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8051/ENSEA/Université de Cergy-Pontoise), 2 av. Adolphe Chauvin 95302 Cergy-Pontoise,
France

E-mail: truong@u-cergy.fr

Received 13 September 2010, in final form 5 October 2011
Published 4 November 2011
Online at stacks.iop.org/IP/27/125001

Abstract
In his seminal work of 1981, Cormack established that Radon transforms
defined on two remarkable families of curves in the plane are invertible
and admit explicit inversion formulas via circular harmonic decomposition.
A sufficient condition for finding larger classes of curves enjoying the same
property is given in this paper. We show that these generalized Cormack’s curves
are given by the solutions of a nonlinear first-order differential equation, which
is invariant under geometric inversion. A derivation of the analytic inverse
formula of the corresponding Radon transforms, as well as some of their main
properties, are worked out. Interestingly, among these generalized Cormack’s
curves are circles orthogonal to a circle of fixed radius centered at the origin of
coordinates. It is suggested that a novel Compton scatter tomography modality
may be modeled by a Radon transform defined on these circles.

(Some figures may appear in colour only in the online journal)

1. Introduction

Ever since the Radon transform has appeared as a key working tool in imaging science,
there is a continuing interest to extend it to non-trivial curves in the plane for which the
transform remains invertible and for which an explicit inversion formula can be written out.
It was Cormack, while working on the inversion of the classical Radon transform, who first
found that the Radon transform on circles intersecting a fixed point in the plane enjoys such
inversion properties [1]. Later in 1981, he found two new families of curves, for which the
related Radon transforms display precisely the same inversion properties [2, 3]. In the past
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decades, progress has been achieved also in the inversion of Radon transforms on circles
centered on a line (respectively on another circle) in the context of synthetic aperture radar
imaging [4, 5] (respectively in thermo-acoustic tomography [6]). At the beginning of the
1990s, Kurusa attempted to generalize Cormack’s result to curves of abstract two-dimensional
manifolds equipped with a metric and a distance function [7, 8]. In particular, he established
invertibility for Radon transforms on curves having a strictly convex distance function in
two-point homogeneous spaces and spaces of constant curvature. However, no concrete curve
was given explicitly. Thus, it would be of interest to search for other classes of curves in R

2

for which the inversion problem of the corresponding Radon transforms can be solved in the
same way.

Amid a wealth of general results on Radon transform on curves in the plane [9–12], we
will be concerned here with Radon transforms on families of curves which are invariant under
a global rotation around the origin of a polar coordinate system O and which have an axis
of reflection symmetry intersecting O. In this situation, it is appropriate to use the so-called
circular harmonic component decomposition of functions (see e.g. [13, 14]), which helps to
reformulate the Radon transform as an integral transform of Tchebyscheff’s type, as appearing
e.g. in [15].

In section 2 of this paper, we consider a generalization of Cormack’s curves, which
preserves their symmetry and smoothness properties and for which the corresponding Radon
transform is invertible in the setting of the circular harmonic component formalism. It turns
out that demanding that the integral equation for circular harmonic components be invertible
implies solving a differential equation of first order. The solution of this equation describes
three classes of curves. Each one is given by a function of rσ , where σ ∈ (R\{0}) is a parameter.
The simplest representative of each group is clearly labeled by |σ | = 1, whereas any other
member of this group may be viewed as its σ -descendant. The first group, which corresponds
to the simplest structure, is precisely the one found by Cormack in 1981, of which the two
simplest representatives are the straight line (σ = 1) and the circle through the origin σ = −1.
For the second group, the simplest representatives are the circular arcs subtended by a common
chord of fixed length which rotates freely around its middle point. The Radon problem for this
class of circular arcs has been shown to be soluble in [16]. The third and last group is new
and its simplest representatives are circular arcs which intersect orthogonally a fixed circle. A
detailed study of this class of new Radon transform is given in section 3. A particular emphasis
is put on the derivation of its analytic inverse formula and its consequences. This last result is
interesting in so far as it suggests a new operating modality for Compton scatter tomography
(CST), a much investigated ionizing radiation imaging process nowadays. This is presented in
section 4. Finally, a conclusion closes the text with some possible research topics.

2. Generalized Cormack’s curves and the associated Radon transforms

2.1. Cormack’s curves and the related Radon’s problem

Cormack’s curve Cσ is characterized by two parameters: φ, an angle specifying its rotational
state around the coordinate origin, and p, a length which describes its ‘size’. In a polar
coordinate system (r, θ ), let

cos σ (θ − φ) =
( p

r

)σ

(1)

be its equation, where σ ∈ {R\{0}} and |θ − φ| < π/2σ . Cσ has an obvious axis of reflection
symmetry (labeled by φ), which goes through the coordinate origin O. We have chosen this
form but could have also taken r/p instead of p/r. This does not affect the generality of the
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argumentation. σ > 0 (respectively σ < 0) corresponds to the α- (β-) curves of Cormack
in [2].

The α-curves (or σ > 0-curves) tend to infinity as |θ − φ| → π/2α; they intersect
themselves at least once if 0 < α < 1/2, but they do not intersect themselves if α � 1/2.
For α = 1/2, 1, 2 we have the parabola, the straight line and the one-branch hyperbola. The
β-curves (or σ < 0 curves) tend to the coordinate origin as |θ − φ| → π/2β; they intersect
themselves at least once if 0 < β < 1/2, but they do not intersect themselves if β � 1/2. For
β = 1/2, 1, 2 we have the cardioid, the circle through the coordinate origin and the one-branch
lemniscate of Bernouilli. The α- and β-curves are exchanged under geometric inversion in the
unit circle (r, θ ) → (1/r, θ ).

The Radon transform on these curves Cσ maps a real-valued integrable function f (r, θ )

on R
2 onto its integral on a curve Cσ , i.e.

f̂ (p, φ) =
∫

(r,θ )∈Cσ

dlσ f (r, θ ), (2)

where dlσ is the line element of Cσ .
Let f (r, θ ) ∈ L1(R+ × S

1), continuous and bounded. Then, f (r, θ ) admits the following
circular harmonic expansion:

f (r, θ ) =
∞∑

l=−∞
fl(r) eilθ , with fl(r) = 1

2π

∫ 2π

0
dθ e−ilθ f (r, θ ). (3)

The l-summation in equation (3) ||.||L1(S1 )-converges to f (r, θ ) for all r ∈ R+. Then, each
fl(r) is bounded and continuous on R+.

Substitution of (3) into equation (2) shows that f̂ (p, φ) is of the form

f̂ (p, φ) =
∑
l∈Z

f̂l(p) eilφ, where f̂l(r) = 1

2π

∫ 2π

0
dθ e−ilθ f̂ (τ, φ). (4)

Then, f̂l(p) emerges as a Tchebyscheff integral transform of fl(r). Cormack showed that
it can be inverted using the value of a special integral on a product of Tchebyscheff
polynomials [2, 17].

