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ABSTRACT

We present in this paper new multiscale transforms on the sphere, namely the isotropic undecimated wavelet transform, the pyramidal wavelet
transform, the ridgelet transform and the curvelet transform. All of these transforms can be inverted i.e. we can exactly reconstruct the original
data from its coefficients in either representation. Several applications are described. We show how these transforms can be used in denoising
and especially in a Combined Filtering Method, which uses both the wavelet and the curvelet transforms, thus benefiting from the advantages
of both transforms. An application to component separation from multichannel data mapped to the sphere is also described in which we take
advantage of moving to a wavelet representation.
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1. Introduction

Wavelets in astronomy

Wavelets are very popular tools in astronomy (Starck &
Murtagh 2002) which have led to very impressive results in
denoising and detection applications. For instance, both the
Chandra and the XMM data centers use wavelets for the de-
tection of extended sources in X-ray images. For denoising and
deconvolution, wavelets have also demonstrated how power-
ful they are for discriminating signal from noise (Starck et al.
2002b). In cosmology, wavelets have been used in many stud-
ies such as for analyzing the spatial distribution of galaxies
(Slezak et al. 1993; Escalera & MacGillivray 1995; Starck
et al. 2005a; Martinez et al. 2005), determining the topology of
the universe (Rocha et al. 2004), detecting non-Gaussianity in
the CMB maps (Aghanim & Forni 1999; Barreiro et al. 2001;
Vielva et al. 2004; Starck et al. 2004), reconstructing the pri-
mordial power spectrum (Mukherjee & Wang 2003), measur-
ing the galaxy power spectrum (Fang & Feng 2000) or re-
constructing weak lensing mass maps (Starck et al. 2005b).
It has also been shown that noise is a problem of major con-
cern for N-body simulations of structure formation in the early
Universe and that using wavelets to remove noise from N-body
simulations is equivalent to simulations with two orders of
magnitude more particles (Romeo et al. 2003, 2004).

� Appendices 1 and 2 are only available in electronic form at
http://www.edpsciences.org

The most popular wavelet algorithm in astrophysical appli-
cations is the so-called “à trous algorithm”. It is an isotropic
undecimated wavelet transform in which the scaling function
used is a Box-Spline of order three. The isotropy of the wavelet
function makes this decomposition optimal for the detection of
isotropic objects. The non decimation makes the decomposi-
tion redundant (the number of coefficients in the decomposi-
tion is equal to the number of samples in the data multiplied
by the number of scales) and allows us to avoid Gibbs aliasing
after reconstruction in image restoration applications, as gen-
erally occurs with orthogonal or bi-orthogonal wavelet trans-
forms. The choice of a B3-spline is motivated by the fact that
we want an analyzing function close to a Gaussian, but veri-
fying the dilation equation, which is required in order to have
a fast transformation. One last property of this algorithm is to
provide a very straightforward reconstruction. Indeed, the sum
of all the wavelet scales and of the coarsest resolution image
reproduces exactly the original image.

When analyzing data that contains anisotropic features,
wavelets are no longer optimal and this has motivated the
development of new multiscale decompositions such as the
ridgelet and the curvelet transforms (Donoho & Duncan 2000;
Starck et al. 2002a). In Starck et al. (Starck et al. 2004), it
has been shown that the curvelet transform could be useful
for the detection and the discrimination of non Gaussianity in
CMB data. In this area, further insight will come from the anal-
ysis of full-sky data mapped to the sphere thus requiring the
development of a curvelet transform on the sphere.
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Wavelets on the sphere

Several wavelet transforms on the sphere have been proposed
in recent years. Schröder & Sweldens (1995) have developed
an orthogonal wavelet transform on the sphere based on the
Haar wavelet function. Its interest is however relatively lim-
ited because of the poor properties of the Haar function and
the problems inherent to the orthogonal decomposition. Many
papers describe new continuous wavelet transforms (Antoine
1999; Tenorio et al. 1999; Cayón et al. 2001; Holschneider
1996) and the recent detection of non-Gaussianity in CMB was
obtained by Vielva et al. (Vielva et al. 2004) using the con-
tinuous Mexican Hat wavelet transform (Cayón et al. 2001).
These works have been extended to directional wavelet trans-
forms (Antoine et al. 2002; McEwen et al. 2004; Wiaux et al.
2005). All these new continuous wavelet decompositions are
interesting for data analysis, but cannot be used for restora-
tion purposes because of the lack of an inverse transform.
Only the algorithm proposed by Freeden and Maier (Freeden
& Windheuser 1997; Freeden & Schneider 1998), based on the
Spherical Harmonic Decomposition, has an inverse transform.

The goal of this paper is to extend existing 2D multiscale
decompositions, namely the ridgelet transform, the curvelet
transform and the isotropic wavelet transform, which work on
flat images to multiscale methods on the sphere. In Sect. 2, we
present a new isotropic wavelet transform on the sphere which
has similar properties to the à trous algorithm and therefore
should be very useful for data denoising and deconvolution.
This algorithm is directly derived from the FFT-based wavelet
transform proposed in Starck et al. (1994) for aperture synthe-
sis image restoration, and is relatively close to the Freeden &
Maier (Freeden & Schneider 1998) method, except that it fea-
tures the same straightforward reconstruction as the à trous al-
gorithm (i.e. the sum of the scales reproduces the original data).
This new wavelet transform also can be easily extended to a
pyramidal wavelet transform, hence with reduced redundancy,
a possibility which may be very important for larger data sets
such as expected from the future Planck-Surveyor experiment.
In Sect. 3, we show how this new decomposition can be used to
derive a curvelet transform on the sphere. Section 4 describes
how these new transforms can be used in denoising applica-
tions and introduces the Combined Filtering Method, which
allows us to filter data on the sphere using both the Wavelet
and the Curvelet transforms. In Sect. 5, we show that the inde-
pendent component analysis method wSMICA (Moudden et al.
2005), which was designed for 2D data, can be extended to data
on the sphere.

