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A new modality in gamma-ray emission imaging, based on the use of scattered radiation
detected with an uncollimated gamma camera, is put forward. Recently, we have shown
that scattered radiation by Compton effect registered on a collimated gamma camera
can be in principle used to reconstruct an object in three dimensions. To improve drasti-
cally the sensitivity of this process, we propose that data acquisition should be performed
without mechanical collimation. As a first step, image formation in two dimensions is
derived and validated by Monte Carlo simulations. Then, numerical reconstructions are
presented to support the feasibility and attractiveness of this new concept.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Scattered radiation imaging is a promising modality in gamma-ray emission imaging with potential applications in many
fields such as bio-medical imaging, gamma-ray astronomy, non-destructive industrial testing, environmental survey and
control, etc. Conventionally, three-dimensional reconstruction techniques use non-scattered (or primary) radiation and con-
sider scattered radiation as noise which should be removed as much as possible. However, since the 1950s, Compton scat-
tered radiation and its possible usages for tomography as well as for three-dimensional imaging have experienced a growing
interest [1,3,5,6]. Different proposals have been put forward to implement this idea, among which, for example, Compton
tomography [11] and Compton camera imaging [12].

Recently, we have proposed to collect information carried by scattered radiation registered by a collimated gamma cam-
era for imaging purposes [9]. In this new imaging principle, it is shown that a series of images generated by scattered radi-
ation at different scattering energies forms a complete set of data for three-dimensional object reconstruction [8,10]. Since
each scattering energy is connected to a single scattering angle by the Compton relation, the Compton scattering angle plays
effectively the role of the spatial angle of rotation of a gamma camera in conventional tomography procedures. Hence, data
acquisition can be carried out advantageously by a camera operating in a fixed position. We have established that three-
dimensional reconstruction of an object is possible since an analytic inversion formula exists, at least when attenuation is
. All rights reserved.
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neglected and the electronic density of the scattering medium roughly constant. However, the presence of the collimator
reduces enormously the number of detected photons since a great number of them are absorbed by the collimator. Thus,
to increase the image sensitivity, we propose to work without collimation. Our operating modality is nevertheless different
from that of a Compton camera since radiation scattering takes place throughout the object and no coincidence detection is
necessary as in the Compton camera. In this situation, a detection site will register many more contributions arriving from all
possible directions from the upper half-space of the detector [4]. To focus first on the essentials of image formation and con-
vey the key aspects of this new modality, we choose in this paper to present the discussion in two dimensions for which the
computations are less involved and more manageable.

This paper is organized as follows. Section 2 describes the successive steps of image formation with and without collima-
tion. In Section 3, we present details of the calculation of the theoretical expressions of the point spread function (PSF) in
these two cases. To compare the sensitivity between these two modalities and test the accuracy of our image formation mod-
el, we compute numerically, in Section 4, the PSF and compare it to the ones obtained by Monte Carlo simulations. Finally in
Section 5, we show numerical reconstruction results which illustrate the possible implementation of this new imaging prin-
ciple. Conclusion and perspectives appear in Section 6.

2. Image formation in two dimensions

As pointed out earlier, the working of this imaging modality will be considered in two dimensions to avoid unnecessary
computational complications and stress the key ideas. Here, we think of a two-dimensional space as a slice of a three-dimen-
sional medium. Therefore, physical quantities used, such as linear attenuation coefficient, scattering cross section, electron
density, etc. are those of three-dimensional space restricted to an infinitely thin layer.

The object is to compute the photon flux density reaching a detection site from a radiating object, described by an activity
density function f ðSÞ (number of photons emitted per unit time per unit object volume, assumed to be isotropic).

Let

- S ¼ ðxS; ySÞ be a point source of activity density f ðSÞ,
- M ¼ ðxM; yMÞ, a scattering site inside the object surrounding medium,
- neðMÞ, the electron density at site M,
- D ¼ ðxD; yDÞ, a detection site on a linear detector which collects scattered photons at scattering energy Ex (see Eq. (1)).

The energy Ex of a scattered photon is related to its scattering angle x by the Compton relation
Ex ¼ E0
1

