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ABSTRACT

In an effort to promote Compton scatter tomography (CST) as an
adequatemodality for imaging the inner parts of large objects limited
in a half-space ofR3, we show that the standard CST canbe ‘improved’
in some particular sense by ‘doubling’ the scanning mechanism. To
this end, one needs to record for each position of a detector the
scattered flux densities at two energies of scattered radiation, instead
of one. Curiously, thanks togeometric inversion, this ‘double’ scanning
maybe converted into a transmission scanning on an apparent object,
not along a straight line path as usual, but along a folded line in the
shape of a V -line path. It has been proved that this V -line transmission
scanning admits a well-defined reconstruction procedure. Therefore,
the proposed CST with ‘double’ scanning, which solves the above
imaging inverse problem, shows an ‘improved’ reconstructed image
as compared to the standard one. We present theoretical arguments
to support this claim as well as numerical simulations to illustrate its
working and its viability.
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1. Introduction

Imaging technology has brought tremendous progress in medical diagnostics as well
as in many other fields such as non-destructive surveillance and control, underground
exploration, astronomy, homeland security, etc. In most of the cases, objects of interest
are of small sizes and imaging equipment is designed to fit these object sizes. For very
large objects, in particular massive ones but presenting a very large flat surface, there is a
need of special imaging devices which can accommodate such structures. Existing imaging
systems are based on acoustic waves and electromagnetic waves propagation properties.
Onemay cite e.g. Sonar imaging or Ground Radar Imaging, which deliver undersea images
of sunken ships or underground images of buried pipes, etc. Image reconstruction is based
mostly on information given by backscattered waves and this procedure requires ad-hoc
algorithms.

Moreover, sound and electromagnetic waves have limited penetration in dense matter.
To reveal finer structure there is a need to penetrate further in dense matter with shorter
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wavelengths. This is why ionizing radiation is appropriate for probing the inner structure
of dense matter, which is proper to industrial objects as well as rocky medium or concrete.
The interest in using ionizing radiation to explore the inner structure of objects has been
proposed a long time ago and has known in the recent years a renewed interest. Ionizing
radiation is in fact the ideal tool to prospect the inner structure of matter because of its
strong penetrating property. However, information on the probed object matter can only
be retrieved if one manages to record the outgoing radiation, which has undergone an
interaction inside matter. Of course one may register backscattered for acoustic as well
as for electromagnetic waves. Several concepts for gathering backscattered radiation have
been proposed in the past, see e.g. [1–3]. Here there is a possibility of recover scattered
waves which are far more versatile. In particular in the energy range around 150 keV,
the only relevant radiation interaction is Compton scattering. This is why the concept of
Compton imaging was initiated and developed in last few decades. We shall not recall
the early steps of Compton imaging and refer the reader to [4], but give some references
on recent interests in Compton imaging for historical object research and conservation
[5], land mine detection [6], agricultural measurements [7], battery functioning [8], non-
destructive testing [9] and soil studies [10].

One of the main advantages of Compton scattering imaging over X-ray transmission
imaging is its high sensitivity to the local electron density, even for materials with high
X-ray absorption coefficients. This is because Compton scattering imaging measures the
X-ray intensity from a local probing volume, while X-ray transmission imaging records
the total absorption along the X-ray path. This is very beneficial for large objects.

To this end, Compton scatter tomography (CST) has been advocated for investigating
the hidden structure of one-sided large objects [11,12], when this investigation is done
slice by slice on this object. However, it has not yet emerged as a widely used modality
in this field mainly due to poor sensitivity of image reconstruction. In this work, we
reanalyse the properties of this classical CST modality to explain its functioning prin-
ciple and then propose a new modality which, in principle exhibits an enhanced image
reconstruction, potentially more efficiency in the study of ‘beyond the wall’ structure of
large one-sided objects or half-space extended medium. In CST, data acquisition can be
done by a detector located on the same side of the object under investigation: this is not
the case in conventional transmission tomography. CST is expected to give high contrast,
high spatial resolution and stoichiometric independent images of two-dimensional slices of
objects. CST is appropriate for imaging continuing flow of liquids in pipes, solid propellant
rocket engines, ships hulls, aircraft parts, large castings, etc. in particular when the need
of obtaining access to both sides of the structure is denied. This is really advantageous
at a time when new generation of position- and energy-sensitive radiation detectors have
appeared. Throughout the years, there has been substantial progress in development of
CST modalities [4]. However in this work, we shall concentrate on a new modality, which
was proposed recently [13] but not assessed numerically as far as feasibility and realizability
are concerned. The purpose of this paper is to close this gap by giving detailed computation
on image formation as well as reconstruction and image quality evaluation.