So, it is natural to raise the question whether there exist other classes of curves that lend
themselves to the same inversion technique.

2.2. A generalization of Cormack’s curves

An extended form of Cormack’s curves, which would display the same symmetry, but leave
the size and the shape arbitrary, is expected to have the following properties.

• These curves may have an equation of the form

cos σ (θ − φ) = g(rσ )

h(p)
,

where g(x) and h(x) are real-valued and sufficiently smooth functions. (A more general
implicit relation of the type cos σ (θ − φ) = Gp(r) or even Fp(cos σ (θ − φ), r) = 0 could
be envisaged but would lead to unmanageable complications.) As p is an arbitrary length
scale, we may set τ = h(p) > 0 for simplicity (since its sign can be absorbed in g(x)). From
now onward, we call a generalized Cormack curve C(τ, φ), the curve of equation

cos σγ = g(rσ )

τ
, (5)

where γ = (θ − φ).
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• The reality of the curve requires that |g(rσ )|/τ < 1, and for 0 < σγ < π , one may write

γ = 1

σ
cos−1

(
g(rσ )

τ

)
. (6)

• Conversely assuming that the inverse function g−1 of g exists (with possibly a restriction on
the range of τ ), one can solve for r(γ ) = (g−1(τ cos σγ ))1/σ . This means that there may
be several branches r(γ ).

• Each branch may or may not be of finite extent but is always expected to be of smooth
tracing on both sides of the symmetry axis. Let ζ = minr∈R+|(g(r)|. Equation (5) shows that
this curve branch exists if ζ < τ and that it is situated in an angular sector −γ0 < γ < γ0,
with γ0 given by cos σγ0 = ±ζ/τ . In this case, one can picture this branch as starting from
γ = 0 at a distance r = r0 on the symmetry axis (r0 being the solution of τ = g(rσ

0 )) and
ending at the point of polar coordinates (r∗

0, γ0) (r∗
0 being the solution of ±ζ = g((r∗

0 )σ )).

To stress the special character of these curves, we cite two classes of curves which are not
σ -generalized Cormack’s curves. They are given by the following equations:

cos σγ =
(

rσ + p(2R + p)

rσ

)
1

2(p + R)
and cos σγ =

(
rσ + p2 − R2

rσ

)
1

2p
. (7)

There is no factorization of the right-hand side into a product of a function of τ = h(R) and a
function g(rσ ). For σ = 1, they represent two families of circles of variable radius R, which
are respectively externally tangent or centered on a fixed circle of radius p and with center O,
the origin of polar coordinates.

2.3. The Radon transform on generalized Cormack’s curves C(τ, φ)

Physical quantities (such as mass density, radio-activity density or linear attenuation
coefficient, etc), which are relevant for imaging processes, are generally real-valued, non-
negative, smooth and compactly supported functions of polar coordinates (r, θ ). However, we
consider, from now onward, as Cormack did in [2], functions f (r, θ ) which are, with respect
to variables x = r cos θ and y = r sin θ , in the Schwartz space S(R2) of the infinitely smooth
functions (i.e. decaying faster than any power of x and y at infinity as well as their derivatives).
Then it can be checked that fl(r) ∈ S(R+).

Definition 2.1. The Radon transform f̂ (τ, φ) of the function f (r, θ ) ∈ S(R2), on a specific
branch of a generalized Cormack’s curve C(τ, φ), is given by

f̂ (τ, φ) =
∫

(r,θ )∈C(τ,φ)

dl f (r, θ ), (8)

where for simplicity we designate the chosen curve branch by the same symbol C(τ, φ) and dl
its arc element. dl can be computed from equation (5), i.e.

dl = dγ

⎧⎨⎩r

√
1 + τ 2 − g2(rσ )

r2σ g ′ 2(rσ )

⎫⎬⎭
r=(g−1(τ cos σγ ))

1/σ

= dr

√
τ 2 − g2 + (rσ g′)2

τ 2 − g2
, (9)

g′(x) being the derivative of g(x).

Equation (8) may now be given explicitly as an integral on γ :

f̂ (τ, φ) =
∫ γ0

−γ0

dγ

⎧⎨⎩
√

τ 2 − g2 + (rσ g′)2

(rσ g′)2
(r f (r, γ + φ))

⎫⎬⎭
r=(g−1(τ cos σγ ))

1/σ

, (10)

4



Inverse Problems 27 (2011) 125001 T T Truong and M K Nguyen

or as an integral on r :

f̂ (τ, φ) =
∫ r0

r∗
0

dr

√
τ 2 − g2 + (rσ g′)2

τ 2 − g2
( f (r, γ + φ) + f (r,−γ + φ)) |

γ= 1
σ

cos−1
(

g(rσ )

τ

), (11)

where γ0, r0 and r∗
0 have been specified in subsection 2.2. As the singularities of the integrand,

either in γ or in r, are integrable, f̂ (τ, φ) is well defined and has the following elementary
properties.

• f̂ (τ, φ) is a smooth and strongly decreasing function of τ (0 < ζ < τ ),
• for non-negative f (r, θ ), f̂ (τ, φ) is non-negative,
• the support of f̂ is generally not compact since ζ < τ < ∞ and φ ∈ [0, 2π ].

Proposition 2.2. Under the above assumptions, f̂ (τ, φ) is defined for all pairs (τ, φ) with
(0 < ζ < τ < ∞ and 0 < φ < 2π) and fully determined by its circular harmonic components
f̂l(τ ), which are given by

f̂l(τ ) = 2
∫ r∗

0

r0

dr

√
τ 2 − g2 + (rσ g′)2

τ 2 − g2
cos

(
l

σ
cos−1 g

τ

)
fl(r), (12)

where the integration boundaries r0 and r∗
0 are given in subsection 2.2.

Proof. In equation (10), we insert the circular harmonic expansion (3) of f (r, θ ). Then, using
γ = (θ − φ), we rewrite the result as a circular harmonic expansion with respect to the angle
φ, so as to identify the f̂l(τ ) circular harmonic component of f̂ (τ, φ) as an integral of fl(r)
over γ . Next, we take into account the fact that besides the factor eilγ , the rest of the integrand
is a function of cos σγ and that the integration range is [−γ0, γ0]. Thus, we can reduce it to
[0, γ0] but insert a global factor of 2. We now change the integration variable from γ to r and
using equation (9) we obtain equation (12). �

Equation (12) displays the appropriate features required for discussing Cormack’s
inversion procedure [2], in the next subsection.

