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Mai K. Nguyenb ID and Laurent Dumasc ID

a LPTM (UMR 8089), CY Cergy Paris Université, CNRS, Cergy-Pontoise, France
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Abstract

In this paper, we address an alternative formulation for the exact inverse formula of the Radon transform on circle

arcs arising in a modality of Compton Scattering Tomography in translational geometry proposed by Webber and Miller

(Inverse Problems (36)2, 025007, 2020). The original study proposes a first method of reconstruction, using the theory

of Volterra integral equations. The numerical realization of such a type of inverse formula may exhibit some difficulties,

mainly due to stability issues. Here, we provide a suitable formulation for exact inversion that can be straightforwardly

implemented in the Fourier domain. Simulations are carried out to illustrate the efficiency of the proposed reconstruction

algorithm.

Keywords: Analytic inversion, Compton Scattering Tomography, Image formation, Image reconstruction,

Radon transform on double circle arcs

1 Introduction

Compton Scattering Tomography (CST) is an imaging technique whose objective is to exploit wisely Compton

scattered photons by the object to scan in order to reconstruct its electron density map. Since the early

proposition of this type of imaging by Lale [1], Clarke [2] and Farmer [3], studies about CST systems proved

already promising results in medical imaging, for instance for the identification of lung tumours [4, 5], but

also for earthquake engineering [6], cultural heritage imaging [7, 8], landmine detection [9] and agricultural

measurements [10]. In fact, CST has made it possible to widen the fields of application for tomography to the

imaging of one-sided large objects, because, in some configurations, sources and detectors can be placed at the

same side of the object.

The proposition of CST systems is strongly related to the study of the associated integral transform, which

models data acquisition [11, 12]. These integral transforms are generalizations of the classical Radon transform

on lines studied by Radon [13] and Cormack [14]. While, in two-dimensional CST, manifolds are on circle arcs

or double circle arcs, in three dimensions, data is acquired on toric surfaces. These circular geometries for

the considered manifolds originate from the Compton effect. This physical phenomenon occurs when a photon

emitted by the source with energy E0 collides with an electron as it passes through matter. This photon is

scattered, and deviated by an angle ω from its original direction. The photon looses also a part of its energy.

The Compton formula gives us the one-to-one correspondence between the energy of scattered photons E(ω)

and the related scattering angle ω

E(ω) =
E0

1 + E0

mc2 (1− cos(ω))
. (1.1)

m is the electron mass and c the speed of light. This relation ensures also that scattering sites of photons with

identical energy E(ω) are located on a circle arc labelled by the scattering angle ω. Figure 1 illustrates the

general functioning principle of a CST system.
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Figure 1: General functioning principle of a CST system. Photons are emitted by source S, interact at sites M , and are

recorded at site D. When a photon is detected carrying an energy E(ω1) (resp. E(ω2)), the possible interaction sites lie on

the upper (resp. lower) circle arc which subtends the angle (π − ω1) (resp. (π − ω2)).

Several issues around the study of these generalized Radon transforms are then of interest, such as existence

and uniqueness of the solution, its stability or the range conditions. The main important problem remains the

reconstruction of the image, mostly coming from the proposition of analytical inverse formulas.

(a) (b) (c)

(d) (e) (f)

Figure 2: Previous proposed CST modalities (a, b, c, d, e, f). (a): Fixed source and detectors placed on a line. (b): Rotating

pair source-detector diametrically opposed. (c): Rotating pair source detector. (d): Fixed source and detectors placed on a

ring. (e): Detector rotating around a fixed source. (f) Source-detector translating simultaneously along two parallel lines. In

all figures: The source S is represented by a red point. The detector(s) D is (are) represented by blue point(s). The M , Mi

or M ′i in black, are running points and examples of scattering site. An example of trajectory for a photon whose scattering

site is M is shown in purple. The corresponding scattering angle is denoted ω. The object to scan is represented in grey.

The red continuous curves are the examples of scanning circles arcs. For (c), (e) and (f), the dashed circles (resp. lines)

represents the circular (resp. linear) paths on which move the sensors.

In that way, the first studied two-dimensional CST system was made of a fixed line of detectors containing

a fixed source [15]. See Figure 2a. The associated scanning circle arcs consist of a family of semicircles with a

common fixed end point (the point source) and another extremity (the considered detector) on the line. Then,

circular geometries for CST have been proposed, the first one considers a pair source - detector diametrically

opposed in rotation around the object [16, 17, 18] and data acquisition is modelled by a Radon transform on

circle arcs having a fixed source-detector chord length. See Figure 2b. The second consists also of a pair source -
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detector moving on a circle, but the distance between the two is no longer constant and depends on the scattering

angle [19] (Fig. 2c). With this modality, data measurement is performed on a family of circles orthogonal to

the fixed circular path of the pair source - detector. In a third modality (see Fig. 2d), on the contrary, it

was considered a set of detectors placed on a ring containing the source, thus obtaining a completely fixed