As always, an imaging modality relies on a mathematical tool which supports its
image formation and provides a way to reconstruct an image. In conventional computed
tomography, this role was played by the well-known classical Radon transform. For CST, it
has been established that a variety of Radon transforms on circular arcs forms the support
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for image formation when higher order radiation scattering is not taken into account.
Moreover, these generalized Radon transforms are shown to be invertible paving the way
to image reconstruction in CST. Here we shall investigate the imaging capabilities of a
newly proposed Radon transform, which is defined on a pair of circular arcs (instead of
a single circular arc), introduced in [13]. Its invertibility is shown to be transferred to
the invertibility of the so-called Radon transforms on V-lines by geometric inversion of
the coordinate variables. This type of transfer has been known for a long time for the
Radon transform on circles intersecting a fixed point in a plane, which become simply
the classical Radon transform on straight lines of the same plane [14]. The V-line is the
geometric object which consists of two half-lines ending at a vertex-point on an horizontal
axis and disposed symmetrically around the vertical axis at the vertex-point and making
a variable angle with it. We adopt this terminology in order to distinguish it from the
so-called Radon transform on broken lines introduced by [15], which is defined on the
set of geometric figures made of two half-lines making a fixed angle between them and of
arbitrary location and orientation in the plane.

The paper is structured as follows. The fundamentals of Compton scattering tomog-
raphy, in particular the classical CST modality proposed by S. J. Norton in 1994 [12] are
reviewed in some details, in which we recall the Compton scattering phenomena and its
properties. We also recast the conventional CSTmodality of S. J. Norton in the framework
of the Radon transform on half-lines and describe its solution, which solves the inverse
problem of CST imaging. The next Section 3 concerns the new CST modality. We show
how the scanning on a pair of supplementary circular arcs is beneficial for imaging an object
via conversion into a transmission scanning problem on a V-line. We also demonstrate
theoretically why the reconstruction scheme yields an ‘improved’ result as compared to
the standard one. Amajor point is the introduction of the inversion procedure as a filtered
back projection (FBP), which is widely used in conventional tomography and provides
an elegant way to deal with divergencies in coordinate space. A working algorithm is
given to show the working of the numerical simulations in Section 5. The numerical
simulations results, with a careful analysis of image quality under different working
conditions, illustrate the feasibility and viability of this new CST imaging modality. The
paper ends with a conclusion and some future directions of investigation.

2. Compton scattering tomography: a review

Compton scattering tomography (CST) was introduced in the early 80s, see e.g. [16],
but it was S. J. Norton who gave a full theoretical treatment in 1994 [12]. A three-
dimensional object is illuminated by a penetrating radiation external point source S of
calibrated intensity. Since tomography considers only one planar slice of this object, this
point source will be placed between two collimator plates, which are parallel to the slice
and separated by a small distance to restrict the emitted radiation to a plane in fact a thin
slice, before it irradiates the object situated beyond these collimator plates. First-order
scattered radiation of specific energy is registered by a point detectorD placed at a distance
ξ from the source, also located in between the collimator plates. The detector is assumed to
be highly energy sensitive and of sufficiently small size (because the intensity of scattered
radiation is low), in order to be able to generate a very large amount of data. In the present
work, radiation attenuation is not taken into account as we concentrate on the working
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Figure 1. Classical CST.

principle. It is expected that radiation attenuation is important before and after scattering
inside matter and should be corrected. However, it is known that including attenuation
in such processes usually does not allow an analytic solution. Even in the case of simple
emission imaging the inclusion of arbitrary attenuation was only exactly solved in 2002
[17]. However, a constant attenuation may be manageable, a kind of pre-correction may
be performed such as in [18] and shall be deferred to a future investigation. The claim of
CST is that the totality of such measurement is sufficient to reconstruct an image of the
inner part of the object, which consists of the electron density of its interior.

Figure 1 summarizes the working of this modality. As penetrating radiation consists
of X-(or -gamma) rays, an object, represented by the shaded area is subjected to the
illuminating radiation carrying an original energy E0 of an isotropic source S placed at
the origin of a Cartesian coordinate system. A point-like detector at site D, at a distance ξ

from S, with a flat collimator under it to allow only the recording of scattered radiation of
scattered energy E(ω) (and not of energy E(π − ω)), moves on the axis SD and registers
a radiation flux density at a single Compton scattered energy E(ω), which is related to the
scattering angle ω by the so-called Compton relation

E(ω) = E0
1 + E0

mc2 (1 − cosω)
, (1)

wheremc2 represents the energy of the electron at rest (511 keV). Inspection shows that the
totality of radiation flux density at a detecting siteD situated at a distance ξ from S is due to
all scattering sitesM located on a circular arc starting from S and ending at D, subtending
an inscribed angle (π − ω), which is constant for each measurement. The kinematics
of Compton scattering (see Figure 2) is encoded in the Klein–Nishina differential cross
section

dσ

d�
= πr2e P(ω), (2)
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Figure 2. Compton scattering.

where σ is the Compton scattering cross-section, re is the classical electron radius and
P(ω) is the Klein–Nishina probability to be scattered in the solid angle �. The expression
of P(ω) is given in [19].

