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Abstract. Integral transforms based on geometrical objects,
i.e. the so-called generalized Radon transforms, play a key role
in integral geometry in the sense of I M Gelfand. In this work,
we discuss the properties of a newly established class of Con-
ical Radon Transforms (CRT), which are defined on sets of
circular cones having fixed axis direction and variable opening
angle. In particular, we describe its inversion process, i.e. the
recovery of an unknown function from the set of its integrals
on cone surfaces, or its conical projections. This transform
is the basis for a new gamma-ray emission imaging principle,
which works with Compton scattered radiation and offers the
remarkable advantage of functioning with a fixed detector in-
stead of a rotating one, as in conventional emission imaging
modalities.
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1. Introduction

Integral geometry is the branch of geometrical analysis which
treats integral transforms of geometrical nature. Through Radon
transforms and the like, it provides an elegant way for constructing
group representations [1]. But over the decades, integral geometry
has also become the mainstay of the mathematics of imaging sci-
ence and an efficient method for solving inverse problems. The aim
in imaging science is to obtain a 3D-image of an object (i.e. its
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hidden part) from external measurements, without destroying it or
without taking it apart. For inverse problems, the objective is to
reconstruct a potential from scattering data. Integral geometry has
contributed to three Nobel prize works, one of which was awarded in
1979 to A.M. Cormack, a nuclear physicist turned mathematician,
for his contributions to computed tomography (CT). The nature
and properties of these transforms, in particular their invertibility,
constitute the main themes of research in this field.

In this work, we discuss a new integral transform, the Conical
Radon Transform (CRT), which has not yet been discussed in the
literature and which lends support to a new principle of gamma-
ray emission imaging. To convey some key ideas, we review the
classical Radon transform in two dimensions and its role in imag-
ing science. The conical Radon transform is then introduced as a
natural consequence of the Compton scattering of radiation with
matter. New inversion formulas are derived by Fourier transform
and back-projection approach.

2. The classical Radon Transform (RT): a review

2.1. Definition. This transform R maps S-functions on R2 to
their integrals on straight lines ζ ∈ R2, defined by a normal unit
vector n = (cos φ, sin φ) and a distance p to the coordinate origin.

Definition 1. Let n⊥ be the unit vector orthogonal to n. The
Radon transform Rf (p, φ) of f(r) is given by the line integral

(1) Rf (p, φ) =

∫ ∞

−∞
f(pn + σn⊥) dσ.

Rf (p, φ) represents the gamma-ray activity of a radiating object
along the line parameterized by (p, φ) and measured on a detector.

Eq. (1) can be rewritten as a Fredholm equation of the first kind
in cartesian coordinates, with a δ-function kernel [2], as

(2) Rf (p, φ) =

∫

R2

dx dy δ(p− x cos φ− y sin φ) f(x, y).

Rf is related to the 2D-Fourier transform of f(r) by

Theorem 2. Let f̃(k) be the Fourier transform of f(r). Then

R̃f(νn) = f̃(νn). This is known as the Central-Slice-Theorem [2].
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Proof. Using polar coordinates and the Fourier representation of
the delta function in eq. (2), we can reexpress Rf (p, φ) with the
notations νr cos(θ − φ) = (νn · rk) as

(3) Rf (p, φ) =

∫ +∞

−∞
dν e2iπνp

∫ ∫

R2

r dθ dr f(r, θ) e−2iπ(νn·rk).

Then it is clear that R̃f(νn) = f̃(νn), QED. ¤

2.2. Inversion. The Central Slice Theorem leads to a first inver-
sion formula by application of the inverse 2D-Fourier transform:
(4)

f(r, θ) = − 1

2π2
p.v.

∫ π

−π

dφ

∫ ∞

0

dp
1

(p− r cos (θ − φ))2
Rf(p, φ).

A second inversion procedure uses circular components fl(r) (and
resp. Rfl(p)) of f(r) (and resp. Rf(p, φ)) [2], defined by

f(r, θ) =
∑

l fl(r) eilθ and Rf(p, φ) =
∑

lRfl(p) eilφ.

After substitution in the definition of R and application of inverse
Fourier transform on p for both sides of eq. (3), we find

(5)

∫ +∞

−∞
dp e2iπξp Rfl(p) =

∫ ∞

0

r dr fl(r) 2π (il) Jl(2πξr).

Then extraction of fl(r) in terms of Rfl(p) can be performed by
applying Hankel inverse transform of order l to eq. (5). Hence f(r)
can be reconstructed by its circular components.

2.3. Inversion by back-projection method. The Fredholm ker-
nel δ(p − x cos φ − y sin φ) is the matrix element of R connecting
object space (x, y) to image space (p, φ). So if R acts on functions
of object space (x, y), the action of this kernel on functions of image
space (p, φ) is the adjoint operation R†.

Definition 3. Let R†f(x, y) be the adjoint Radon transform of
Rf(p, φ). It is given by

(6) R†f(x, y) =

∫ ∞

−∞
dp

∫ π

0

dφ δ(p− x cos φ− y sin φ) Rf(p, φ).