2. Wavelet transform on the sphere

2.1. Isotropic undecimated wavelet transform
on the sphere (UWTS)

There are clearly many different possible implementations of a
wavelet transform on the sphere and their performance depends
on the application. We describe here an undecimated isotropic
transform which has many properties in common with the
à trous algorithm, and is therefore a good candidate for restora-
tion applications. Its isotropy is a favorable property when

analyzing a statistically isotropic Gaussian field such as the
CMB or data sets such as maps of galaxy clusters, which con-
tain only isotropic features (Starck et al. 1998). Our isotropic
transform is obtained using a scaling function φlc (ϑ, ϕ) with
cut-off frequency lc and azimuthal symmetry, meaning that φlc
does not depend on the azimuth ϕ. Hence the spherical har-
monic coefficients φ̂lc (l,m) of φlc vanish when m � 0 so that:

φlc(ϑ, ϕ) = φlc (ϑ) =
l=lc∑

l=0

φ̂lc (l, 0)Yl,0(ϑ, ϕ) (1)

where the Yl,m are the spherical harmonic basis functions. Then,
convolving a map f (ϑ, ϕ) with φlc is greatly simplified and the
spherical harmonic coefficients ĉ0(l,m) of the resulting map
c0(ϑ, ϕ) are readily given by (Bogdanova et al. 2005):

ĉ0(l,m) = ̂φlc ∗ f (l,m) =

√
4π

2l + 1
φ̂lc (l, 0) f̂ (l,m) (2)

where ∗ stands for convolution.

Multiresolution decompostion

A sequence of smoother approximations of f on a dyadic res-
olution scale can be obtained using the scaling function φlc as
follows

c0 = φlc ∗ f

c1 = φ2−1lc ∗ f

. . .

c j = φ2− j lc ∗ f (3)

where φ2− j lc is a rescaled version of φlc with cut-off fre-
quency 2− jlc. The above multi-resolution sequence can also
be obtained recursively. Define a low pass filter h j for each
scale j by

Ĥ j(l,m) =

√
4π

2l + 1
ĥ j(l,m)

=



φ̂ lc
2 j+1

(l,m)

φ̂ lc
2 j

(l,m)
if l < lc

2 j+1 and m = 0

0 otherwise.

(4)

It is then easily shown that c j+1 derives from c j by convolution
with h j: c j+1 = c j ∗ h j.

The wavelet coefficients

Given an axisymmetric wavelet function ψlc , we can derive in
the same way a high pass filter g j on each scale j:

Ĝ j(l,m) =

√
4π

2l + 1
ĝ j(l,m)

=



ψ̂ lc
2 j+1

(l,m)

φ̂ lc
2 j

(l,m)
if l < lc

2 j+1 and m = 0

1 if l ≥ lc
2 j+1 and m = 0

0 otherwise.

(5)
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Fig. 1. On the left, the scaling function φ̂ and, on the right, the wavelet function ψ̂.

Using these, the wavelet coefficients w j+1 at scale j + 1 are
obtained from the previous resolution by a simple convolution:
w j+1 = c j ∗ g j.

Just as with the à trous algorithm, the wavelet coefficients
can be defined as the difference between two consecutive reso-
lutions, w j+1(ϑ, ϕ) = c j(ϑ, ϕ) − c j+1(ϑ, ϕ), which in fact corre-
sponds to making the following specific choice for the wavelet
function ψlc :

ψ̂ lc
2 j

(l,m) = φ̂ lc
2 j−1

(l,m) − φ̂ lc
2 j

(l,m). (6)

The high pass filters g j defined above are, in this particular
case, expressed as:

Ĝ j(l,m) =

√
4π

2l + 1
ĝ j(l,m)

= 1 −
√

4π
2l + 1

ĥ j(l,m) = 1 − Ĥ j(l,m). (7)

Obviously, other wavelet functions could be used as well.

Choice of the scaling function

Any function with a cut-off frequency is a possible candidate.
We retained here a B-spline function of order 3. It is very close
to a Gaussian function and converges rapidly to 0:

φ̂lc (l,m = 0) =
3
2

B3

(
2l
lc

)
(8)

where B(x) = 1
12 (| x − 2 |3 − 4| x − 1 |3 + 6| x |3 − 4| x + 1 |3 +

| x + 2 |3).
In Fig. 1 the chosen scaling function derived from a

B-spline of degree 3, and its resulting wavelet function, are
plotted in frequency space.

The numerical algorithm for the undecimated wavelet
transform on the sphere is:

1. Compute the B3-spline scaling function and derive ψ, h and
g numerically.

2. Compute the corresponding Spherical Harmonics of image
c0. We get ĉ0.

3. Set j to 0. Iterate:

4. Multiply ĉ j by Ĥ j. We get the array ĉ j+1.
Its inverse Spherical Harmonics Transform gives the im-
age at scale j + 1.

5. Multiply ĉ j by Ĝ j. We get the complex array ŵ j+1.
The inverse Spherical Harmonics transform of ŵ j+1 gives
the wavelet coefficients w j+1 at scale j + 1.

6. j = j + 1 and if j ≤ J, return to Step 4.
7. The set {w1, w2, . . . , wJ, cJ} describes the wavelet transform

on the sphere of c0.