Let us introduce a Cartesian coordinate system xSy centred at S with D on the x-axis.
The registered scattered radiation flux density at D is essentially the integral of the electric
charge density of the object on a circular arc, which has a radius ρ = ξ

2 sinω
and a centre

� at
(

ξ
2 ,

ξ
2τ

)
, where τ = tanω. Let f (x, y) be this electric charge density. To preserve the

clarity of the exposition, we shall neglect propagation photometric effects and radiation
attenuation in matter, as stated before. Let us assume that the source S emits isotropically
radiation of energy E0 and that the point detector D has also spherical symmetry. The
amount of radiation registered at D is then of the form

RCf (ξ ,ω) = K(ω)

∫
C
f (x, y) dsC , (3)

where the ω-dependent factor K(ω) contains besides the Klein–Nishina probability P(ω)

all other kinematic factors of the scattering at siteM = (x, y),C is the circular arc SMD and
its arc element dsC . So the quantityRCf (ξ ,ω)/K(ω), fromnow on called the renormalized
data, is the integral of an unknown function f (x, y) on a set of circular arcs subtending an
inscribed angle (π − ω) starting at the source point S and ending at the detection pointD.
It is a function of (ξ ,ω) ∈ R × [0,π]. The problem is now how to reconstruct the electric
charge density f (x, y) from the set of measurements RCf (ξ ,ω). There are several possible
approaches.

S. J. Norton has argued that if the object is ‘above’ the axis Sx, there is no harm to carry
out the integration on the full circle, which is of variable centre in the plane but always
passing through the fixed point S. RCf (ξ ,ω)/K(ω) is thus the Radon transform of f (x, y)
on the set of circles of the plane intersecting a fixed point S. But already in 1965, A. M.
Cormack has studied such a Radon transform [14] and he has also given the corresponding
inverse formula.1 This situation is applicable whenever the object has a compact support.
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Numerical implementation of this procedure has been given recently in [18] using the
so-called circular component expansion.

Recently, it has been shown in [13] that the Radon transform of a function f (x, y) on
the above circular arcs can be converted, by geometric inversion of centre S and inversion
circle of radius R into a Radon transform on half-lines contained in upper half plane of the
line SD, not for f (x, y) but for a modified function gR(x′, y′), given by

gR(x′, y′) = R2

x′2 + y′2 f
(

R2x′

x′2 + y′2 ,
R2y′

x′2 + y′2

)
, (4)

where the transform by geometric inversion of a point M = (x, y) in the xSy plane is
M ′ = (x′, y′) given by

(x′, y′) = R2

x2 + y2
(x, y). (5)

Figure 3 shows how the circular arc SMD is converted by this geometric inversion into the
half-line D′M ′, such that

ξ ′ = R2

ξ
, and SM ′ = R2

SM
. (6)

The circular arc SMD subtends an angle (π − ω). This arc is transformed into a half-line
starting at site D′ at a distance ξ ′ from S on the axis Sx. This half-line makes an angle
φ = (ω − π/2) with the vertical direction. This is so because the line SNN ′ going through
the centre � of the circle SMND is perpendicular to the half-line D′N ′M ′.

Note that in Figure 3, ξ > 0 and the scattering angle ω is chosen to be larger than π/2,
hence φ is positive. The equation of the circular arc SMD, with centre at � = (

ξ
2 ,

ξ
2τ ) is

(
x − ξ

2

)2
+

(
y − ξ

2τ

)2
=

(
ξ

2 sinω

)2
, and y > 0. (7)
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 Radon transform.

Now using Equation (5), one gets the equation of a half-line

ξ ′ − x′ − y′τ ′ = 0, and y′ > 0. (8)

where τ ′ = 1
τ
.

Let us denote the Radon transform on half-lines by R
, see [13]. Then for a function
h(x′, y′), its integral on the half-line of Equation (8) is (see Figure 4)

R
h(ξ ′, τ ′) =
∫ ∞

0
dy′ √1 + τ ′2 h(ξ ′ − y′τ ′, y′), (9)

where s′ = SN ′ = ξ ′ cosφ = ξ ′ sinω, with (ξ ′, τ ′) ∈ R2.
Now by identifying the circular arc Radon dataRCf (ξ ,ω)/K(ω) to the data of a Radon

transform on half-lines R
 according to

RCf (ξ ,ω)

K(ω)
= R
gR(ξ ′, τ ′), (10)

we can use the inverse formula for the Radon transform of half-lines of the plane (given in
[13]), applied to the data R
gR(ξ ′, τ ′) to reconstruct gR(x′, y′), or

gR(x′, y′) = − 1
2π2H(y′)

∫
R2

dξ ′ dτ√
1 + τ 2

1
ξ ′ − x′ − y′τ ′

∂

∂ξ ′ R
gR(ξ ′, τ ′), (11)

where H(y′) is the Heaviside function of y′. f (x, y) is recovered through

f (x, y) = R2

x2 + y2
gR

(
R2x

x2 + y2
,

R2y
x2 + y2

)
. (12)

Note that the parameter R drops out at the end of the reconstruction of f (x, y).
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Figure 5. Double supplementary arcs CST.

