensional Fourier components of the object f .

As the dual variable to ζ is τ
√

p2 + q2, with τ = tanω, we get

F2(p, q, ζ) =(p2 + q2)
∫∞

0
τ dτ2πJ0

(

2πζ tanω
√

p2 + q2
)

× 1
|τ|√1 + τ2

(

Y
(

π

2
− ω
)

̂F2

(

p, q,ω <
π

2

)

+Y
(

ω− π
2

)

̂F2

(

p, q,ω >
π

2

))

.

(32)

Hence, f can be recovered by inverse three-dimensional
Fourier transform.

Remark 2. In order to reconstruct the object by inverting the
compound integral transform given by (12), we need to in-
vert (13). This is quite easy since it can be viewed as a convo-
lution in the variable zD between the two functions 1/z2

D and
f (. . . , . . . , zD + r cosω). As this operation is not important to
the topic of this paper, we refer the reader to [12, 30].

5. THE C2-CONICAL RADON TRANSFORM

5.1. Compton camera

That Compton effect which has been proposed as mecha-
nism for imaging is known ever since the fifties. However,
there are many ways to do the experimental setups. Most pro-
posals are systems with collimated point source and point-
like detector, see, for example, [21]. In fact the Compton ef-
fect is used to probe the electron density of matter and ap-
plied often to nondestructive material control. Here we are
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Figure 5: Principle of a Compton camera.

interested in data collected by a gamma camera. In the pre-
vious section we have examined the case of a gamma camera
with a lead collimator which has the disadvantage of reject-
ing many of the scattered photons. So to improve drastically
detection sensitivity, the idea of a Compton camera has been
proposed as early as 1974 by many workers [13–15, 32].

The concept of a Compton camera is analogous to the
scheme of Section 4 except that the scattering medium is now
a thin scattering layer parallel to the face of a gamma camera
without collimator. The data consists of C2-conical projec-
tions, the cone sheet axis converging to the detection site D;
see Figure 5. Note that when D → ∞ in a given direction we
recover the C1 cones.

Following the image formation process in a Compton
camera, we will show how a new conical Radon transform,
the C2-Radon transform, comes up and sketch a proof of
its invertibility under specific conditions. The true conical
Radon transform of a Compton camera is not yet an ana-
lytical inversion formula.

5.2. Image formation by scattered radiation
in Compton camera

The radiating object stands above the first scattering layer. Its
primary rays hit the scattering layer and will be absorbed by
the planar camera (see Figure 5). If only photons of energy
E below the energy E0 of the primary photons are recorded,
then each detection site collects all possible conical projec-
tions coming from all directions in half space, delimited by
the photon absorbing detector. This is the principle of elec-
tronic collimation which has been designed to improve sen-
sitivity of gamma cameras.

To reconstruct an object described by a source function
f (x, y, z), we need a set of data consisting of conical projec-
tions depending also on three variables. Ideally one could
select one detection site D, and consider all the projections
along circular cones of opening angle ω and axis swinging
around D but with cone vertex constrained to be on a plane.
With these conditions a conical projection will depend on

three parameters: the scattering angle ω and the two coor-
dinates of the cone vertex on the scattering plane. Thus, we
obtain a mapping of f onto a function of three variables. The
inverse mapping, when explicitly worked out, would yield a
correct imaging procedure by a Compton camera.

Following the assumptions of Section 4.1, the photon
flux density at detection site D is evaluated in the same man-
ner as for the case with collimator:

g(D,ω) =
∫∫

eδ(cone)
f (S)dS

4π
1

SM2

× ne dMπr2
e P(ω)sδ(line)

1
MD2

.

(33)

Now in the chosen coordinate system (see Figure 5), it
has the expression

g(D,ω) =K(ω)
∫∫

δ(cone) f (S)dS
1

SM2

× dxM dyM
1

l2 + x2
M + y2

M

,
(34)

l being the distance OD, the explicit integration on the cone
sheet δ(cone)dS will be given later in Section 5.3 since it is
related to the C2-conical Radon transform we will be exam-
ining.