Reconstruction

If the wavelet is the difference between two resolutions, Step 5
in the above UWTS algorithm can be replaced by the follow-
ing simple subtraction w j+1 = c j − c j+1. In this case, the re-
construction of an image from its wavelet coefficients W =

{w1, . . . , wJ , cJ} is straightforward:

c0(θ, φ) = cJ(θ, φ) +
J∑

j=1

w j(θ, φ). (9)

This is the same reconstruction formula as in the à trous al-
gorithm: the simple sum of all scales reproduces the original
data. However, since the present decomposition is redundant,
the procedure for reconstructing an image from its coefficients
is not unique and this can profitably be used to impose addi-
tional constraints on the synthesis functions (e.g. smoothness,
positivity) used in the reconstruction. Here for instance, using
the relations:

ĉ j+1(l,m) = Ĥ j(l,m)ĉ j(l,m)

ŵ j+1(l,m) = Ĝ j(l,m)ĉ j(l,m) (10)

a least squares estimate of c j from c j+1 and w j+1 gives:

ĉ j = ĉ j+1
̂̃H j + ŵ j+1

̂̃G j (11)

where the conjugate filters ̂̃H j and ̂̃G j have the expression:

̂̃H j =

√
4π

2l + 1
ˆ̃hj = Ĥ∗j/(| Ĥ j |2 + | Ĝ j |2) (12)

̂̃G j =

√
4π

2l + 1
ˆ̃g j = Ĝ∗j/(| Ĥ j |2 + | Ĝ j |2) (13)
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Fig. 2. On the left, the filter ˆ̃h, and on the right the filter ˆ̃g.

and the reconstruction algorithm is:

1. Compute the B3-spline scaling function and derive ψ̂, ĥ, ĝ,
ˆ̃h, ˆ̃g numerically.

2. Compute the corresponding Spherical Harmonics of the im-
age at the low resolution cJ . We get ĉJ.

3. Set j to J − 1. Iterate:
4. Compute the Spherical Harmonics transform of the

wavelet coefficients w j+1 at scale j + 1. We get ŵ j+1.

5. Multiply ĉ j+1 by ̂̃H j.

6. Multiply ŵ j+1 by ̂̃G j.
7. Add the results of steps 6 and 7. We get ĉ j.
8. j = j − 1 and if j ≥ 0, return to Step 4.

9. Compute The inverse Spherical Harmonic transform of ĉ0.

The synthesis low pass and high pass filters ˆ̃h and ˆ̃g are plotted
in Fig. 2.

Figure 3 shows the WMAP data (top left) and its undeci-
mated wavelet decomposition on the sphere using five resolu-
tion levels. Figures 3 middle left, middle right and bottom left
show respectively the four wavelet scales. Figure 3 bottom right
shows the last smoothed array. Figure 4 shows the backprojec-
tion of a wavelet coefficient at different scales and positions.

2.2. Isotropic Pyramidal Wavelet Transform
on the Sphere (PWTS)

In the previous algorithm, no downsampling is performed and
each scale of the wavelet decomposition has the same number
of pixels as the original data set. Therefore, the number of pix-
els in the decomposition is equal to the number of pixels in the
data multiplied by the number of scales. For applications such
as PLANCK data restoration, we may prefer to introduce some
decimation in the decomposition so as to reduce the required
memory size and the computation time. This can be done eas-
ily by using a specific property of the chosen scaling function.
Indeed, since we are considering here a scaling function with
an initial cut-off lc in spherical harmonic multipole number l,

and since the actual cut-off is reduced by a factor of two at each
step, the number of significant spherical harmonic coefficients
is then reduced by a factor of four after each convolution with
the low pass filter h. Therefore, we need fewer pixels in the
direct space when we compute the inverse spherical harmonic
transform. Using the Healpix pixelization scheme (Górski et al.
2002), this can be done easily by dividing by 2 the nside param-
eter when resorting to the inverse spherical harmonic transform
routine.

Figure 5 shows WMAP data (top left) and its pyramidal
wavelet transform using five scales. As the scale number in-
creases (i.e. the resolution decreases), the pixel size becomes
larger. Figures 5 top right, middle left, middle right and bottom
left show respectively the four wavelet scales. Figure 5 bottom
right shows the last smoothed array.

3. Curvelet transform on the Sphere (CTS)

3.1. Introduction

The 2D curvelet transform, proposed in Donoho & Duncan
(2000), Starck et al. (2002a, 2003a) enables the directional
analysis of an image in different scales. The fundamental prop-
erty of the curvelet transform is to analyze the data with func-
tions of length of about 2− j/2 for the jth sub-band [2 j, 2 j+1] of
the two dimensional wavelet transform. Following the imple-
mentation described in Starck et al. (2002a) and Starck et al.
(2003a), the data first undergoes an Isotropic Undecimated
Wavelet Transform (i.e. à trous algorithm). Each scale j is then
decomposed into smoothly overlapping blocks of side-length
B j pixels in such a way that the overlap between two verti-
cally adjacent blocks is a rectangular array of size B j × B j/2.
Finally, the ridgelet transform (Candès & Donoho 1999) is
applied on each individual block which amounts to applying
a 1-dimensional wavelet transform to the slices of its Radon
transform. More details on the implementation of the digital
curvelet transform can be found in Starck et al. (2002a, 2003a).
It has been shown that the curvelet transform could be very use-
ful for the detection and the discrimination of sources of non-
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Fig. 3. WMAP data and its wavelet transform on the sphere using five resolution levels (4 wavelet scales and the coarse scale). The sum of
these five maps reproduces exactly the original data (top left). Top: original data and the first wavelet scale. Middle: the second and third wavelet
scales. Bottom: the fourth wavelet scale and the last smoothed array.