3. New ‘improved’ modality for CST

In imaging science, the aim is to obtain the most appropriate imaging modality. For CST,
following a recent suggestion in [13], which consists in gathering measured data not only
on one circular arc but on two circular arcs, see Figure 5, we undertake to explore the
performances of this newmodality. Previously, on a circular arc SMD subtending an angle
(π − ω) and based on a chord SD = ξ , the integration path of the electron density has
a length which can be at most equal to ωξ/ sinω. By adding a new circular arc SND to
gather data one may expect a longer integration path. In fact for reasons that become clear
later, we shall use a second circular arc SND which subtends an angle ω and based on the
same chord SD = ξ . Then the total integration path used for data collection will be always
the full circumference of length πξ/ sinω, which is clearly larger than ωξ/ sinω, since
0 < ω < π . Intuitively, onemay suspect that this data acquisition would bemore beneficial
to image reconstruction. But this must be checked.

To simplify notations, we shall denote generically the circular arc SMD (resp. SPD) by
C (resp. C′) in Figure 5. So at site D, two measurements of scattered radiation at energy
E(ω) and at energy E(π − ω) will be made and recorded according to

RCf (ξ ,ω) = K(ω)

∫
C
f (x, y) dsC , and RC′ f (ξ ,ω) = K(π −ω)

∫
C′
f (x, y) dsC′ . (13)

Note that dsC = dsC′ . Now if one sums up the renormalized data after division by the
corresponding K(ω) and K(π − ω) factors

RCf (ξ ,ω)

K(ω)
+ RCf (ξ ,π − ω)

K(π − ω)
= RCC′ f (ξ ,ω), (14)
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asRCC′ f (ξ ,ω), which is the data of a Radon transform on a pair of supplementary circular
arcs CC′ of a function f (x, y), the problem is now how to obtain f (x, y) from this data
RCC′ f (ξ ,ω).

Following the idea of Section 2, we may apply the same geometric inversion to the pair
of circular arcs SMD (or C) and SPD (or C′), each of which subtends, respectively, the
angle (π − ω) and ω, see Figure 6. Each of the circular arcs will be transformed into a
half-line starting at site D′ at a distance ξ ′ = R2/ξ from S on the axis Sx. Each of these
half-lines makes an angle φ = (ω − π/2) with the vertical direction. This is so because the
line SNN ′ going through the centre of the circle SMND is perpendicular to the half-line
D′N ′M ′. The resulting figure N ′D′P′ is a so-called V-line as stated in [13].

Thus geometric inversion turns this data into the data for a Radon transform onV-lines
for the function gR(x′, y′) encountered before in Equation (11). Let RVgR(ξ ′, τ ′) be the
Radon transform on V-lines of gR(x′, y′). Then we may identify

RCC′ f (ξ ,ω) = RVgR(ξ ′, τ ′), (15)

with τ ′ = cotω. Recall that the V-line transform of gR(x′, y′) is given by

RVgR(ξ ′, τ ′) =
√
1 + τ ′2

∫ ∞

0
dy′ {gR(ξ ′ − y′τ ′, y′) + gR(ξ ′ + y′τ ′, y′)

}
. (16)

In Figure 7, is represented theV-line on which a function is integrated and s′ = ξ ′ cosφ =
ξ ′ sinω as before.

Knowing that the Radon transformonV-lines is invertible (see [13]), we canwrite down
its inverse formula, in which we put the data collected from RCC′ , the Radon transform
on double circular arcs as transformed by Equation (14)
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gR(x′, y′) = − 1
2π2

∫ ∞

0

dτ ′
√
1 + τ ′2

∫
R

dξ ′
(

1
ξ ′ − x′ − y′τ ′ + 1

ξ ′ − x′ + y′τ ′

)
∂

∂ξ ′ RCC′ f
(
R2

ξ ′ ,ω
)

. (17)

The electron density f (x, y) is finally recovered as before by Equation (12).
At this point it is natural to ask what differentiates the two CSTmodalities? (i.e. the one

using a single scanning circular arc and the other using a pair of supplementary scanning
circular arcs). Or more precisely, what differentiates their imaging integral transforms
which are the Radon transforms, respectively, on one scanning circular arc and on two
scanning supplementary circular arcs? To answer this question, it may be simpler to look
at their geometric inverse partners, which are, respectively, the half-line Radon transform
and the V-line Radon transform. These Radon transforms may be viewed as supporting
apparent emission imaging problems in the upper half part of a plane (see Figure 3 in
[13] and Figure 3 in [20]). Therefore we shall discuss the relation connecting the half-line
Radon transform to the V-line Radon transform in the upper part of a plane and then
extrapolate the conclusion to the two CST modalities.