1þ ðE0=mc2Þð1� cos xÞ ; ð1Þ
where E0 is the emitted photon energy and mc2 the rest energy of the electron.
From Fig. 1, one can see that the photon flux density reaching a site M is the number of photons emitted into the angular

fan dX per unit length and per unit time
f ðSÞdSS

2p
/ðS!MÞ 1

r
; ð2Þ
where
/ðS!MÞ ¼ dX ¼ 2 arctan
r

2jSMj

� �
; ð3Þ
- dSS is the area element around S,

- j SM j is the distance between sites S and M,
- r is the width of a scattering medium square.
Fig. 1. Geometry of Compton scattering: source site S, scattering site M of width r, detection site D of width r0 .
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The fraction of photons scattered in the direction making an angle x with the incident direction depends on the Compton
differential cross section rCðxÞ, on the number of electrons around site M and on the angular fan dX0 under which is viewed
the detecting element of size r0. This cross section gives the probability for a photon to be scattered in a direction making an
angle x with the incident direction and it is written as
rCðxÞ ¼
1
2
pr2

e PðxÞ; ð4Þ
where PðxÞ is the Klein–Nishina scattering probability [5], re is the classical radius of the electron and the 1=2 factor indi-
cates that the photon has the same probability to go on one or the other branch of the two-dimensional cone of opening
angle x.

The scattered photon flux density received at the detection site D is now given by
dUðD;xjS;MÞ ¼ f ðSÞdSS

2p
/ðS!MÞ 1

r
rCðxÞ neðMÞdSM

1
r

0

/ðM! DÞ; ð5Þ
where /ðM! DÞ is defined as in Eq. (3) and r replaced by r0.
The total photon flux density at a site D is the integral over all source sites and all scattering sites such that the scattering

angle is x. This constraint is expressed by a d-function as follows:
UðD;xÞ ¼
Z Z

dUðD;xjS;MÞdðdSMD � ðp�xÞÞ; ð6Þ
where dSMD is the angle at vertex M of the triangle SMD (see Fig. 2).

3. Computation of the image of a point source

The PSF is by definition the image of a single point source at site S0 and of intensity f0. Eq. (6) can be rewritten in terms of
PSF as follows:
gðD;xÞ ¼
Z

dSSf ðSÞPSFðD;xjSÞ; ð7Þ
where gðD;xÞ is the number of photons received on a unit area detector pixel at site D and at energy Ex, given by Eq. (1).
An explicit expression of the PSF can be obtained if only single scattering events are considered (they turn out to be the

dominant ones as confirmed by Monte Carlo simulations, see Fig. (6)) and if uniform electron density ne is assumed. The
value of the PSF for a point source at site S0 at detection site D and with scattering angle x has the following expression:
PSFðD;xÞ ¼ f0

2p
nerCðxÞ

Z
/ðS0 !MÞ /NðM! DÞdSM; ð8Þ
where /NðM! DÞ is the angular fan of photons emitted by the secondary source M and detected by a pixel at D. It is given by
Eq. (9). The scattering sites M1 and M2 due to point source S0 are located on two circular arcs subtending an angle ðp�xÞ
(Eq. (6)).
Fig. 2. Scattering sites contributing to detection site D without collimator (bold circular arcs).
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In the integrand of Eq. (8), three terms depend on M:

� /ðS!MÞ is given by Eq. (3), where f ðSÞdSS ¼ f0dðS� S0ÞdSS,
� The second factor in the integrand depends on the detector pixel, that is, its spacial resolution Dr0ðdxÞ at its energy res-

olution dE (which is related to dx, the acceptance angle around a value x of the scattering angle)
/NðM! DÞ ¼ 2 arctan
Dr0ðdxÞ cos h

2jMDj

� �
; ð9Þ
where Dr0ðdxÞ cos h is an effective area facing arriving photons on the detection pixel at energy resolution dE (or dx)
under an angle h, as shown in Fig. 3,

� dSM is the scattering site area.

To compute these three terms, we use polar coordinates ðr; cÞ centered at D, for which one has S ¼ ðd;aÞ with jDSj ¼ d,
M ¼ ðr; cÞ with jMDj ¼ r and DM

��! � DS
�! ¼ rd cos c.

The circular arcs are then given by the equations
r1 ¼ d
sinðx� c1Þ

sin x
and r2 ¼ d

sinðxþ c2Þ
sin x

: ð10Þ
Then

� to compute /ðS!MÞ, we need the distance jSMj. It can be extracted from a simple identity in the triangle DSM
jSMj ¼ d
sin c
sinx

; ð11Þ
� to compute /NðM! DÞ, we need the product Dr0ðdxÞ � cos h. It can easily be obtained in polar coordinates as
Dr0ðdxÞ cos h ¼ d
sinðxÞ �

2 sinðdxÞ sinðx� cÞ sinða� cÞ
cosðxÞ � cosð2ða� cÞÞ � sinða� cÞ; ð12Þ
� to compute the scattering site area dSM, we use its expression k � eðcÞ, as shown in Fig. 3. k is an infinitesimally small arc
length given by
k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr2 þ r2 dc2

q
¼ d

sin x
dc: ð13Þ
The distance eðcÞ between the two circular arcs is computed by locating the intersections of a straight line passing through
the center of the median circle and the two circle arcs, if the pixel detector width r0 is not equal to zero (see Fig. 3). Its
expression is not simple and will be evaluated numerically.