Fig. 4. Backprojection of a wavelet coefficient at different scales. Each map is obtained by setting all but one of the wavelet coefficients to
zero, and applying an inverse wavelet transform. Depending on the scale and the position of the non zero wavelet coefficient, the reconstructed
image presents an isotropic feature with a given size.
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Fig. 5. WMAP data (top left) and its pyramidal wavelet transform on the sphere using five resolution levels (4 wavelet scales and the coarse
scale). The original map can be reconstructed exactly from the pyramidal wavelet coefficients. Top: original data and the first wavelet scale.
Middle: the second and third wavelet scales. Bottom: the fourth wavelet scale and the last smoothed array. The number of pixels is divided by
four at each resolution level, which can be helpful when the data set is large.

Gaussianity in CMB (Starck et al. 2003b). The curvelet trans-
form is also redundant, with a redundancy factor of 16J + 1
whenever J scales are employed. Its complexity scales like that
of the ridgelet transform that is as O(n2 log2 n). This method
is best for the detection of anisotropic structures and smooth
curves and edges of different lengths.

3.2. Curvelets on the Sphere

The Curvelet transform on the sphere (CTS) can be similar to
the 2D digital curvelet transform, but replacing the à trous al-
gorithm by the Isotropic Wavelet Transform on the Sphere pre-
viously described. The CTS algorithm consists of the following
three steps:

– Isotropic Wavelet Transform on the Sphere.
– Partitioning. Each scale is decomposed into blocks of an

appropriate scale (of side-length ∼2−s), using the Healpix
pixelization.

– Ridgelet Analysis. Each square is analyzed via the discrete
ridgelet transform.

Partitioning using the Healpix representation

The Healpix representation is a curvilinear partition of the
sphere into quadrilateral pixels of exactly equal area but with
varying shape. The base resolution divides the sphere into
12 quadrilateral faces of equal area placed on three rings
around the poles and equator. Each face is subsequently divided
into nside2 pixels following a hierarchical quadrilateral tree
structure. The geometry of the Healpix sampling grid makes
it easy to partition a spherical map into blocks of a specified
size 2n. We first extract the twelve base-resolution faces, and
each face is then decomposed into overlapping blocks as in the
2D digital curvelet transform. With this scheme however, there
is no overlapping between blocks belonging to different base-
resolution faces. This may result in blocking effects for exam-
ple in denoising experiments via non linear filtering. A simple



J.-L. Starck et al.: Wavelets, ridgelets and curvelets on the sphere 7

Fig. 6. Flowgraph of the ridgelet transform on the sphere.

way around this difficulty is to work with various rotations of
the data with respect to the sampling grid.

Ridgelet transform

Once the partitioning is performed, the standard 2D ridgelet
transform described in Starck et al. (2003a) is applied in each
individual block:

1. Compute the 2D Fourier transform.
2. Extract lines going through the origin in the frequency

plane.
3. Compute the 1D inverse Fourier transform of each line.

This achieves the Radon transform of the current block.
4. Compute the 1D wavelet transform of the lines of the

Radon transform.

The first three steps correspond to a Radon transform method
called the linogram. Other implementations of the Radon trans-
form, such as the Slant Stack Radon Transform (Donoho &
Flesia 2002), can be used as well, as long as they offer an exact
reconstruction.

Figure 6 shows the flowgraph of the ridgelet transform on
the sphere and Fig. 7 shows the backprojection of a ridgelet
coefficient at different scales and orientations.

3.3. Algorithm

The curvelet transform algorithm on the sphere is as follows:

1. Apply the isotropic wavelet transform on the sphere with
J scales.

2. Set the block size B1 = Bmin.
3. For j = 1, . . . , J do,

– partition the subband w j with a block size B j and apply
the digital ridgelet transform to each block;

Fig. 7. Backprojection of a ridgelet coefficient at different scales and
orientations. Each map is obtained by setting all but one of the
ridgelet coefficients to zero, and applying an inverse ridgelet trans-
form. Depending on the scale and the position of the non zero ridgelet
coefficient, the reconstructed image presents a feature with a given
width and a given orientation.

– if j modulo 2 = 1 then B j+1 = 2B j;
– else B j+1 = B j.

The sidelength of the localizing windows is doubled at ev-
ery other dyadic subband, hence maintaining the fundamental
property of the curvelet transform which says that elements
of length about 2− j/2 serve for the analysis and synthesis of
the j-th subband [2 j, 2 j+1]. We used the default value Bmin =

16 pixels in our implementation. Figure 8 gives an overview
of the organization of the algorithm. Figure 9 shows the
backprojection of curvelet coefficients at different scales and
orientations.
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Fig. 8. Flowgraph of the Curvelet Transform on the Sphere.

3.4. Pyramidal curvelet transform on the sphere
(PCTS)

The CTS is very redundant, which may be a problem in han-
dling huge data sets such as the future PLANCK data. The re-
dundancy can be reduced by substituting, in the curvelet trans-
form algorithm, the pyramidal wavelet transform to the undeci-
mated wavelet transform. The second step which consists in ap-
plying the ridgelet transform on the wavelet scale is unchanged.
The pyramidal curvelet transform algorithm is:

1. Apply the pyramidal wavelet transform on the sphere with
J scales.

2. Set the block size B1 = Bmin.
3. For j = 1, . . . , J do,

– partition the subband w j with a block size B j and apply
the digital ridgelet transform to each block,

– if j modulo 2 = 2 then B j+1 = B j/2,
– else B j+1 = B j.

In the next section, we show how the pyramidal curvelet trans-
form can be used for image filtering.