4. A relation between the half-line Radon transform and the V -line Radon
transform

We recall the essential properties of R
 (resp. RV ) the half-line (resp. V-line) Radon
transform and refer the reader to [13]. In this section, we use the standard Cartesian
coordinate system (xOy), since the discussion is intrinsically independent of the previous
sections.
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4.1. Half-line Radon transform

The R
 transform of an integrable function f (x, y) in R2 is defined as

R
f (ξ , τ) =
√
1 + τ 2

∫ ∞

0
dy f (ξ − yτ , y), (18)

where (ξ , τ) ∈ R2. Thus R
f (ξ , τ) is a function defined in R2, obtained by integrating
f (x, y) on the half-line of equations x = ξ − yτ with y > 0. Its inversion is given by the
reconstruction formula (see [13])

f (x, y) = − 1
2π2 H(y)

∫
R2

dτ dξ√
1 + τ 2

1
ξ − x − yτ

∂

∂ξ
R
f (ξ , τ). (19)

This formula resembles the reconstruction formula for the standard Radon transform
except for the Heaviside function H(y), which means that the only data gathered is in the
upper plane. Thus, one can only reconstruct the function in the upper plane. A priori, no
evident symmetry exists and no extension to the lower part of the plane is available. Only
the part of f (x, y) for y > 0 is reconstructed and nothing can be said on f (x, y) for y < 0.

4.2. V-line Radon transform

TheV-line Radon transformwas defined originally as the integral transformwhich assigns
to a function f (x, y) its integral on a standingV-linewith vertex on theOx-axis andopening
angle ω. This V-line figure is in fact a two-dimensional version of a circular cone with
vertical axis in R3. Recently many variants of this so-called V-line Radon transform have
appeared in the literature, see [15,21–24]. In a Cartesian coordinate system with origin O,
the equation of the V-line is |x − ξ | = yτ . The vertex is on the Ox axis at abscissa ξ . The
slope of the two branches with respect to the vertical direction is given by ±τ . Thus the
transform RV f of an function f is

RV f (ξ , τ) =
√
1 + τ 2

∫ ∞

0
dy {f (ξ − yτ , y) + f (ξ + yτ , y)}, (20)

with 0 < τ < ∞. Again we see that RV f ‘sweeps’ the upper half-plane y > 0 as R
.
Lemma 4.1: RV f (ξ , τ), although defined for 0 < τ < ∞, is invariant under τ → −τ .
Hence RV f (ξ , τ) is extendable into τ < 0 by

RV f (ξ , τ) = RV f (ξ ,−τ). (21)

It is a symmetric function of τ .
Moreover, in view of the definition of R
, we have also the lemma

Lemma 4.2: The V-line Radon transform data is related to the half-line Radon data by

RV f (ξ , τ) = R
f (ξ , τ) + R
f (ξ ,−τ). (22)

The τ -symmetry of RV f (ξ , τ) is now explicit.
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For the V-line Radon transform, a function f (x, y) is reconstructed from its data
RV f (ξ , τ) via the formula

f (x, y) = − 1
2π2

∫ ∞

0

dτ√
1 + τ 2

∫ ∞

−∞
dξ

(
1

ξ − x − yτ
+ 1

ξ − x + yτ

)
∂

∂ξ
RV f (ξ , τ).

(23)
Note the τ -symmetry of the integrand under the integral sign.

Then it is legitimate to askwhether it is possible to express the reconstruction formula of
the V-line Radon transform in terms of the reconstruction formula of the half-line Radon
transform.

This is the content of the next theorem
Theorem 4.3: When applied to the data RV f (ξ , τ), the following two inverse integral
operators

(RV (x, y)
)−1 = − 1

2π2

∫ ∞

0

dτ√
1 + τ 2

∫ ∞

−∞
dξ

(
1

ξ − x − yτ
+ 1

ξ − x + yτ

)
∂

∂ξ
, (24)

and (R
(x, y)
)−1 = −H(y)

2π2

∫
R2

dτ dξ√
1 + τ 2

1
ξ − x − yτ

∂

∂ξ
, (25)

give the same result.

Proof: Start with Equation (23), and use the τ -symmetry to extend the τ -integration to R,

f (x, y) = − 1
4π2

∫ ∞

−∞
dτ√
1 + τ 2

∫ ∞

−∞
dξ

(
1

ξ − x − yτ
+ 1

ξ − x + yτ

)
∂

∂ξ
RV f (ξ , τ).