Finally, the PSF is given by the sum of the integration on c over the two arcs of circle
PSFðD;xjSÞ ¼ f0ner2
e PðxÞ d

ðr sin xÞ
X

2 Arcs

�
Z clðxÞ

0
arctan

r sinðxÞ
2d sinðcÞ

� �
arctan

sinða� cÞ2 sinðdxÞ
cosðxÞ � cosð2ða� cÞÞ

� �
eðcÞdc:

ð14Þ
Fig. 3. Details of the curves used in the calculation in overblown proportions.
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The integration is to be carried out over points inside the scattering medium. Therefore, when the medium is of finite
extent, the limits of integration clðxÞ, which correspond to the intersections of the arcs of circle with the scattering medium,
should be calculated beforehand (see Fig. 2).

Now, if the collimator is mounted on the detector, only one scattering site M, located on the perpendicular to the detector
at site D, will contribute to the detection site D, (see Fig. 4). Thus, the integration on c is restricted by a delta function which
picks out only a small interval ½�1col; 1col� focused on the corresponding value of c:
ccol ¼
p
2
� a

� �
: ð15Þ
The resulting PSF expression for a collimated detector is
PSFcolðD;xjSÞ ¼KðxÞ
Z 1col

�1col

arctan
r sinðxÞ
2d sinðcÞ

� �

� arctan
sinða� cÞ2 sinðdxÞ

cosðxÞ � cosð2ða� cÞÞ

� �
eðcÞdðc� ccolÞdc;

ð16Þ
where 1col is the acceptance angle of the collimator.

4. Comparison between PSF modeling and Monte Carlo simulations

In this section, we compute numerically the theoretical PSF function, obtained in the previous section, as a function of
detector position for a given value of the scattering angle x and simulate the PSF by Monte Carlo techniques under the same
conditions. Comparison of the results will help to confirm the validity of our approach.

The scattering medium is represented by a rectangular medium of dimensions 30 cm� 15 cm, which is at a distance of
1 cm above a linear detector. Since biological tissues have an electronic structure close to that of water, we shall take
ne ¼ 3:34� 1023 electrons/cm3. A point source is placed in the scattering medium at 6 cm above the detector. The radio phar-
maceutical used in this simulation is medical Technecium 99, which emits photons with energy 140.1 keV. The activity den-
sity of the source is about 27� 10�3 Ci/cm3, with an acquisition time per image of one second. The linear detector is formed
by 256 pixels of length 0.11 cm and is placed along the 0x-axis. The acceptance angle of the collimator 1col is 0.1 rad.

Monte Carlo techniques are nowadays widely used in medical imaging to accurately simulate physical processes under-
gone by photons from emission to detection (medium absorption, scattering of different types) [13–15]. They have reached a
high degree of sophistication and reliability, as they are now tailored to work under specific conditions [7]. The package
GATE–GEANT4 dedicated to emission tomography is certainly a well-known example [2]. Thus, we turn to Monte Carlo sim-
ulations to generate the PSF of our imaging system using scattered radiation, first to compare with the one given by theo-
retical considerations and second to estimate the contributions of higher order scattering events.

We chose to write our own code to focus on the effect of attenuation along the photon propagation path in matter. The
collimator is characterized by an acceptance cone, but the detection in the detector is not simulated here. We assume that
the medium attenuation is due simultaneously to photoelectric absorption and Compton scattering at energies from 90 to
140 keV (see Table 1) [16]. The running time with MatLab is about a few days. Moreover two types of simulations are carried
Fig. 4. Single scattering site (bold spot) contributing to detection site D with collimator.
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out respectively with single scattering and with multiple scattering. The discrepancy in the results of these two cases would
yield an estimate of the accuracy of the hypothesis of single scattering process in the theoretical approach.

For this purpose, we introduce an attenuation coefficient in Eq. (14):
Table 1
Linear a

Energy

140
120
100

80

Fig. 5.
collima
PSF ¼KðxÞ
X

2 Arcs

Z
M2 medium

e�l0 jSMje�lx jMLj

� arctan
r sinðxÞ
2d sinðcÞ

� �
arctan

sinða� cÞ2 sinðdxÞ
cosðxÞ � cosð2ða� cÞÞ

� �
deðcÞdc;

ð17Þ
where l0 and lx are the linear attenuation coefficients at energies E0 and Ex and
jMLj ¼ d
sinðxÞ sinðx� cÞ � l

sinða� cÞ
is the distance from site M to site L, intersection of the line MD with the horizontal line y ¼ l, representing the medium lower
limit (see Fig. 2). The integration is then performed numerically.