4. Filtering

4.1. Hard thresholding

Wavelets and Curvelets have been used successfully in im-
age denoising via non-linear filtering or thresholding methods
(Starck & Murtagh 2002; Starck et al. 2002a). Hard threshold-
ing, for instance, consists in setting all insignificant coefficients
(i.e. coefficients with an absolute value below a given thresh-
old) to zero. In practice, we need to estimate the noise standard
deviation σ j in each band j and a wavelet (or curvelet) coeffi-
cient w j is significant if | w j |> kσ j, where k is a user-defined

parameter, typically chosen between 3 and 5. Theσ j estimation
in band j can be derived from simulations (Starck & Murtagh
2002). Denoting as D the noisy data and δ the thresholding op-
erator, the filtered data D̃ are obtained by:

D̃ = Rδ(TD) (14)

where T is the wavelet (resp. curvelet) transform operator and
R is the wavelet (resp. curvelet) reconstruction operator.

Figure 10 describes the setting and the results of a simu-
lated denoising experiment: upper left, the original simulated
map of the synchrotron emission (renormalized between 0
and 255); upper right, the same image plus additive Gaussian
noise (σ = 5); middle, the pyramidal wavelet filtered image
and the residual (i.e. noisy data minus filtered data); bottom,
the pyramidal curvelet transform filtered image and the resid-
ual. A 5σ j detection threshold was used in both cases. On such
data, displaying very anisotropic features, using curvelets pro-
duces better results than the wavelets.

4.2. The combined filtering method on the sphere

The residual images for both the wavelet and curvelet trans-
forms shown in Fig. 10 show that wavelets do not restore long
features with high fidelity while curvelets are seriously chal-
lenged by isotropic or small features. Each transform has its
own area of expertise and this complementarity is of great po-
tential. The Combined Filtering Method (CFM) (Starck et al.
2001) allows us to benefit from the advantages of both trans-
forms. This iterative method detects the significant coefficients
in both the wavelet domain and the curvelet domain and guar-
antees that the reconstructed map will take into account any
pattern detected as significant by either of the transforms. A full
description of the algorithm is given in Appendix I. Figure 11
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Fig. 9. Backprojection of a curvelet coefficient at different scales and orientations. Each map is obtained by setting all but one of the curvelet
coefficients to zero, and applying an inverse curvelet transform. Depending on the scale and the position of the non zero curvelet coefficient,
the reconstructed image presents a feature with a given width, length and orientation.

shows the CFM denoised image and its residual. Figure 12
shows one face (face 6) of the following Healpix images: upper
left, original image; upper right, noisy image; middle left, re-
stored image after denoising by the combined transform; mid-
dle right, the residual; bottom left and right, the residual us-
ing respectively the curvelet and the wavelet denoising method.
The results are reported in Table 1. The residual is much better
when the combined filtering is applied, and no feature can be
detected any longer by eye in the residual. Neither with the
wavelet filtering nor with the curvelet filtering could such a
clean residual be obtained.

5. Wavelets on the sphere and independent
component analysis

5.1. Introduction

Blind Source Separation (BSS) is a problem that occurs in
multi-dimensional data processing. The goal is to recover un-
observed signals, images or sources S from mixtures X of these
sources observed typically at the output of an array of m sen-
sors. A simple mixture model would be linear and instanta-
neous with additive noise as in:

X = AS + N (15)

where X, S and N are random vectors of respective sizes m×1,
n × 1 and m × 1, and A is an m × n matrix. Multiplying S by
A linearly mixes the n sources resulting in m observed mixture
processes corrupted by additive instrumental Gaussian noise N.
Independent Component Analysis methods were developed to
solve the BSS problem, i.e. given a batch of T observed sam-

ples of X, estimate A and S , relying mostly on the statistical
independence of the source processes.

Algorithms for blind component separation and mixing
matrix estimation depend on the a priori model used for the
probability distributions of the sources (Cardoso 2001) al-
though rather coarse assumptions can be made (Cardoso 1998;
Hyvärinen et al. 2001). In a first set of techniques, source
separation is achieved in a noise-less setting, based on the
non-Gaussianity of all but possibly one of the components.
Most mainstream ICA techniques belong to this category:
JADE (Cardoso 1999), FastICA, Infomax (Hyvärinen et al.
2001). In a second set of blind techniques, the components
are modeled as Gaussian processes and, in a given repre-
sentation (Fourier, wavelet, etc.), separation requires that the
sources have diverse, i.e. non proportional, variance profiles.
The Spectral Matching ICA method (SMICA) (Delabrouille
et al. 2003; Moudden et al. 2005) considers in this sense the
case of mixed stationary Gaussian components in a noisy con-
text: moving to a Fourier representation, the point is that col-
ored components can be separated based on the diversity of
their power spectra.

5.2. SMICA: from Fourier to wavelets

SMICA, which was designed to address some of the general
problems raised by Cosmic Microwave Background data anal-
ysis, has already shown significant success for CMB spectral
estimation in multidetector experiments (Delabrouille et al.
2003; Patanchon et al. 2004). However, SMICA suffers from
the non locality of the Fourier transform which has undesired
effects when dealing with non-stationary components or noise,
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Fig. 10. Denoising. Upper left and right: simulated synchrotron image and same image with an additive Gaussian noise (i.e. simulated data).
Middle: pyramidal wavelet filtering and residual. Bottom: pyramidal curvelet filtering and residual. On such data, displaying very anisotropic
features, the residual with curvelet denoising is cleaner than with the wavelet denoising.