(26)
It is the sum of two integrals, the first one with a denominator (ξ − x − yτ). Rewrite the
second one with a denominator (ξ − x + yτ) in terms of τ ′ = −τ , then using Equation
(21) it becomes

− 1
4π2

∫ ∞

−∞
dτ ′

√
1 + τ ′2

∫ ∞

−∞
dξ

1
ξ − x − yτ ′

∂

∂ξ
RV f (ξ , τ ′). (27)

Putting together and relabel τ ′ by τ , we get

f (x, y) = − 1
2π2

∫ ∞

−∞
dτ√
1 + τ 2

∫ ∞

−∞
dξ

1
ξ − x − yτ

∂

∂ξ
RV f (ξ , τ). (28)

Now because of Equation (22), we get

f (x, y) = − 1
2π2

∫ ∞

−∞
dτ√
1 + τ 2

∫ ∞

−∞
dξ

1
ξ − x − yτ

∂

∂ξ
R
f (ξ , τ)

− 1
2π2

∫ ∞

−∞
dτ√
1 + τ 2

∫ ∞

−∞
dξ

1
ξ − x − yτ

∂

∂ξ
R
f (ξ ,−τ). (29)
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The first line is just the reconstruction by R
 using the half-line Radon data R
f (ξ , τ),
see Equation (19). So it is expected that the second integral on the dataR
f (ξ ,−τ) should
vanish. This is the object of the next proposition
Proposition 4.4: R
f (ξ ,−τ) belongs to the null space of the half-line reconstruction
operator

(R

)−1

(R

)−1 R
f (ξ ,−τ) = − 1

2π2

∫ ∞

−∞
dτ√
1 + τ 2

∫ ∞

−∞
dξ

1
ξ − x − yτ

∂

∂ξ
R
f (ξ ,−τ) = 0.

(30)

Proof: We use Equation (18) to replace R
f (ξ ,−τ) by its defining integral. Then the
left-hand-side of Equation (30) becomes

− 1
2π2

∫ ∞

−∞
dτ√
1 + τ 2

∫ ∞

−∞
dξ

1
ξ − x − yτ

∂

∂ξ

√
1 + τ 2

∫ ∞

0
dz f (ξ + zτ , z). (31)

Now insert the two-dimensional Fourier representation of f (x, y)

f (x, y) =
∫

R2
dp dq f̃ (p, q) e2iπ(px+qy), (32)

and use the well-known Fourier transform formula∫ ∞

0
dz e2iπ(pτ+q)z = 1

2

(
δ(pτ + q) − 1

iπ
1

pτ + q

)
, (33)

as well as ∫ ∞

−∞
dξ

ξ − (x + yτ)
= e2iπ(x+yτ) iπ sgn(p), (34)

in Equation (31), to get a new form of (31)2

− 1
2π2

∫
R2

dp dq f̃ (p, q) e2iπ px iπ sgn(p) 2iπp

×
∫ ∞

−∞
dτ

1
2

(
δ(pτ + q) − 1

iπ
1

pτ + q

)
e2iπ pyτ . (35)

The factor 2iπp comes from the ξ derivative ofR
f (ξ ,−τ). Note that |p| = p sgnp, and
δ(pτ + q) = 1/|p| δ(τ + q/p). Performing the τ integral and using again Equation (32)
give

1
2
f (x,−y) −

∫
R2

dp dq f̃ (p, q)
sgn(p)
2iπ

e2iπx
∫ ∞

−∞
dτ

e2iπpyτ

τ + q
p
, (36)

or using again ∫ ∞

−∞
dτ

e2iπpyτ

τ + q
p

= e−2iπ qy iπ sgn(py), (37)

one ends up with the result

1
2

{
f (x,−y) − sgn(y)f (x,−y)

}
, (38)
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which is zero for y > 0 as expected and equal to f (x,−y) for y < 0, also as expected.

Hence we have shown that (RV
)−1 = (R


)−1 , (39)

whenever these two inverse operators act on the data RV . Consequently, we deduce that
symbolically (RCC′

)−1 = (RC
)−1 , (40)

with the corresponding provision on the scattering angle for each Radon transform

ω ∈ [π/2,π] for RCC′ (41)
ω ∈ [0,π] for R
. (42)

What can be concluded from this? If we count each RV f (ξ , τ) as one measurement
in the RV -procedure (resp. each R
f (ξ , τ) as one measurement in the R
-procedure),
then the number of measurements in the RV procedure is just one half the number of
measurements in the R
 procedure. This observation has an impact at the discretization
level of the two inverse formulas as well as at the practical level of physical data collection.
Thus discretized data shall appear as R
f (ξj, τk) and RV f (ξj′ , τk′), where (j, k) and (j′, k′)
are pairs of integers. The result of Theorem 4.3 means that the number of values taken
by k is twice the number of values taken by k′. Consequently, this conclusion remains
valid when transcribed to RCC′ and to RC . This is the sense attributed to the ‘improved’
character given to a CST functioning with a pair of supplementary scanning circular arcs
as compared to a CST functioning solely on a single scanning circular arc.
Remark 4.5: Equation (39) does not show that RV is a pre-conditioned R
. If this were
the case, then one should have

RV = R
 P−1, (43)

where P is a non-singular pre-conditioner operator, lowering the condition number of
R
. Of course the statement is to be understood at the discretized level, where each of the
integral operator is replaced by its finite dimensional matrix representative. But this is not
what Equation (40) shows.