Up to now there exists only a few attempts to exactly solve
this inversion problem. Cree and Bones [33] were the first
to consider conical projections on a Compton camera which
still has a collimator. Later on Basko et al. [34] as well as Parra
[35] have designed inversion techniques based on properties
of spherical harmonics as they consider conical projections
as made up of cone beam projections, but have not touch
really upon the problem of converting cone beam data into
conical projection data, a problem similar to the one solved
by Grangeat [6] for planar projections in R3. There are nu-
merous approximate reconstruction methods, most of them
using some back projection techniques (or numerical algo-
rithms) and search for point sources as intersections of cone
sheets reconstructed from coincidence measurements on the
Compton camera. Lastly let us also cite some other original
approaches based on statistical physics [36] as well as alge-
braic methods [37–39].

In this situation, it is of interest to find an analytic in-
version of the special C2-conical Radon transform responsi-
ble for the imaging process in Compton camera. Before tack-
ing this problem, we discuss here a more general problem in
which the vertex of the scattering cone is not constraint to lie
on a plane (or a surface) as in the Compton camera case. This
would give us some freedom to find an inversion formula for
another class of C2-conical Radon transform. We will come
back to the Compton camera in another work. Thus, the
mathematics of the Compton camera imaging process have
led to a new class of conical Radon transform.

5.3. Properties of the C2-conical Radon transform

The C2-cone is generated by the rotation of a straight line
making an angle ω around an axis direction n and meeting



8 International Journal of Biomedical Imaging

z

x

y

ω

φ

S

M

D

u n

k

Figure 6: C2-cone and C2-conical Radon transform definition.

this axis at vertex M; see Figure 6. Thus, D being the detec-

tion point, we have
−−→
DM = M = pn. Let S be a running point

of the cone sheet and denote this point by
−→
DS = S = rk. Let

the angle γ be defined by (k · n) = cos γ. Thus, by consid-
ering trigonometric relations in the triangle DMS, one can
write down the relation

r = p
sinω

sin(ω− γ)
= p

sinω
sin
(

ω− cos−1(k · n)
) , (35)

which may be regarded as the cone equation in a meridian
section within polar coordinates (r, γ) and polar axis n. At
ω = π/2 we recover the equation of a plane as a degenerate
cone [28].

When evaluating a C2-conical projection, we integrate a
nonnegative function f on one sheet of the cone. This is
equivalent to saying that, giving a “mass” density, we com-
pute the “mass” of a piece of cone surface limited by the
intersection curve of the support of f with the cone. This
“mass” may be calculated in any convenient coordinate sys-
tem.

We will use the coordinate system which is expressed in
(35). The area element of the cone is the product of the arc
element of the line by the element of circle in a plane perpen-
dicular to the cone axis.

The arc element is

ds =
√

(dr)2 + (r dγ)2 = p sinω
sin(ω− γ)

dγ

sin(ω− γ)
. (36)

Now the element of circle is r sin γ dψ. Hence, the cone
area element is

da = r sin γ dψ × p sinω
sin(ω− γ)

dγ

sin(ω− γ)

= sin γ dψ ×
(

p sinω
sin(ω− γ)

)2 dγ

sin(ω− γ)
.

(37)

In the same coordinate system, a C2-conical projection of
f is expressed as the integral of f on the cone sheet with the
integration measure da. f has then the expression f (r,Ωk),
with Ωk = (γ,ψ), r = p sinω/ sin (ω− γ) and angular ranges
0 < γ < ω and 0 < ψ < 2π. Thus,

̂f2(pn,ω) =
∫

f
(

p
sinω

sin(ω− γ)
,Ωk

)

sin γ dψ

×
(

p sinω
sin(ω − γ)

)2 dγ

sin(ω− γ)
,

(38)

or alternatively

̂f2(pn,ω) =
∫

(

f
(

r,Ωk
)

r2)

r=p(sinω/sin(ω−γ))

× sin γ dψ
dγ

sin(ω − γ)
.