Fig. 11. Denoising. Combined Filtering Method (pyramidal wavelet and pyramidal curvelet) and residual.

or with incomplete data maps. The latter is a common issue
in astrophysical data analysis: either the instrument scanned
only a fraction of the sky or some regions of the sky were
masked due to localized strong astrophysical sources of con-
tamination (compact radio-sources or galaxies, strong emit-
ting regions in the galactic plane). A simple way to overcome
these effects is to move instead to a wavelet representation so

as to benefit from the localization property of wavelet filters,
which leads to wSMICA (Moudden et al. 2005). The wSMICA
method uses an undecimated à trous algorithm with the cu-
bic box-spline (Starck & Murtagh 2002) as the scaling func-
tion. This transform has several favorable properties for astro-
physical data analysis. In particular, it is a shift invariant trans-
form, the wavelet coefficient maps on each scale are the same



J.-L. Starck et al.: Wavelets, ridgelets and curvelets on the sphere 11

Fig. 12. Combined Filtering Method, face 6 in the Healpix representation of the image shown in Fig. 11. From top to bottom and left to right,
respectively the a) original image face, b) the noisy image, c) the combined filtered image, d) the combined filtering residual, e) the wavelet
filtering residual and f) the curvelet filtering residual.

size as the initial image, and the wavelet and scaling functions
have small compact supports in the initial representation. All
of these allow missing patches in the data maps to be handled
easily.

Using this wavelet transform algorithm, the multichannel
data X is decomposed into J detail maps Xw

j and a smooth ap-

proximation map Xw
J+1 over a dyadic resolution scale. Since ap-

plying a wavelet transform on (15) does not affect the mixing
matrix A, the covariance matrix of the observations at scale j is
still structured as

RX
w( j) = ARS

w( j)A† + RN
w ( j) (16)
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Fig. 13. Left: zero mean templates for CMB (σ = 4.17× 10−5), galactic dust (σ = 8.61× 10−6) and SZ (σ = 3.32× 10−6) used in the experiment
described in Sect. 5.4. The standard deviations given are for the region outside the galactic mask. The maps on the right were estimated
using wSMICA and scalewise Wiener filtering as is explained in Appendix II. Map reconstruction using Wiener filtering clearly is optimal
only in front of stationary Gaussian processes. For non Gaussian maps, such as given by the Sunyaev Zel’dovich effect, better reconstruction
can be expected from non linear methods. The different maps are drawn here in different color scales to enhance structures and ease visual
comparisons.

Table 1. Table of error standard deviations and SNR values after filter-
ing the synchrotron noisy map (Gaussian white noise – sigma = 5 ) by
the wavelet, the curvelet and the combined filtering method. Images
are available at http://jstarck.free.fr/mrs.html.

Method Error Standard Deviation SNR (dB)

Noisy map 5. 13.65

Wavelet 1.30 25.29

Curvelet 1.01 27.60

CFM 0.86 28.99

where RS
w( j) and RN

w ( j) are the diagonal spectral covariance ma-
trices in the wavelet representation of S and N respectively. It
was shown (Moudden et al. 2005) that replacing in the SMICA
method the covariance matrices derived from the Fourier coef-
ficients by the covariance matrices derived from wavelet coef-
ficients leads to much better results when the data are incom-
plete. This is due to the fact that the wavelet filter response on
scale j is short enough compared to data size and gap widths

Table 2. Entries of A, the mixing matrix used in our simulations.

CMB DUST SZ Channel

1.0 1.0 −1.51 100 GHz

1.0 2.20 −1.05 143 GHz

1.0 7.16 0.0 217 GHz

1.0 56.96 2.22 353 GHz

1.0 1.1 × 103 5.56 545 GHz

1.0 1.47 × 105 11.03 857 GHz

and most of the samples in the filtered signal then remain unaf-
fected by the presence of gaps. Using these samples exclusively
yields an estimated covariance matrix R̂X

w( j) which is not biased
by the missing data.
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Table 3. Nominal noise standard deviations in the six channels of the Planck HFI.

100 143 217 353 545 857 channel

2.65 × 10−6 2.33 × 10−6 3.44 × 10−6 1.05 × 10−5 1.07 × 10−4 4.84 × 10−3 noise std

5.3. SMICA on the sphere: from spherical harmonics
to wavelets on the sphere (wSMICA-S)

Extending SMICA to deal with multichannel data mapped to
the sphere is straightforward (Delabrouille et al. 2003). The
idea is simply to substitute the spherical harmonics transform
for the Fourier transform used in the SMICA method. Then,
data covariance matrices are estimated in this representation
over intervals in multipole number l. However SMICA on
spherical maps still suffers from the non locality of the spher-
ical harmonics transform whenever the data to be processed is
non stationary, incomplete, or partly masked.

Moving to a wavelet representation allows one to overcome
these effects: wSMICA can be easily implemented for data
mapped to the sphere by substituting the UWTS described in
section 2 to the undecimated à trous algorithm used in the pre-
vious section. In the linear mixture model (15), X now stands
for an array of observed spherical maps, S is now an array of
spherical source maps to be recovered and N is an array of
spherical noise maps. The mixing matrix A achieves a pixel-
wise linear mixing of the source maps. Applying the above
UWTS on both sides of (15) does not affect the mixing matrix A
so that, assuming independent source and noise processes, the
covariance matrix of the observations at scale j is again struc-
tured as in (16). Source separation follows from minimizing
the covariance matching criterion (23) in this spherical wavelet
representation. A full description is given in Appendix II.

5.4. Experiments

As an application of wSMICA on the sphere, we consider here
the problem of CMB data analysis but in the special case where
the use of a galactic mask is a cause of non-stationarity which
impairs the use of the spherical harmonics transform.