5. Numerical simulations

As pointed out above, the inversion of the Radon transform on a pair of supplementary
circular arcs RCC′ is transferred to the inversion of the Radon transform on V-lines RV
by geometric inversion. So, in order to establish a numerical framework for practical
reconstruction of functions, one must work first with the inverse formula of RV . The idea
is to circumvent the divergent behaviour of the poles in Equation (17), by going to Fourier
space to throw the divergence to infinity. But then one can ‘apodize’, as it is done currently
with the Radon transform on full lines in the plane under the form of a FBP inversion
method.

The reconstruction algorithm can be formulated as follows:

• From the two measurements at site D, work out the mathematical data RCC′(ξ ,ω)

(given by Equations (14) and (3) as a function of (ξ , τ)), for a real object defined by
f (x, y),
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• Use Equations (15) and (6) to generate mathematical data for RV as a function of
(ξ ′, τ ′), i.e. RCC′ f (ξ ,ω) = RVgR(ξ ′, τ ′),

• Use formula (17) to perform the inversion of the RV transform or to obtain the
reconstruction of the ‘apparent’ object function

gR(x′, y′) = − 1
2π2

∫ ∞

0

dτ ′
√
1 + τ ′2

×
∫

R

dξ ′
(

1
ξ ′ − x′ − y′τ ′ + 1

ξ ′ − x′ + y′τ ′

)
∂

∂ξ ′ RVgR(ξ ′, τ ′), (44)

• Rewrite this formula using the Fourier transforms

RVgR(ξ ′, τ ′) =
∫

R

dq e2iπ qξ ′R̂VgR(q, τ ′), (45)

1
ξ ′ − x′ ± y′τ ′ = iπ

∫
R

dq′ e−2iπq′(ξ ′−x′±y′τ ′) sgnq′. (46)

We get, with |q| = q sgnq,

gR(x′, y′) =
∫

R

dτ ′
√
1 + τ ′2

∫
R

dq |q| R̂VgR(q, τ ′) e2iπqx′
2 cos (2πqy′τ ′). (47)

Recalling that τ ′ = cotω, this reconstruction formula can be given the form of a FBP,
as known in conventional Radon transform and also in [25],

• Recover the original object f (x, y) using Equation (12).
• The term |q| grows linearly at infinity. In order to approximate numerically this
growth, one introduces a cut-off at the infinity bound (apodization).

5.1. Projections

The forwardmodel given by (14) can be alternativelywritten in polar coordinates (r, θ) that
are more suitable for numerical integration on circular paths. Thus, keeping for readability
the name of the function f (r, θ), we have

RCC′ f (ξ ,ω) = ICC′(ρ,ω)

=
∫ π

0
dθ 2ρ

[
f
(
2ρ cos

(
θ − ω + π

2

)
, θ) + f

(
2ρ cos (θ + ω − π

2

)
, θ

)]
,

(48)

that represents the integrations on two supplementary circular arcs of radius

ρ = ξ

2 sinω
. (49)

Each scanning arc is linked to a scattering angle: either ω or (π − ω) (i.e. they are
supplementary arcs of circle). For numerical simulations, we considered square (N × N ,
N = 256) objects in the (x, y) plane (�x = �y = 1) located at a distance L = N of
the source S (i.e. the origin of coordinates, see Figure 6) and at a height H0 = N/4 from
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Figure 8. General reconstruction scheme for the modality CST on supplementary circle arcs.

the horizontal axis. The radius of the scanning arcs was discretized by Nρ = 2048. The
number of scattering angles considered wasNω = 2048, with the parameter in ω ∈ (π

2 ,π)

that corresponds to scattering angles in the full interval (0,π). For the discretization of
the polar angle we used Nθ = 1024 leading to an integration step �θ = θmax−θmin

Nθ
. The

bounds of the interval are 0 < θmax, θmin < π
2 because the object considered was in the first

quadrant. Simulated data is then used in reconstruction of functions.

5.2. Reconstructions

Reconstructions from data generated by (48) were performed according to the scheme
outlined above and summarized in Figure 8. Equations (15) and (49) establish a link
between RVgR(ξ ′, τ ′) and ICC′(ρ,ω). Data obtained through (48) is rearranged in the
form of RVgR(ξ ′, τ ′) projections corresponding to the Radon transform on V-lines. For
this purpose, geometric inversion was used with an inversion circle of radius R = 100.
The parameter ξ ′ (the distance to the origin) in the RV projections was discretized as
ξ ′
min = −90, ξ ′

max = 130 and Nξ ′ = 2048. The discretization of ξ ′ (Nξ ′) and the scattering
angle (Nω = 2048) provide enough data to reconstruct a 256 × 256 (N = 256) object.
After rearrangement, reconstruction is performed using filtered back-projection algorithm
(47). In order to compensate the divergence of the ramp filter, we multiply by a cosine
apodization window to obtain the final filter:

W(q) = |q| 1 + cos (2πq)
2

, (50)

where q is the normalized frequency, dual to the variable ξ ′. The choice of this filter
is motivated by the results obtained earlier in [26] where reconstruction from noisy
and noiseless scatter radiation data was performed using a 3D filtered back-projection
algorithm. In [26], several apodization windows (cosine, Shepp–Logan and Hamming)
were tested and no significant differences between them were found. Finally, the desired
reconstructions are obtained through (12), again with R = 100.