(39)

One may use the integration over a one-dimensional delta
function to express the substitution of r by the cone equation
(35):

∫∞

−∞
dr δ

(

r − p
sinω

sin(ω− γ)

)

. (40)

Since

δ
(

r − p
sinω

sin(ω− γ)

)

1
sin(ω− γ)

= δ
(

p sinω − r sin(ω− γ)
)

,

(41)

and r2 dr sin γ dψ dγ = r2 dr dΩk = dS, we can replace the
original integration range:

{r ∈ R, 0 < γ < ω, 0 < ψ < 2π}, (42)

by

{

r ∈ R+, Γ = [0 < γ < ω ∪ π < γ < ω + π],

S1 = [0 < ψ < 2π]
}

,
(43)

which fits in the chosen spherical coordinate system with n
as polar axis.

The C2-conical projection of f has now the Fredholm
form of the first kind with a delta function kernel. In intrinsic
vector notations, it reads

̂f2(pn,ω) =
∫

dS f (S)K2(pn,ω | S), (44)

where

K2(pn,ω | S) = δ
(

p sinω− r sin
(

ω− cos−1(k · n)
))

.
(45)

(Compare with the previous case, see (18), (19)).
Finally, at ω = π/2 we recover precisely the planar Radon

projection in R3:

̂f2

(

pn,
π

2

)

=
∫

dS f (S)δ
(

p − r(k · n)
)

. (46)
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5.4. A central slice-like theorem

Again as in Section 4, we may use the Fourier decomposition
of the delta function1

δ
(

p sinω − r sin(ω− γ)
)

=
∫∞

−∞
dν exp−2iπν

(

p sinω − r sin(ω − γ)
)

,
(47)

together with the decomposition of f into spherical compo-
nents

f (x, y, z) = f
(

r,Ωk
) =

∑

l,m

flm(r)Ylm
(

Ωk
)

, (48)

where, in the chosen spherical coordinate system, Ωk denotes
the direction parameters of the unit vector k. Hence, insert-
ing (47) and (48) in (44) we obtain

̂f (pn,ω) =
∑

l,m

∫∞

−∞
dνe−2iπν(p sinω)

×
∫∞

0
r2drflm(r)

∫

Γ∪S1
dΩkYlm

(

Ωk
)

e2iπνr sin (ω−γ).

(49)

Recall cos γ = (k ·n). As sin (ω − γ) = cos (π/2− ω + γ),
we introduce the decomposition of a plane wave in space in
spherical components (see [40, page 471]):

e2iπνr cos (π/2−ω+γ)

=
∑

n

in(2n + 1) jn(2πνr)Pn

(

cos
(

π

2
− ω + γ

))

,
(50)

where jn(x) is the spherical Bessel function of order n.2

Let u be a fixed unit vector, defined by Ωu, such that
cos(π/2 − ω + γ) = (k · u). Then the Legendre polynomial
Pn(cos (π/2− ω + γ)) can be further expanded in terms of
spherical harmonics [25]:

Pn cos
(

cos
(

π

2
− ω + γ

))

= 4π
2n + 1

m′=n
∑

m′=−n
Y∗nm′

(

Ωk
)

Ynm′
(

Ωu
)

.

(51)

Putting relation (51) in (50) and integrating on dΩk,
since the range of φ is S1, we can write

∫

Γ∪S1
dΩkYlm

(

Ωk
)

Y∗nm′
(

Ωk
) = δmm′Km

ln (ω), (52)

1 As the delta function is an even function, the sign of the exponential under
the integration sign may be chosen at will.

2 This is valid for ν > 0, otherwise we take the Fourier representation of the
delta function with a different sign in (47) as indicated in the previous
footnote.

with |m| < inf(l,n). Thus, the result follows:

̂f (pn,ω) =
∑

n,m

Ynm
(

Ωu
)

∫∞

−∞
dνe−2iπν(p sinω)4πil

∫∞

0
r2 dr

×
∑

l

jl(2πνr)Km
ln (ω)flm(r).