2.4. A sufficient condition on the curves C(τ, φ) for the invertibility of the corresponding
Radon transform

Inspection shows that by imposing an appropriate condition on the structure of equation (12)
and by redefining its input and output functions, this equation will take the form of the Radon
transform on Cormack’s curves Cσ . This fact can be formulated as

Theorem 2.3. Let g be chosen so as to satisfy the condition

− g2(rσ ) + (rσ g′(rσ ))2 = C, (13)

where C is a constant. Define

F̂l(τ ) = τ f̂l(τ )√
τ 2 + C

and Fl(g) = 1

dg/dr
fl
(
(g−1)

1
σ

); (14)

then F̂l(τ ) and Fl(g) are related by

F̂l(τ ) = 2
∫ τ

ζ τ

dg
cos

(
l
σ

cos−1 g
τ

)√
1 − ( g

τ

)2
Fl(g), (15)

where ζ has been defined in subsection (2.2).

5
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Equation (15) has precisely the form of the integral relation for circular components in
the Radon problem on β-curves of [2], i.e. (β = σ−1), except perhaps for a non-zero lower
integration bound3.

Proof. Equation (15) can be established by taking into account condition (13) and definitions
(14) in equation (12), in which one makes a further change of variable from r to g. In [2],
for the Radon problem on the β-curves, Cormack obtained an equation linking the circular
components of the function and its Radon transform, which has the same form as equation
(15), except a zero as lower integration bound instead of ζ τ . �

Remark 2.4. Instead of using the variables (g, τ ), we could have used (1/g, 1/τ ). This would
lead to an integral transform for the Radon problem on Cormack’s α-curves, see equation (12a)
in [2] modulo an integration bound. The connection between the two situations can be
established by geometric inversion, as discussed in [2, 18].

Consequently, we have

Corollary 2.5. The Radon transform on generalized Cormack curves C(τ, φ), defined by
equation (13), can be inverted by inverting the integral equation for their circular components
(15), following Cormack’s method in [2].

We discuss concrete cases of inversion, according to the nature of the solutions of equation
(13), in the following sections.

2.5. Solutions of the differential equation determining the generalized Cormack’s curves
C(τ, φ)

Thus, it becomes highly interesting to know what are the generalized Cormack’s curves. To
find them we have to solve equation (13), a nonlinear separable differential equation of first
order, which takes a simple form in the variable x = rσ :

dg√
g2 + C

= ± dx

x
. (16)

There are three families of solutions according to the values of C and dependent on an
integration constant s.

(a) For C = 0, the solution is trivial and yields the Cormack’s curves:

g(x) =
( s

x

)
or g(x) =

(x

s

)
. (17)

Here, s is an integration constant. If we set s = pσ in equation (17), we find the equations
of the α- and β-Cormack’s curves of [2]

cos σγ =
( p

r

)σ

or cos σγ =
(

r

p

)σ

. (18)

(b) For C = b2 > 0 with b ∈ R, we have the solution

g(x) = ± |b|
2

( s

x
− x

s

)
. (19)

3 Note that this form has also been obtained by Kurusa in his work on Radon transform on a half-sphere [19].
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In what follows |b| can be absorbed in the definition of τ . The (−) sign in g may be
absorbed by an angular shift in γ → (γ ± π/2σ ) without changing the nature of the
curve branch. Hence, it is sufficient to consider curves of the equation

cos σγ = 1

2τ

[( p

r

)σ

−
(

r

p

)σ]
. (20)

The Radon transform on such curves with σ = 1, as well as two special cases with
σ = 1/2, 2, has been discussed in [16].

(c) For C = −b2 > 0 with b ∈ R, we obtain

g(x) = ± |b|
2

( s

x
+ x

s

)
. (21)

Following the arguments given in (b), without loss of generality we can restrict ourselves
to curves given by

cos σγ = 1

2τ

[( p

r

)σ

+
(

r

p

)σ]
. (22)

For the three classes, note that when σ = 1/m, with m = 1, 2, 3, . . ., equations (17), (19)
and (20) refer to higher order algebraic curves of special types. In particular, for σ = 1 the
corresponding curves are a straight line and three families of circles or arcs of the circle in the
plane (see figure 1). The line and circles in (a) and (b) are associated with

• the usual Radon transform on straight lines, which is widely used in computed tomography,
single photon emission computed tomography and positron emission tomography,

• the Radon transform on circles passing through a fixed point, used in Norton’s CST modality
[21] and

• the Radon transform on rotating arcs of the circle, arising in a recent CST modality [16].

The most valuable property one can expect from a Radon transform is, without any doubt,
its invertibility since it solves in principle the inverse problem associated with some imaging
processes, as in three cases of the σ = 1 curves above. The last family of circles, which
correspond to C < 0, has not yet been considered in the literature and will be the subject of
section 3.

2.6. Inversion of Radon transforms on generalized Cormack’s curves with C � 0

The case with C = 0 will not be discussed in this paper since it has appeared in the work of
Cormack [2].

Let us now consider the case with σ > 0 and C > 0, with the provisions (b) of
subsection 2.5. In [16], we have used a different inversion approach and put the emphasis
on the special case σ = 1 in view of an application in CST. Here, we follow the general
approach presented above. The lower bound in the integral of equation (15) is 0, since for
r = p, we have ζ0 = 0 and consequently γ0 = π/2σ . Thus, equation (15) becomes identical
to the equation for the Radon transform on Cormack’s β-curves [2].

Let f̂ (τ, φ) be the Radon transform of a f (r, θ ) ∈ S(R2) on the generalized Cormack’s
curve of the equation

cos σγ = 1

2τ

[( p

r

)σ

−
(

r

p

)σ]
.

7
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Figure 1. Representations of the σ = 1 solutions of equation (16).

Proposition 2.3 shows that via the change of functions

F̂l(τ ) = τ f̂l(τ )√
τ 2 + 1

and Fl(g) =
(
− p

σ

) fl(p(
√

g2 + 1 − g)1/σ )√
g2 + 1(

√
g2 + 1 + g)

1
σ

, (23)

where fl(r) (respectively f̂l(τ )) are the circular harmonic components of f (r, θ ) (respectively
f̂ (τ, φ)), equation (15) becomes precisely the integral transform for the circular components
of functions in the Radon problem on Cormack’s β-curves (see equation (12b) in [2]):

F̂l(τ ) = 2
∫ τ

0
dg

cos
(

l
σ

cos−1 g
τ

)√
1 − ( g

τ

)2
Fl(g). (24)

Observe that F̂l(τ )(respectively Fl(g)) enjoy the same smoothness properties as
f̂l(τ )(respectively fl(r)). As Cormack has worked out fully the inversion procedure in
[2, 22], we can state the following theorem.

Theorem 2.6. The Radon transform of functions f (r, θ ) ∈ S(R2) on the generalized
Cormack’s curves of the equation

cos σγ = g(r)

τ
= 1

2τ

[( p

r

)σ

−
(

r

p

)σ]
is invertible via the inversion of the Radon transform on Cormack’s β-curves.