5.3. Results

In order to illustrate the working of our new algorithm, we present numerical simulations
applied on twoobjects: a cracked bar and a block of reinforced concrete. Each studied object
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Figure 9. Radon Transform on supplementary circle arcs. Left column: reinforced concrete block. Right
column: cracked bar. Row 1: original objects. Row 2: projection data: ICC ′(ρ,ω). Row 3: Rearranged data
as a V -line Radon TransformRVgR(ξ ′,φ) (τ ′ = − tanφ). Row 4: reconstructions. See figures of merit in
Table 1.
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Table 1. Normalized mean square error (%).

Noiseless 20 dB 15 dB 10 dB

Cracked bar 0.41 0.47 0.59 0.97
Reinforced concrete 3.82 4.29 5.34 8.41
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Figure 10. Reconstructions from noisy projections with theRCC ′ . Row 1: 20 dB. Row 2: 15 dB. Row 3: 10
dB. See figures of merit in Table 1.

has different features that are useful to highlight the performance of the reconstruction
technique applied. While the bar exhibits a thin structure, approximately 15 % of the
region of interest (ROI), with a homogeneous electronic density and a small detail in it (i.e.
a crack), the block is a largemassive-object made of different electronic densities (i.e. metal
and concrete) and covering the whole ROI (100 %). Figure 9 shows the original objects
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together with projections ICC′(ρ,ω), rearranged data in the form of V-line projections
(we show RVgR(ξ ′,φ) = RVgR(ξ ′, τ ′) with τ ′ = − tan φ and we keep the name RVgR
for readability), and reconstructions. Notice the two branches in RCC′ f (ξ ,ω), each one
corresponding to a different circular path in (48). The missing data in RVgR(ξ ′,φ) (in the
neighbourhood of ξ ′ = 0) corresponds to large scanning circumferences (i.e. ρ large) and
can be reduced by increasing ρ.

In addition, we study the robustness of the algorithm in front of noisy data. Projections
calculated according previous section are now corrupted with Gaussian additive noise
with three different signal to noise ratios (SNR): 20 dB, 15 dB and 10 dB. Reconstructions
were performed as in previous section and are shown in Figure 10. Finally, the quality
of all reconstructions is assessed with the Normalized Mean Square Error [26,27] as a
measurement of the accuracy of the method:

NMSE = 100
N2∑
i=1

(
f̃i − fi

)2
/

(
N2 max

i
{fi}

)
,

where vectors f and f̃ are the reference and reconstructed functions, respectively. All results
are summarized in Table 1.

6. Discussion

Results show a good performance of the inversionmethod proposed to reconstruct objects
scanned with the CST modality on supplementary circle arcs. The crack in the bar is
properly recovered, even in its thinnest part towards the bottom. The shape of the metal
bars inside the block of reinforced concrete is clearly seen. The main features of the
non-metallic part are recovered although some blurring is present in the smallest details.
Regarding figures of merit, the obtained NMSEs are reasonable. In the case of the bar
(NMSE = 0.41 %), the most contributing factor is the non-zero background (see Figure 9)
present in the original image that is slightly amplified in the reconstruction. Nevertheless,
this does not alter significantly the appearance of the reconstructed image. On the other
hand, inside the reinforced concrete block, the error (NMSE = 3.82 %) is completely due
to the object itself since there is not background. Missing data in RV does not seem to be
critical for reconstructions. In what concerns noisy data (SNR=20 dB and 15 dB), although
there is some degradation in the quality of the recovered images, the small structures or the
important details of the objects (i.e. the crack in the bar and the state of the metal skeleton
in the reinforced concrete) are well observed even without using any de-noising technique.
With SNR=10 dB or lower some previous treatment may be necessary.

7. Conclusion and perspectives

In this paper, we have introduced a new modality of CST which is suitable for one-sided
large objects located in a half space in R3. This corresponds to the growing need of
imaging objects of interest in those fields cited in Section 1. It consists in ‘doubling’ the
Compton effect scanning of the sample as compared to the ‘single’ of the conventional
modality of CST. Theoretically, image reconstruction should be of enhanced quality as
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discussed in Section 4. Numerical simulations results support this aspect of the new
CST and open the way to further research development directions taking into account
attenuation corrections, photometric propagation effects as well as non-isotropic, non-
monochromatic source before it can become as a well-established imaging procedure for
wide use in the fields mentioned.

Notes

1. S. J. Norton has also worked out a related inversion formula based on the result of A. M.
Cormack.

2. Here sgn(p) is the sign function of p.
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