(53)

Right-hand side of (53) expresses ̂f (pn,ω) as a spherical
component expansion of the C2-conical Radon transform in
terms of the variable p sinωu, instead of pn. So if the C2-
conical data can be rewritten under the form of a function of
p sinωu and of ω, with a spherical component decomposi-
tion, that is,

̂f (pn,ω) = ̂g(p sinωu,ω) =
∑

lm

̂glm(p sinω,ω)Ylm
(

Ωu
)

,

(54)

then we can extract the new data spherical component as

̂glm(p sinω,ω) =
∫∞

−∞
dνe2iπν(p sinω)4πil

∫∞

0
r2dr

×
∑

l

jl(2πνr)Km
ln (ω)flm(r).

(55)

Now by Fourier inverting with respect to q = p sinω the
two sides of (55), (since sinω > 0 for 0 < ω < π), we find
that

sinω
∫∞

−∞
dq̂glm(q,ω)e2iπνq

= 4πil
∫∞

0
r2dr

∑

l

jl(2πνr)Km
ln (ω)flm(r).

(56)

Next, by appropriately choosing u, a generalized Hankel
identity may be derived. Recall that for spherical Bessel func-
tions (see, e.g., [25]) this identity is of the form

1
k2
δ(k − k′) =

∫∞

0
ρ2 dρ4π jl(2πkρ)4π jl(2πk′ρ). (57)

This new identity allows to extract the spherical component
flm(r) of f and thereby achieve inversion (details will be pre-
sented elsewhere). Equation (54) relates implicitly p and ω
and may suggest a new type of gamma camera realization,
which should be investigated. Finally forω = π/2, (44) shows
that this C2-conical Radon transform is just the Radon trans-
form in R3. The whole procedure goes through with dras-
tic simplifications since the natural choice for u is n, thus

̂f (pn,ω) = ̂g(pu,ω).

6. CONCLUSIONS AND PERSPECTIVES

The Radon transform has enjoyed tremendous popularity in
imaging science as it has been extended, generalized in pure
mathematics (see, e.g., [19, 41, 42]) as well as exploited in
many fields of applications [17, 43, 44]. In this paper we have
presented two further generalizations of the Radon trans-
form, namely, two classes of conical Radon transforms which
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originate from imaging processes using Compton scattered
radiation. The first class, called C1-conical Radon transform,
is related to an imaging principle with a collimated gamma
camera whereas the second class, called C2-conical Radon
transform, contains a special subclass which models the
Compton camera imaging process. We have also shown that
inversion of C2-conical Radon transform can be achieved un-
der a special condition which is not yet, for the moment,
implemented in gamma-ray emission imaging science. Ex-
ploiting scattered radiation to reinforce sensitivity as well
as enlarging field of view and cutting down operating time
may lead to employing large scattering medium but with-
out collimator for gamma cameras. The mathematics behind
this perspective will be based on a yet little known Radon
transform: the torus Radon transform, which may bring even
more exciting mathematical topics to be explored in the years
to come.
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[25] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Transcendental Functions II, R. E. Krieger, Malabar, Fla,
USA, 1981.

[26] M. J. Yaffe and P. C. Johns, “Scattered radiation in diagnos-
tic radiology: magnitudes, effects, and methods of reduction,”
Journal of Applied Photographic Engineering, vol. 9, no. 6, pp.
184–195, 1983.

[27] A. H. Compton, “A quantum theory of the scattering of X-rays
by light elements,” Physical Review, vol. 21, no. 5, pp. 483–502,
1923.

[28] H. H. Barrett, “The Radon transform and its applications,” in
Progress in Optics, E. Wolf, Ed., vol. 21, pp. 219–286, North
Holland, Amsterdam, The Netherlands, 1984.



T. T. Truong et al. 11

[29] O. Klein and T. Nishina, “Über die Streuung von Strahlung
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