Fig. 5 shows results of first-order Monte Carlo simulations. We represent the number of photons registered by the detec-
tor as a function of the scattering angle (degrees) and the detector position (cm). The relative error for the PSF without col-
ttenuation coefficients for water [16]

(keV) Attenuation coefficient (cm�1) Scattering coefficient (cm�1) Absorption coefficient (cm�1)

0.1538 0.1511 0.0028
0.1614 0.1574 0.0040
0.1706 0.1646 0.0060
0.1833 0.1728 0.0105
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limator between the first-order (single scattering) Monte Carlo simulation and our forward model is about 4%. For the PSF
with collimator, this error is 12%.

At a fixed scattering angle x, the PSF curve as a function of the detector position with collimator has a ‘mesa’ shape while
the PSF curve without collimator has a wide Lorentzian shape. On the whole, the detector without collimator collects about
12 times more photons than with collimator.

In Fig. 6, we show results of Monte Carlo simulations to compare the contributions of first-order scattering with higher
order scattering contributions. We observe that multiple scattering contributions increase as one goes from low scattering
angles to high scattering angles. But the dominance of single scattering events remains clear.

5. Numerical reconstruction results

As an illustration on the possibility of using a uncollimated camera in this new modality, we carried out two numerical
reconstructions. First we present the reconstruction of the single point source from Monte Carlo simulated data. Next we
show the reconstruction of the Shepp–Logan medical phantom from data computed with our model.

5.1. Numerical point source reconstruction

The scattering medium is discretized with 41 points in 0x-axis direction and with 22 points in 0y-axis direction. The
detector size is reduced to 86 pixels, each one distant from the next by 0.35 cm. We keep the same pixel size as in Section
4. The detector records 44 images of photon energies from 139 to 90.5 keV. The single point source is centered at 6 cm above
the detector line.

We construct the two weight matrices of the medium by calculating from our models (with and without collimator), for
each point of the mesh, the PSF at different scattering angles. The size of the two weight matrices is 3784� 902. This large
number of equations compared to the number of unknowns reduces the conditional number (3� 103 for camera with col-
limator and 7� 104 for camera without collimator).

We use the Monte Carlo simulated gamma-ray data detected by a camera with or without collimator for the reconstruc-
tion. The reconstruction is carried out by using the conjugated gradient method with positivity constraint.

In the two cases, the source activity is faithfully reconstructed (about 109 photons per second). For a camera with colli-
mator, the Conjugated Gradient method gives an acceptable reconstruction with 100 iterations, and must be regularized by
limiting the number of iterations. Fig. 7 corresponds to 500 iterations.

When the collimator is removed, the reconstruction gives correct results even for a large iteration number. Fig. 8 corre-
sponds to 500 iterations.
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Fig. 8. Point source reconstruction from Monte Carlo simulated images with a camera without collimator.
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5.2. Numerical image reconstruction results

The object is an 2D original Shepp–Logan medical phantom, representing the activity density of the object (see Fig. 9). It is
placed at the center of the scattering medium and at a unit distance above the detector. A line detector of 55 pixels of 1 unit
length, placed on the axis y ¼ 0, is simulated. We consider that the scattering medium has the same attenuation character-
istics as water. It consists of a discretized square of 55� 55 elements of unit area.

A series of 55 views of the object corresponding to 55 different scattering angles ð12
�
< x < 132

�
Þ have been simulated.

Images without collimator are on the average 23 times more sensitive than those with collimator. We construct the
3025� 3025 weight matrix by computing, for each mesh point source, the PSF at the different scattering angles for each site
on the detector. The reconstruction is carried out by inverting the weight matrix using the singular value decomposition
method, which is less time consuming compared to the conjugate gradient method.

Figs. 10 and 11 show the reconstruction results with and without collimator. One observes a better agreement with the
original object when the collimator is removed. In this case, the relative error is 4:8� 10�5% instead of 8% when the collima-
tor is mounted.



Fig. 9. Original Shepp–Logan phantom.

Fig. 10. Shepp–Logan phantom reconstruction with collimator.

Fig. 11. Shepp–Logan phantom reconstruction without collimator.
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6. Conclusion

In this work, we have used extensive numerical calculations and Monte Carlo simulations to validate a new concept in
gamma-ray emission imaging without collimation. Such a methodological approach is the best way to demonstrate the fea-
sibility of the idea before working with real data. The essence of this new concept of high sensitivity imaging system, which
operates a fixed uncollimated camera, consists of collecting all relevant first-order scattered rays, instead of rejecting them as
done in current imaging systems, and use them for object reconstruction purposes. Work aiming at extending image forma-
tion modeling and simulations of related scattered radiation in three dimensions is in progress.
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