8
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In particular, for σ = 1/m, m = 1, 2, 3, . . ., there exists a closed form inverse formula

f (r, θ )|σ=1/m = 1

2π2

d

dr
ln g(r)

∫ 2π

0
dφ

∫ ∞

0
dτ

d

dτ

(
τ f̂ (τ, φ)√

1 + τ 2

)
Um−1(g(r)/τ )

Tm(g(r)/τ ) − cos(θ − φ)
,

(25)

where Tm(x) and Um(x) are the Tschebycheff polynomials of first and second kind [23] :

Tm(cos x) = cos mx and Um−1(cos x) = sin mx

sin x
.

Proof. From equation (17b) of [2], we retrieve the inversion formula for Fl(t) :

Fl(t) = 1

πt

∫ t

0
dτ

cosh
(

l
σ

cosh−1(t/τ )
)

√
t2 − τ 2

d F̂l (τ )

dτ
, (26)

Because equation (26) does not include the consistency condition on the Radon data, the
function under τ -integration shows divergences, at large l > 2, for τ → 0. A well-behaved
solution was derived later by Cormack in 1984 (see his equation (15) in [22]). When transcribed
to our σ - solution, it reads

Fl(g) = 1

πg

∫ g

0
dτ F̂ ′

l(τ )

⎧⎨⎩
( g

τ
−
√

g2

τ 2 − 1
)l/σ√

g2

τ 2 − 1
+

∞∑
k=[n/2]+1

ak

(
2g

τ

)n+δ−2k
⎫⎬⎭

− 1

πg

∫ ∞

g
dτ F̂ ′

l(τ )

[n/2]∑
k=0

ak

(
2g

τ

)n+δ−2k

, (27)

whereby n = 0, 1, 2, . . ., l/σ = 1 + n + δ, 0 < δ < 1 and

ak = (−1)k

k!

�(1 + n + δ − k)

�(1 + n + δ − 2k)
.

Then, using equation (23), an inversion formula in terms of f̂l(τ ) can be obtained.
For σ = 1/m, with m = 1, 2, 3, . . ., Cormack was able to obtain a close form for

the inversion formula (his equation (21) in [22], in which (t/q) is replaced by (q/t)). The
transcription of his result to our variables yields precisely formula (25). �

Remark 2.7. We may observe that the Radon transforms on curves given by equation (7)
cannot be inverted in the framework of function circular harmonic decomposition.

3. A Radon transform on arcs of circles orthogonal to a fixed circle

This section is devoted to the Radon transform on the curves given by equation (22). For
arbitrary σ > 0, this transform has its novelty as a new class of Radon transform. Its inversion
would go along the lines of the previous section. However, in view of a possible application
to CST, to be presented in section 4, instead of describing the general inversion procedure for
any σ > 0, we choose to concentrate on the case σ = 1 and give a self-contained presentation
with relevant computational details.

9
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Figure 2. Circle Cpτ orthogonal to a fixed circle �p.

3.1. The family of circles Cpτ

The curve with σ = 1, C < 0 and the provisions (c) of subsection 2.5, has the following
equation in polar coordinates:

cos γ = 1

2τ

(
p

r
+ r

p

)
, with τ > 0 and p > 0. (28)

It is clearly invariant under the geometric inversion (p/r) ↔ (r/p), and under the substitution
(r, γ ) → (−r, γ ± π). Inspection shows that it is a circle Cpτ of radius p

√
τ 2 − 1, with its

center on a radial axis making an angle φ with Ox, at a distance pτ from the origin and
orthogonal to a fixed circle �p of radius p and centered at the coordinate system origin O. The
intersection points S and D of Cpτ with �p are also the tangency points to the full circle Cpτ of
lines OS and OD, see figure 2.

When equation (28) is solved for r, one obtains two solutions. With respect to the circle
�p, its outside (respectively inside) branch is given by r = p (τ cos γ +

√
τ 2 cos2 γ − 1)

(respectively r = p (τ cos γ −
√

τ 2 cos2 γ − 1)). The existence and reality of these solutions
requires that (−π/2 < −γ0 < γ < γ0 < π/2), with γ0 defined by τ 2 cos2 γ0 = 1, which in
turns implies that τ � 1 (since g(r) = (1/2)((p/r) + (r/p)) > 0, its minimum is ζ = 1 at
r = p).

3.2. Known cases of Radon transforms on circles in R
2

The problem of invertibility of Radon transforms on circles in R
2 has been investigated in

depth by many authors, see e.g. [10]. In particular, the invertibility of Radon transforms
on circles of arbitrary radius but centered on restricted subsets S of the plane has been
established by Agranovsky and Quinto (see [24, 25]). This inversion problem is equivalent
to the characterization of sets on which radial functions are dense in the sense of continuous
functions in the plane. This is so except if S is not contained in any set of the form of the union
of the rigidly displaced Coxeter system of N lines and of a finite set F . The related problem

10
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of injectivity of Radon transform on circles has also been largely investigated in the literature
[24–26], in particular for the Radon transform on circles with fixed radius [27].

The circular arcs Cpτ have not appeared so far in the literature as supports for Radon
transforms in R

2, although the general problem of Radon on arcs of curves has been considered
in [20]. The only known classes of circles on which a Radon transform can be defined and
inverted with an explicit formula are as follows.

(1) Circles going through the coordinate system origin. The Radon transform on such circles
was found to be invertible first by Cormack in 1963 [1]. Interest in this case remained
dormant for years until Cormack showed that they are a special case of his β-curves in
[2]. Much later, Norton used them to propose a modality for CST [21].

(2) Circles of varying radius centered on a fixed circle. It was shown by Norton [29] how they
arise in ultrasound imaging with special circular geometry. This case has now experienced
a revival of interest with thermo-acoustic imaging [28].

(3) Circles centered on a straight line. They have served in Radon transforms for modeling
synthetic aperture radar imaging [4].
All these three classes of circles have been discussed thoroughly in the literature [24–26].

(4) Recently while searching for a new modality for CST, we have found that the class of
arcs of the circle subtended by a chord of fixed length and rotating around its center can
be the support of a new class of invertible Radon transforms [16]. A corresponding CST
modality has also been suggested.

3.3. The Radon transform on circular arcs C+
pτ

In this section, we show that the Radon transform on circular arcs C+
pτ , which are orthogonal

to the fixed circle �p, but external to it, is invertible by Cormack’s approach. It has the
polar equation r = p(

√
τ 2 cos2 γ − 1 + τ cos γ ) and has a length p(π + 2γ0) tan γ0, with

γ0 = cos−1(τ−1).