For given φ, set x = x0 − s sin φ and y = y0 + s cos φ, we ob-
serve that the p-integral in (13) is independent of s, in fact it is
constant along the line going through point (x0, y0) and of unit
normal n = (cos φ, sin φ). By this operation, Rf(p, θ) is said to
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be back-projected along this line. Thus R†
f (x, y) is the sum of all

back-projected data over all directions φ at site (x, y).
Using the identity [2]

(7)

∫ π

0

dφ δ(x cos φ + y sin φ) =
1√

x2 + y2

an explicit expression for R†
f (x, y) can be obtained

(8) R†f(x, y) = p.v.

∫

R2

dx′ dy′
1√

(x− x′)2 + (y − y′)2
f(x′, y′).

This is just a 2D-convolution, hence f(x, y) can be easily extracted
in Fourier space in terms of the measured data Rf(p, φ) and recon-
structed in object space.

3. The Conical Radon Transform (CRT)

3.1. Properties.

Definition 4. A ”conical projection” of an object described by
a density function f(x, y, z) is its integral Cf(xS, yS, ω) on a circular
cone of vertical axis direction, vertex (xS, yS) on the xOy-plane and
opening angle ω:
(9)∫ ∞

0

∫ π

0

r sin ω dψ dr f(xS + r sin ω cos ψ, yS + r sin ω sin ψ, r cos ω),

It represents the intensity of scattered radiation coming from
point sources on a cone of vertex at (xS, yS) and opening angle ω
entering the detector along the direction of the cone axis (see figure
below).

It has a Fredholm integral equation of the first kind form:

(10) Cf(xS, yS, ω) =

∫

R3

dx dy dz K(xS, yS, ω|x, y, z) f(x, y, z),

withK(xS, yS, ω|x, y, z) = δ(cos ω
√

(x− xS)2 + (y − yS)2−z sin ω).

3.2. Analog of the Central Slice Theorem.

Theorem 5. Let f̃(p, q, z) (resp. C̃f(p, q, ω)) be the Fourier

component of f(x, y, z) (resp. of C̃f(p, q, ω)). Then following the
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same procedure as for the Radon transform, we obtain
(11)

C̃f(p, q, ω) =

∫ ∞

0

r sin ω dr f̃(p, q, r cos ω) 2π J0(2π
√

p2 + q2r sin ω).

This is of the form of a Hankel transform of order 0. A detailed
analysis on the ranges of ω (0 < ω < π/2 and π/2 < ω < π), yields
the following inversion formula in 2D-Fourier space (p, q)

f̃(p, q, z) = (p2 + q2) [Y (z)

∫ ∞

0

t dt 2π J0(2π
√

p2 + q2zt)C̃f(p, q, t)

(12) +Y (−z)

∫ ∞

0

t dt 2π J0(2π
√

p2 + q2zt)C̃f(p, q,−t)],

where Y (z) is the Heaviside step function. The full f(x, y, z) is
now recovered by inverse 2D-Fourier transform. Note that data is
collected for all scattering angle ω, without requiring to move the
detector around the object as in a conventional scanning procedure.

3.3. Back-projection method. As in the standard Radon case,
we construct the adjoint operator C†f(x, yz) on functions of image
space Cf(xS, yS, ω), by its integral on the δ-function kernel eq. (10)
(13)∫

R2

dxS dyS

∫ π

0

dω δ(cos ω
√

(x− xS)2 + (y − yS)2−z sin ω) Cf(xS, yS, ω).

The ω-integration amounts to integrating on a circle centered at
(x, y) and of radius z tan ω. This yields a function which is constant
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on all lines joining (x, y, z) to (xS, yS, 0), hence on a cone of vertex
(x, y, z), of vertical axis and with opening angle ω.

By recalling definition 4, we can compute (see [5])∫

R2

dxS dyS

∫ π

0

dω δ(cos ω
√

(x− xS)2 + (y − yS)2 − z sin ω)

δ(cos ω
√

(x′ − xS)2 + (y′ − yS)2−z′ sin ω) =

√
[(x− x′)2 + (y − y′)2]zz′

|z2 − z′2| ,

to obtain an explicit expression of

C†f(x, y, z) =

∫

R2

dx′ dy′ dz′
√

[(x− x′)2 + (y − y′)2]zz′

2π|z2 − z′2| f(x′, y′, z′).

This is a convolution in the (xOy)-plane and also a convolution in
the ”rapidity”-variable ζ along the Oz-axis, i.e. z = eζ . So inversion
can be achieved conventionally in respective Fourier space, and the
final answer obtained by inverse Fourier transform.

4. Conclusion

A new class of Radon transform in R3, ”imposed” by the physics
of Compton scattering in gamma-ray emission imaging, is presented
and new ways to establish its invertibility discussed as altenatives
to earlier methods [3, 4, 5]. It serves as foundation for the so-called
scattered gamma-ray emission imaging principle, which offers some
interesting advantages over existing imaging modalities.
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