The simulated CMB, galactic dust and Sunyaev Zel’dovich
(SZ) maps used, shown on the left-hand side of Fig. 13, were
obtained as described in Delabrouille et al. (2003). The prob-
lem of instrumental point spread functions is not addressed
here, and all maps are assumed to have the same resolution.
The high level foreground emission from the galactic plane re-
gion was removed using the K p2 mask from the WMAP team
website1. These three incomplete maps were mixed using the
matrix in Table 2, in order to simulate observations in the six
channels of the Planck high frequency instrument (HFI).

Gaussian instrumental noise was added in each channel ac-
cording to model (15). The relative noise standard deviations
between channels were set according to the nominal values of
the Planck HFI given in Table 3.

The synthetic observations were decomposed into six
scales using the isotropic UWTS and wSMICA was used

1 http://lambda.gsfc.nasa.gov/product/map/
intensity_mask.cfm

Fig. 14. Relative reconstruction error defined by (17) of the
CMB component map using SMICA, wSMICA and JADE as a func-
tion of the instrumental noise level in dB relative to the nominal values
in Table 3. The zero dB noise level corresponds to the expected noise
in the future PLANCK mission.

to obtain estimates of the mixing matrix and of the initial
source templates. The resulting component maps estimated us-
ing wSMICA, for nominal noise levels, are shown on the right-
hand side of Fig. 13 where the quality of the reconstruction can
be visually assessed by comparison to the initial components.
The component separation was also performed with SMICA
based on Fourier statistics computed in the same six dyadic
bands imposed by our choice of wavelet transform, and with
JADE. In Fig. 14, the performances of SMICA, wSMICA and
JADE are compared in the particular case of CMB map esti-
mation, in terms of the relative standard deviation of the recon-
struction error, MQE, defined by

MQE =
std(CMB(ϑ, ϕ) − α × ĈMB(ϑ, ϕ))

std(CMB(ϑ, ϕ))
(17)

where std stands for empirical standard deviation (obviously
computed outside the masked regions), and α is a linear re-
gression coefficient estimated in the least squares sense. As ex-
pected, since it is meant to be used in a noiseless setting, JADE
performs well when the noise is very low. However, as the
noise level increases, its performance degrades quite rapidly
compared to the covariance matching methods. Further, these
results clearly show that using wavelet-based covariance matri-
ces provides a simple and efficient way to treat the effects of
gaps on the performance of source separation using statistics
based on the non local Fourier representation.

6. Conclusion

We have introduced new multiscale decompositions on the
sphere, the wavelet transform, the ridgelet transform and the
curvelet transform. It was shown in Starck et al. (2004) that
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combining the statistics of wavelet coefficients and curvelet co-
efficients of flat maps leads to a powerful analysis of the non-
Gaussianity in the CMB. Using the new decompositions pro-
posed here, it is now possible to perform such a study on data
mapped to the sphere such as from the WMAP or PLANCK ex-
periments. For the denoising application, we have shown that
the Combined Filtering Method allows us to significantly im-
prove the result compared to a standard hard thresholding in
a given transformation. Using the isotropic UWTS and statis-
tics in this representation also allows us to properly treat in-
complete or non-stationary data on the sphere which cannot be
done in the non-local Fourier representation. This is clearly il-
lustrated by the results obtained with wSMICA which achieves
component separation in the wavelet domain thus reducing the
negative impact that gaps have on the performance of source
separation using the initial SMICA algorithm in the spherical
harmonics representation. Further results are available at

http://jstarck.free.fr/mrs.hmtl

as well as information about the IDL code for the described
transformations based on the Healpix package (Górski et al.
2002).
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Appendix I: The combined filtering method

In general, suppose that we are given K linear transforms
T1, . . . , TK and let αk be the coefficient sequence of an object x
after applying the transform Tk, i.e. αk = Tkx. We will assume
that for each transform Tk, a reconstruction rule is available
that we will denote by T−1

k , although this is clearly an abuse
of notation. T will denote the block diagonal matrix with Tk as
building blocks and α the amalgamation of the αk.

A hard thresholding rule associated with the transform Tk

synthesizes an estimate s̃k via the formula

s̃k = T−1
k δ(αk) (18)

where δ is a rule that sets to zero all the coordinates of αk whose
absolute value falls below a given sequence of thresholds (such
coordinates are said to be non-significant).

Given data y of the form y = s + σz, where s is the image
we wish to recover and z is standard white noise, we propose to
solve the following optimization problem (Starck et al. 2001):

min ‖T s̃‖�1 , subject to s ∈ C, (19)

where C is the set of vectors s̃ that obey the linear constraints
{

s̃ ≥ 0,
|T s̃ − Ty| ≤ e;

(20)

here, the second inequality constraint only concerns the set of
significant coefficients, i.e. those indices µ such that αµ = (Ty)µ
exceeds (in absolute value) a threshold tµ. Given a vector of
tolerance (eµ), we seek a solution whose coefficients (T s̃)µ are
within eµ of the noisy empirical αµ. Think of αµ as being given
by

y = 〈y, ϕµ〉,

so that αµ is normally distributed with mean 〈 f , ϕµ〉 and vari-
ance σ2

µ = σ2‖ϕµ‖22. In practice, the threshold values range
typically between three and four times the noise level σµ and
in our experiments we will put eµ = σµ/2. In short, our con-
straints guarantee that the reconstruction will take into account
any pattern detected as significant by any of the K transforms.

The minimization method

We propose to solve (19) using the method of hybrid steepest
descent (HSD) (Yamada 2001). HSD consists of building the
sequence

sn+1 = P(sn) − λn+1∇J(P(sn)); (21)

Here, P is the �2 projection operator onto the feasible set C, ∇J

is the gradient of Eq. (19), and (λn)n≥1 is a sequence obeying
(λn)n≥1 ∈ [0, 1] and limn→+∞ λn = 0.