Definition 3.1. The Radon transform f̂ (τ, φ) of functions f (r, θ ) ∈ S(R2) on C+
pτ is defined

by the integral

f̂ (τ, φ) =
∫ γ0

−γ0

dγ

√
τ 2 − 1

τ 2 cos2 γ − 1
(r f (r, γ + φ))

r=p
(√

τ 2 cos2 γ−1+τ cos γ
) , (29)

or alternatively by

f̂ (τ, φ)

=
∫ p(τ+√

τ 2−1)

p
dr

√√√√ τ 2 − 1

τ 2 − 1
4

( p
r + r

p

)2 ( f (r, γ + φ) + f (r,−γ + φ))|
γ=cos−1 1

2τ

(
p
r + r

p

). (30)

In equation (29), the factor (
√

τ 2 cos2 γ − 1)−1 introduces an integrable singularity near
the integration limits ±γ0 and the γ -integration remains well defined. We note that f̂ (1, φ) = 0
and that f̂ (τ, φ) ∈ S(R2).

Alternatively f̂ (τ, φ), as a function of (τ, φ) ∈ [1,∞[×[0, 2π ], can be reformulated as
an integral transform with a r-delta function kernel KC+

pτ
(τ, φ|r, θ ) as

f̂ (τ, φ) =
∫ γ0

−γ0

dγ

∫
R

dr r f (r, γ + φ) KC+
pτ
(τ, φ|r, θ ), (31)

11
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where the kernel is

KC+
pτ
(τ, φ|r, θ )

=
√

τ 2 − 1

τ 2 cos2(θ − φ) − 1
δ(r − p(

√
τ 2 cos2(θ − φ) − 1 + τ cos(θ − φ))). (32)

Thus, for given (τ, φ), the kernel support in (r, θ )-space is C+
pτ .4

3.4. Adjoint transform

Definition 3.2. The adjoint Radon transform of a real-valued, smooth and rapidly decreasing
function ĥ(τ, φ) is h(r, θ ), given by

h(r, θ ) =
∫ 2π

0
dφ

∫ ∞

1
dτ K+

C+
pτ
(r, θ |τ, φ) ĥ(τ, φ). (33)

To find K+
C+

pτ
(r, θ |τ, φ) we rewrite the kernel in equation (32) in terms of the τ -variable in

the delta-function

δ(r − p(
√

τ 2 cos2(θ − φ) − 1 + τ cos(θ − φ)))

= δ

⎛⎝τ −
1
2

(
p
r + r

p

)
cos(θ − φ)

⎞⎠ √
τ 2 cos2(θ − φ) − 1

r cos(θ − φ)
. (34)

Let

g = 1

2

(
p

r
+ r

p

)
. (35)

Inspection shows that g as a function of r is always g > 1 and g attains its minimum 1 at r = p.
Thus, for a given point (r, θ ), the kernel of the adjoint transform is

K+
C+

pτ
(r, θ |τ, φ) =

√
τ 2 − 1

r
δ(τ cos(φ − θ ) − g).

Its support in (τ, φ)-space (or Radon space) is just the curve of equation

τ = g

cos(φ − θ )
. (36)

This is precisely the equation of a straight line in polar coordinates (τ, φ), located at a
distance g from the coordinate origin. Since g > 1, the set of these straight lines in the
(τ, φ) plane lies outside the unit circle. Thus, the adjoint Radon transform of the function
ĥ(τ, φ) is the usual Radon transform on straight lines (external to the unit circle) in (τ, φ)-
space but for the function

√
τ 2 − 1 ĥ(τ, φ) with the kernel δ (g − τ cos(φ − θ )), which is

p (
√

g2 − 1 + g) h(p (
√

g2 − 1 + g), θ ) = r h(r, θ ).

3.5. The integral transform for circular harmonic components

Under the above assumptions, proposition 2.3 takes the form

4 We can verify that the normalization is correct since the integral on function 1 with this delta function yields the
length of the circumference.

12
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Proposition 3.3. Let fl(r) (respectively f̂l(τ )) be the circular component of f (r, θ )

(respectively of f̂ (τ, φ)) and define F̂l(τ ) (respectively Fl(g)) by

F̂l(τ ) = τ f̂l(τ )√
τ 2 − 1

, and Fl(g) = p (g +
√

g2 − 1) fl(p (g +
√

g2 − 1))√
g2 − 1

. (37)

Then, F̂l(τ ) is the Tschebycheff transform of the first kind of Fl(g) :

F̂l(τ ) = 2
∫ τ

1
dg

Tl(g/τ )√
1 − ( g

τ

)2
Fl(g), (38)

where Tl(x) is the Tschebycheff polynomial of the first kind [23].

Equation (38) is well defined since the singularities of the integrand at g = (1, τ ) are
both integrable. It differs only from the equation for the circular harmonic components of the
Radon problem on circles through the origin of Cormack by the value of the lower integration
bound (see equation (22) in [1]). Thus, most of the properties proved for Cormack’s problem
remain valid here [2].

Proof. In equation (29), we insert the circular harmonic decomposition of f (r, θ ). Then,
exchanging the discrete l-summation with the γ -integration we can identify the circular
harmonic component f̂l(τ ) of f̂ (τ, φ) as

f̂l(τ ) =
∫ γ0

−γ0

dγ

√
τ 2 − 1

τ 2 cos2 γ − 1
(r fl(r))r=p (τ cos γ+

√
τ 2 cos2 γ−1)

eilγ . (39)

This result can be rewritten as an integration on [0, γ0], in which eilγ is replaced by 2 cos lγ .
Then, changing the γ -integration into r-integration, equation (30) becomes

f̂l(τ ) = 2
∫ p

p(τ+√
τ 2−1)

dr

√√√√√ τ 2 − 1

1 −
(

p
r + r

p

)2

4τ 2

1
2τ

( p
r − r

p

)√
τ 2 cos2 γ − 1

cos l cos−1

(
1

2τ

(
p

r
+ r

p

))
fl(r).

(40)

Now using equation (28), we see that
1
2

( p
r − r

p

)√
τ 2 cos2 γ − 1

= sgn
1

2

(
p

r
− r

p

)
= −1, for r > p. (41)

Thus, with g given by equation (35), equation (40) becomes

τ f̂l(τ )√
τ 2 − 1

= 2
∫ p(τ+√

τ 2−1)

p
dr

cos l cos−1(g/τ )√
1 − g2

τ 2

fl(r). (42)

The last step consists in going over the variable g as integration variable with

dr

dg
= 1

− 1
2r

( p
r − r

p

) = p
g +

√
g2 − 1√

g2 − 1
, and Fl(g) =

⎛⎝ r fl(r)

− 1
2

(
p
r − r

p

)
⎞⎠

r=p(g+
√

g2−1)

.

With Tl(x) as defined in theorem 2.6, equation (38) is established. �
Equation (38) has precisely the form of the equation for circular components of the Radon

on circles through the origin [2], except that the lower integration bound is not 0 but 1 (recall
that τ � 1).
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3.6. Consistency conditions

Proposition 3.4. For l ∈ N+ and k = l, l − 2, l − 4, . . . > 0, the following integral vanishes:∫ ∞

1
dτ τ−k τ f̂l(τ )√

τ 2 − 1
= 0. (43)

Proof. Using proposition 3.3, we have with k > 0∫ ∞

1
dττ−k τ f̂l(τ )√

τ 2 − 1

= 2
∫ ∞

1

dτ

τ k

∫ τ

1
dg

cos l
(
cos−1

( g
τ

))√
1 − ( g

τ

)2

p (g +
√

g2 − 1) fl(p (g +
√

g2 − 1))√
g2 − 1

. (44)

Exchanging integration order on the right-hand side of equation (44) as in [2], we have∫ ∞

1
dg

p(g +
√

g2 − 1) fl(p(g +
√

g2 − 1))√
g2 − 1

∫ ∞

g
dτ τ−k cos l

(
cos−1

( g
τ

))√
1 − ( g

τ

)2
.

In the τ -integral we change to the variable ν (for fixed g > 1), defined by τ = g/ cos ν. Then,∫ ∞

g
dττ−k cos l

(
cos−1

( g
τ

))√
1 − ( g

τ

)2
= g−k+1

∫ π/2

0
dν cos lν cosk−2 ν.

The value of the ν-integral is given in [23] (page 9) as∫ π/2

0
dν cos lν cosk−2 ν = π

2k−2

�(k − 2)

�
(

k+l
2

)
�
(

k−l
2

) . (45)

For l > 0, this integral vanishes for k = l, l − 2, l − 4, . . . > 0. For l < 0, we take the poles
of the other gamma-function factor. �

This consistency condition will be used to deduce a closed form of the reconstruction
formula, as in [22]. We have not investigated at this point the connection to special orthogonal
polynomials, as done in [3, 30] for the usual Radon transform, but we have the following
corollary.

Corollary 3.5. For t < τ and l > 0,∫ ∞

1

dτ

τ
Ul−1(t/τ )

τ f̂l(τ )√
τ 2 − 1

= 0, (46)

where Ul−1(cos ν) = sin lν/ sin ν is the Tchebyscheff polynomial of second kind.

Proof. Using the explicit expression of Ul−1(t/τ ), as given in [23], we have

t

τ
Ul−1(t/τ ) =

[l−1/2]∑
m=0

m∑
n=0

(
l

2m + 1

)(
m
n

)
(−1)m−n

(
t

τ

)l−2(m+1−n)

, (47)

where l − 2(m + 1 − n) > 0. Thus, equation (46) is a linear sum of terms of the type of
equation (43), with k given by equation (45). �
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3.7. Inversion formula for the circular harmonic components

Theorem 3.6. Under the above assumptions, the function f (r, θ ) can be reconstructed via its
circular harmonic component fl(r), given by

fl(r) = 1

2πr

(
r

p
− p

r

) {
d

dt

∫ t

1
dτ

cosh
(
l cosh−1 ( t

τ

))√
(t2 − τ 2)(τ 2 − 1)

τ f̂l(τ )

}
t= 1

2

(
p
r + r

p

) (48)

for l ∈ Z.

Proof. We multiply both sides of equation (38) by∫ t

1
dτ

cosh
(
l cosh−1 ( t

τ

))
τ

√(
t
τ

)2 − 1
.

Since the integrand on the right-hand side of equation (38) is smooth except for integrable
singularities in the plane (τ, g), we can interchange the integration order and rearrange the
integrations as follows:∫ t

1
dτ

cosh
(
l cosh−1 ( t

τ

))
τ

√(
t
τ

)2 − 1
F̂l(τ ) = 2

∫ t

1
dgFl (g)

∫ t

g
dτ

cosh
(
l cosh−1 ( t

τ

))
τ

√(
t
τ

)2 − 1

cos l
(
cos−1

( g
τ

))√
1 − ( g

τ

)2
.

(49)

The τ -integral on the right-hand side of equation (49) has the value π/2, as shown in [2, 17].
Consequently ∫ t

1
dτ

cosh
(
l cosh−1 ( t

τ

))
τ

√(
t
τ

)2 − 1
F̂l(τ ) = π

∫ t

1
dgFl(g).

Fl(t) is recovered by deriving with respect to t on both sides of this equation, i.e.

Fl(t) = 1

π

d

dt

∫ t

1
dτ

cosh
(
l cosh−1 ( t

τ

))
τ

√(
t
τ

)2 − 1
F̂l(τ ). (50)

Then, (48) is obtained after switching back to the original f̂ (τ, φ) and f (r, θ ), via
equation (37), in which g plays the role of t here. �

As observed by Cormack in [2], this result demonstrates the ‘hole’ theorem for the Radon
transform on the arcs of the circle C+

pτ : it is only necessary to know f̂l(τ ) for

1 < τ <
1

2

(
p

r
+ r

p

)
,

in order to determine f (r, θ ).

3.8. A closed form of the inversion formula

Following [22], a closed form the inversion formula can be established.
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Proposition 3.7. Taking into account the consistency conditions (43), the final closed form of
the reconstruction formula is

f (r, θ ) = 1

2πr

(
r

p
− p

r

)
P.V.

∫ 2π

0

dφ

2π

1

cos(θ − φ)

×
⎧⎨⎩P.V.

∫ ∞

1
dτ

(
d

dτ

τ f̂ (τ, φ)√
(τ 2 − 1)

)
1

1
2

(
p
r + r

p

)
− τ cos(θ − φ)

⎫⎬⎭ . (51)

where P.V. denotes the principal value of the integral.

Proof. We rewrite equation (48) in terms of the Tchebyscheff polynomial Tl(t/τ ) for
1 < τ < t :

fl(r) = 1

2πr

(
r

p
− p

r

) {
d

dt

∫ t

1
dτ

T|l|
(

t
τ

)√
(t2 − τ 2)(τ 2 − 1)

τ f̂l(τ )

}
t= 1

2

(
p
r + r

p

) , (52)

and use the identity (16) in [22] to express the τ -integral in equation (52) as a sum of two
integrals, i.e.∫ t

1

dτ

τ

(
t
τ

−
√(

t
τ

)2 − 1
)|l|√(

t
τ

)2 − 1

τ f̂l(τ )√
τ 2 − 1

+
∫ t

1

dτ

τ
U|l|−1

(
t

τ

)
τ f̂l(τ )√
τ 2 − 1

.