The combined filtering algorithm is:

1. Initialize Lmax = 1, the number of iterations Ni, and δλ =
Lmax
Ni

.

2. Estimate the noise standard deviation σ, and set ek =
σ
2 .

3. For k = 1, .., K calculate the transform: α(s)
k = Tk s.

4. Set λ = Lmax, n = 0, and s̃n to 0.

5. While λ >= 0 do
– u = s̃n.
– For k = 1, .., K do

– Calculate the transform αk = Tku.
– For all coefficients αk,l do
• Calculate the residual rk,l = α

(s)
k,l − αk,l,

• if α(s)
k,l is significant and | rk,l |> ek,l then αk,l =

α(s)
k,l ,

• αk,l = sgn(αk,l)(| αk,l | −λ)+.
– u = T−1

k αk.
– Threshold negative values in u and s̃n+1 = u.
– n = n + 1, λ = λ − δλ, and goto 5.

Appendix II: SMICA in the spherical wavelet repre-
sentation (wSMICA-S)

A detailed derivation of SMICA and wSMICA can be found
in Delabrouille et al. (2003) and Moudden et al. (2005). Details
are given here showing how the Isotropic Undecimated Wavelet
Transform on the Sphere described in Sect. 2 above can be used
to extend SMICA to work in the wavelet domain on spherical
data maps. We will refer to this extension as wSMICA-S.

wSMICA-S objective function

In the linear mixture model (15), X stands for an array of ob-
served spherical maps, S is an array of spherical source maps
to be recovered and N is an array of spherical noise maps.
The mixing matrix A achieves a pixelwise linear mixing of the
source maps. The observations are assumed to have zero mean.
Applying the above UWTS on both sides of (15) does not af-
fect the mixing matrix A so that, assuming independent source
and noise processes, the covariance matrix of the observations
at scale j is still structured as

RX
w( j) = ARS

w( j)A† + RN
w ( j) (22)

where RS
w( j) and RN

w ( j) are the model diagonal spectral covari-
ance matrices in the wavelet representation of S and N respec-
tively. Provided estimates R̂X

w( j) of RX
w( j) can be obtained from

the data, our wavelet-based version of SMICA consists in min-
imizing the wSMICA-S criterion:

Φ(θ) =
J+1∑

j=1

α jD
(
R̂X
w( j), ARS

w( j)A† + RN
w ( j)

)
(23)

for some reasonable choice of the weights α j and of the matrix
mismatch measure D, with respect to the full set of param-
eters θ = (A,RS

w( j),RN
w ( j)) or a subset thereof. As discussed

in Delabrouille et al. (2003) and Moudden et al. (2005), a good
choice forD is

DKL(R1,R2) =
1
2

(
tr(R1R−1

2 ) − log det(R1R−1
2 ) − m

)
(24)

which is the Kullback-Leibler divergence between two m-
variate zero-mean Gaussian distributions with covariance ma-
trices R1 and R2. With this mismatch measure, the wSMICA-S
criterion is shown to be related to the likelihood of the data in
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a Gaussian model. We can resort to the EM algorithm to mini-
mize (23).

In dealing with non stationary data or incomplete data, an
attractive feature of wavelet filters over the spherical harmonic
transform is that they are well localized in the initial represen-
tation. Provided the wavelet filter response on scale j is short
enough compared to data size and gap widths, most of the sam-
ples in the filtered signal will then be unaffected by the presence
of gaps. Using exclusively these samples yields an estimated
covariance matrix R̂X

w( j) which is not biased by the missing
data. Writing the wavelet decomposition on J scales of X as

X(ϑ, ϕ) = Xw
J+1(ϑ, ϕ) +

J∑

j=1

Xw
j (ϑ, ϕ) (25)

and denoting l j the size of the set M j of wavelet coefficients
unaffected by the gaps at scale j, the wavelet covariances are
simply estimated using

R̂X
w( j) =

1
l j

∑

t∈M j

Xw
j (ϑt, ϕt)Xw

j (ϑt, ϕt)† (26)

The weights in the spectral mismatch (23) should be chosen
to reflect the variability of the estimate of the corresponding
covariance matrix. Since wSMICA-S uses wavelet filters with
only limited overlap, in the case of complete data maps we fol-
low the derivation in Delabrouille et al. (2003) and take α j to
be proportional to the number of spherical harmonic modes in
the spectral domain covered at scale j. In the case of data with
gaps, we must further take into account that only a fraction β j

of the wavelet coefficients are unaffected so that the α j should
be modified in the same ratio.

Source map estimation

As a result of applying wSMICA-S, power densities in each
scale are estimated for the sources and detector noise along
with the estimated mixing matrix. These are used in recon-
structing the source maps via Wiener filtering in each scale:
a coefficient Xw

j (ϑ, ϕ) is used to reconstruct the maps accord-
ing to

Ŝ w
j (ϑ, ϕ) =

(
Â†R̂N

w ( j)−1Â + R̂S
w( j)−1

)−1

×Â†R̂N
w ( j)−1Xw

j (ϑ, ϕ). (27)

In the limiting case where noise is small compared to signal
components, this filter reduces to

Ŝ w
j (ϑ, ϕ) = (Â†R̂N

w ( j)−1Â)−1Â†R̂N
w ( j)−1Xw

j (ϑ, ϕ) (28)

Clearly, the above Wiener filter is optimal only for stationary
Gaussian processes. For non Gaussian maps, such as given by
the Sunyaev Zel’dovich effect, better reconstruction can be ex-
pected from non linear methods.