Then, equation (46) allows us to rewrite the second integral in the previous equation as∫ t

1

dτ

τ
U|l|−1

(
t

τ

)
τ f̂l(τ )√
τ 2 − 1

= −
∫ ∞

t

dτ

τ
U|l|−1

(
t

τ

)
τ f̂l(τ )√
τ 2 − 1

, (53)

which is well defined since 1 < t < τ .
Next, we need the sums of two series, which are given by the following lemmas.

Lemma 3.8. For 1 < τ < t, one has

1 + 2
∞∑

l=1

⎛⎝ t

τ
−
√(

t

τ

)2

− 1

⎞⎠l

cos l(θ − φ) =
−
√(

t
τ

)2 − 1

cos(θ − φ) − t
τ

. (54)

Proof. Since

0 <

⎛⎝ t

τ
−
√(

t

τ

)2

− 1

⎞⎠ < 1,

application of the summation formula on page 468 of [23] yields the quoted result. �

Lemma 3.9. For 0 < t/τ < 1, we have∑
l∈Z

U|l|−1

(
t

τ

)
eil(θ−φ) = lima→0+

1

sin cos−1(t/τ )

∑
l∈Z

sin (|l| cos−1(t/τ )) (e−la+il(θ−φ))

= 1

cos(θ − φ) − t
τ

. (55)
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Proof. For given a > 0, using U|l|−1
(

t
τ

) = sin (|l| cos−1(t/τ ))/ sin cos−1(t/τ ), and
U−1(x) = 0, the l-sum may be split into a sum of two terms: one with l = 1, 2, . . . ,∞
and the other with l = −1,−2, . . . ,−∞. By relabeling the negative l index, we obtain∑
l∈Z

U|l|−1

(
t

τ

)
eil(θ−φ) = lima→0+

1

sin cos−1(t/τ )

∞∑
l=1

(
sin l cos−1(t/τ )(e−a+i(θ−φ))l + sin l cos−1(t/τ )(e−a−i(θ−φ))l

)
. (56)

The two sums on the right-hand side can be evaluated using a formula on page 468 of [23] for
given a > 0. Then, after taking the limit a → 0, one obtains∑

l∈Z

U|l|−1

(
t

τ

)
eil(θ−φ) = 1

cos(θ − φ) − (t/τ )
, (57)

which is the expected result. �
Next, after writing f̂l(τ ) as the angular Fourier component of f̂ (τ, φ) (see equation (4)),

in the expression of fl(r) given by equation (52), we compute f (r, θ ) as
∑

l∈Z
fl(r) exp ilθ .

The reconstruction formula appears after applying the results of the two previous lemmas as

f (r, θ ) = 1

2πr

(
r

p
− p

r

) ∫ 2π

0

dφ

2π

×
{

d

dt

[
P.V.

∫ ∞

1
dτ

τ f̂ (τ, φ)√
(τ 2 − 1)

1

t − τ cos(θ − φ)

]}
t= 1

2

(
p
r + r

p

) . (58)

As t no longer appear as integration bound, the t-derivative can be shoved under the τ -
integration. It generates a factor (t − τ cos(θ − φ))−2 in the integrand, with an apparent
bad divergence. However, as shown in [31], a regularization procedure can be applied so
that the integral transform with kernel (t − τ cos(θ − φ))−1 acts on the τ -derivative of
τ f̂ (τ, φ)/

√
(τ 2 − 1). This is formula (51). Alternatively, one may also use partial integration

on τ with the boundary values (τ f̂ (τ, φ)/
√

τ 2 − 1)τ=1,∞ = 0 (due to equation (38) and its
own structure) to obtain the final result (51). �

3.9. The Radon transform on arcs of the circle C−
pτ

If the inner arc of the circle C−
pτ is used to define the Radon transform of a function f (r, θ ),

one should take the equation r′ = p (τ cos γ −
√

τ 2 cos2 γ − 1). The corresponding integral
kernel is

KC−
pτ
(τ, φ|r′, θ )

=
√

τ 2 − 1

τ 2 cos2(θ − φ) − 1
δ(r′ − p(−

√
τ 2 cos2(θ − φ) − 1 + τ cos(θ − φ))). (59)

There are only minor differences in the calculations as compared to the previous case
and one ends up exactly with the same equation for the circular harmonic components of
proposition 3.3. The previous inversion procedure simply goes through. Another way to see
this fact is to note that the product r r′ = p2: the two arcs of circles C+

pτ and C−
pτ are the inverse

of each other in the inversion of the center O and modulus p. Then, the integral equations
connecting the circular components can be exchanged via this geometric inversion, as in the
case of the straight line and the circle intersecting O, see [18, 22].
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Figure 3. Existing CST modalities associated with two classes of circular arcs.

We observe that the delta-function of a circle Cpτ = C−
pτ

⋃
C+

pτ is the sum of the delta-
functions in equation (32) and in equation (59), which can be put together as

KC−
pτ
(τ, φ|r, θ ) + KC+

pτ
(τ, φ|r, θ ) = δ(

√
r2 + τ 2 p2 − 2r τ p cos(θ − φ) − p

√
τ 2 − 1). (60)

It is not known yet if a Radon transform on whole circles Cpτ , with the kernel (60), is invertible
or not.

4. A suggested modality for CST

4.1. On Compton scatter tomography

To image the hidden parts of objects of interest, transmission or emission tomography is
nowadays widely used. The flux density of ionizing radiation (i.e. x- or gamma rays) with
definite energy E0 is measured at the end of linear paths along all possible space orientations.
In transmission tomography5, the data are the cumulated attenuation of the radiation pencil
with energy E0, from an emission external source to a detection site. In emission tomography6,
the detector records the integral of the object emitted radio-activity density along a given
straight line path, which, in a first approximation, has not been attenuated by absorption or
by Compton scattering. In both cases, the acquired data are represented by the usual Radon
transform of a physical density function characterizing the object (linear attenuation coefficient
or radio-activity emission density).

CST is an alternative imaging technique which relies on the detection of Compton scattered
radiation produced by an object when it is exposed to a external radiation source. The relevant
quantity describing the object is now the object electronic density. This imaging principle
was proposed first by Lale [32] and has evolved into many variants. The pioneering Compton
scatter imaging methods are classified according to the way the measurement of the spatial

5 Computed tomography.
6 That is single photon emission computed tomography or positron emission tomography.
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Figure 4. New CST modality associated with external circular arcs C+
pτ .

distribution of scatter radiation is done or the number of simultaneous volume elements being
scanned: i.e. point by point, line by line, or plane by plane (for a complete account see the
review [33]).

In 1978, instead of performing local step-by-step measurements, Kondic pointed out that
scattered radiation data can be acquired as an integral of the electronic density along isogonic
arcs of the circle of constant scattered energy [34]. The idea was later on expanded in [35] by
Prettyman, who realized that the data should be collected at all spatial orientations of the pair
source-detector (or equivalently of the object). But having no analytic reconstruction formula
adapted to this modality of data acquisition, he used standard numerical methods to reconstruct
the object electron density.

In 1994, Norton showed that Kondic’s idea can be implemented with a fixed point-like
radiation source S and a point-like detector D moving on a straight line passing through S
[21] (figure 3, left). In this way, the collected data by the detector are essentially the Radon
transform of the electronic density on circles of variable radius and going through S. Since such
Radon transforms admit readily an analytic inverse [2], a natural reconstruction algorithm can
be set up.

Recently, the inversion of a Radon transform on circular arcs subtended by a chord of
fixed length but rotating about its center has been established [16] (figure 3, right). Its explicit
inversion formula is precisely suited for the CST imaging procedure proposed by Prettyman
in 1991.

Thus, it is natural to ask whether the Radon transform on circles orthogonal to a fixed
circle of section 3 may be of use for some new type of CST modality.

4.2. A new CST modality?

In this section, we propose to give an affirmative answer to this question. This is illustrated in
figure 4.

A calibrated point source S of γ -rays, located on a circle �p, emits photons of energy E0.
A lead shield nearby confines this emitted radiation to a half-space. An object, placed outside
the circle �p, is irradiated by the incoming radiation. Compton scattered radiation by the object
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electric charges is selectively registered, at different scattering energies E, by a point detector
D, also located on the circle �p.

A scattered photon of energy E < E0 is deviated by an angle ω from his initial propagation
direction, after a Compton collision with an electron. ω is given by the so-called Compton
relation E = E0/(1 + ε(1 − cos ω)), where ε = E0/mc2, m is the electron rest mass and c
is the light velocity in vacuum. In figure 4, we can see that ω = γ0 + π/2: this would mean
that the measured data are due to Compton back-scattered radiation, i.e. (π/2 < ω < π).
We recall that cos γ0 = 1/τ . Thus, when only photons of the energy E are registered, the
photon flux density reaching D is proportional to the integral of the electron density f (r, θ )

on C+
pτ . Radon data for reconstruction can be generated by rotating rigidly the pair of points

S and D around the center O for all allowable relative angular separation 2γ0 < π . In this
schematic presentation, in which only the essential idea is stressed, Compton kinematic factor,
attenuation and photometric dispersion of photon propagation have not been taken into account
in the reconstruction of f (r, θ ) by formula (51). These points will be discussed in the next
subsection.

4.3. Inclusion of Compton kinematic factor, attenuation and photometric effects

In general, the Compton kinematic factor, which includes the Compton differential cross
section, is solely a function of ω, or of τ via tan γ0 = √

τ 2 − 1; therefore, its inclusion as a
factor P(τ ) would not alter the invertibility of the Radon transform. Radiation flux density
emitted by a point source is weakened, after traveling a distance r by a factor 1/rn with
n = 1, 2 in two- and three-dimensional space. Accounting for this effect means inserting a
factor (SM × MD)−n in the definition of the Radon transform (29). Fortunately this product
can be exactly evaluated and reexpressed as a product of a function of r and a function of τ .
The distances SM and MD in the triangles OSM and OMD in figure 4 are given by

SM2 = p2 + r2 − 2pr cos (γ0 − γ ) and MD2 = p2 + r2 − 2pr cos (γ0 + γ ). (61)

Using cos γ0 = τ−1 and equation (28), we can put their product under the form

SM2 MD2 =
(

1 − 1

τ 2

)
(r2 − p2)2 = sin2 γ0 (r2 − p2)2. (62)

Equation (29) now reads

f̂ (τ, φ) = P(τ )

∫ γ0

−γ0

dγ

√
τ 2 − 1

τ 2 cos2 γ − 1

[
r f (r, γ + φ)

(1 − 1
τ 2 )n/2(p2 − r2)n

]
r=p

(√
τ 2 cos2 γ−1+τ cos γ

) .

(63)

A quick check shows that the invertibility of the transform via circular harmonic components
remains valid. However, the inclusion of a constant linear attenuation coefficient will not work
in this scheme as already noted in the case of [16].

4.4. Advantages in applications

The present modality based on arcs of the circle C+
pτ , is well adapted for imaging objects

outside and far away from the circle �p. The scanning φ-rotation may then be conveniently
replaced by a back-and-forth sweep motion (radar antenna type of motion) inside of an angular
sector. It generates a two-dimensional image of the hidden part of an object slice. A true three-
dimensional image can be obtained next by axially superposing these two-dimensional images.

This is particularly interesting when the object is far away from the apparatus. Such a
situation may arise in many instances: medical imaging, non-destructive industrial testing,
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geological prospection, etc. One important instance of application is the image reconstruction
of objects situated on one side of a semi-infinite medium such as objects immersed below the
sea level or objects buried under the earth surface. In particular, this modality may provide an
interesting way for detection and imaging land (or sea) mines in a territory defense context
and therefore it positions itself as a competitor to some other gamma-ray imaging processes
advocated in recent years, e.g. see [36].

Now for objects of small sizes, one may use the modality based on arcs of the circle C−
pτ .

The object may be placed within the circle �p. The rotational motion of this pair for each
opening angle γ0 is easily realized in this case, as shown in figure 5. The pair source-detector
now has a different lead shield arrangement, which in fact can be a circular belt radiation
shielding around �p and is probably the most adequate protection against stray radiation
during operation. Finally, p remains an adjustable parameter which may be used to fit the size
of scanned objects.

5. Conclusion and perspectives

In this paper, we have described a way of finding curves in R
2 on which Radon transforms

can be defined and inverted analytically through circular harmonic component decomposition.
Such curves are called generalized Cormack’s curves. They are solutions of a nonlinear first-
order differential equation and fall into three groups corresponding to the value and the sign of
a free parameter C. Two groups of solutions are known from previous works [2, 16]. The third
one is new and its simplest representative is the class of circles orthogonal to a fixed circle
centered at the origin. We have explicitly obtained the analytic inversion formula for this last
case. This result suggests a new way for doing CST, which might well be adapted for large
objects hidden below the surface of a large medium as well as for smaller objects in a finite
geometry. Thus, such modality could find applications in numerous contexts.

As natural extensions of this work, topics of future investigations could be for example
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• the inversion of Radon transforms on σ -descendants of the arcs of the circle C±
pτ , in particular

when σ = 1/m with m = 2, 3, . . .. It is expected that relations to orthogonal function
expansions arise as found in [3, 30],

• the search for manifolds of co-dimension 1 in R
n, having a rotational symmetry axis going

through the coordinate origin, on which Radon transforms can be defined and inverted
exactly via harmonic component decomposition of functions. It is hoped that new innovating
imaging principles could come up in R

3.
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