CST modality [20, 21, 22, 23]. The corresponding Radon transform measures the contribution of the photons

scattered at the points located on circles arcs having a common extremity (the point source) and another (the

considered detector) on the detector ring. Some configurations, mentioned above, employ collimators to split up

photons coming from different circle arcs. Geometries without collimation have also been studied. Consequently,

for a given position of detector, the acquisition is performed on a family of double circle arcs and the amount of

registered data is potentially doubled. This feature may also reduce the acquisition time and finally radiation

exposition in comparison with a similar geometry with collimation. Among the proposed CST systems without

collimation, one supposes a fixed source and a detector rotating around this source [24]. See Figure 2e. The

other one, proposed in [25], is made of a source and a detector which translate along a line (Fig. 2f).

The direct reconstruction of volumes is also of interest with the proposition of three-dimensional CST systems.

These modalities use uncollimated sources and detectors, and data acquisition is performed on toric surfaces.

In many cases, these 3D modalities correspond to extensions of 2D systems. Circular geometries become thus

spherical or cylindrical [26, 27, 28] and linear geometries become planar [25].

Here, we are interested in the two-dimensional modality proposed in [25]. The purpose of this article is to

develop an alternative formulation suitable for the development of a faster and efficient reconstruction algorithm.

The associated reconstruction algorithm will use only classical tools such as Fast Fourier Transform (FFT)

algorithm.

The paper is outlined as follows. Section 2 recalls the general setup of the system and the model for data

acquisition for the modality. Section 3 introduces the main result of the paper, that is, the alternative formulation

for the inverse Radon transform on double circle arcs. Section 4 will give the discrete formulation of the forward

operator, as well as the proposed strategy to reconstruct the object under study. Section 5 discusses the obtained

simulation results with a study of the influence of some parameters on reconstruction quality.

2 Setup and measurement model of the CST system under study

2.1 Setup

The system under study is made of a source, assumed to be monochromatic, and a detector separated by a fixed

distance from each other. The source and the detector move respectively on a horizontal line of equation z = 3

and z = 1. The horizontal position of the pair source-detector is labelled by x0 (see Figure 3). Alternatively,

this system may be sketched with fixed lines of sources and detectors that will be used in pair. The object,

placed below the detector path, is scanned transversely. No collimation is used at the detector, hence the

acquisition is performed on a family of double circle arcs (called toric sections in the original publication [25])1.

We parameterize these circle arcs and define the corresponding Radon transform in the next paragraph.

2.2 Modelling of data acquisition using the CST system

Given a scattering angle ω, data acquisition is performed on a family of double circle arcs of radius r where

r = 1/ sin(π − ω) (or, equivalently, ω = π − arcsin (1/r)). For parameterization, these double circle arcs are

obtained with the union of four half arcs denoted Sj(x0, r), j ∈ {1, 2, 3, 4} of respective equation

x1 = x0 +
√
r2 − 1 +

√
r2 − (z − 2)2, x2 = x0 +

√
r2 − 1−

√
r2 − (z − 2)2,

x3 = x0 −
√
r2 − 1 +

√
r2 − (z − 2)2, x4 = x0 −

√
r2 − 1−

√
r2 − (z − 2)2

and z ∈]2− r, 1[. See Figure 3.

The Radon transform which mathematically models data measurement with this CST system is then defined

as follows :

1We position ourselves in the same frame of study as the original article, with the same working assumptions. Thus, first order

Compton scattering is the only source of attenuation for radiation and data acquisition is performed with a pair source detector,

assumed to be point-like. These conditions are common in the literature [16, 26, 29, 30, 31, 20, 24] and have been already discussed

in [15, 19, 26, 24].
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Figure 3: Setup and parameterization of the CST modality proposed in [25]. The source S and the detector are respectively

represented by a red and a blue point. To make the difference between the four half-arcs, S1, S3 and S2, S4 are respectively

depicted in red and green. Ω1,2,3,4 denote the centres of the circles supporting the half-arcs S1,2,3,4. The point M is an

example of a scattering site.

Definition 1. Let f be an unknown function, non-negative, continuous and compactly supported in the half

plane z < 1. The Radon transform on double circle arcs RD maps f into the set of its integrals over the family

of double circle arcs as

RDf(x0, r) =

∫
⋃4
j=1 Sj(x0,r)

f(x, y)ds. (2.1)

where ds refers to the elementary arc length measure on the considered double circle arc. Then, after computation

of the arc length measure, we have the explicit reformulation for RD [25, Proposition 3.1] :

RDf(x0, r) =

∫ r

1

1√
1−

(
z
r

)2
 2∑
j=1

f1

(√
r2 − 1 + (−1)jr

√
1−

(z
r

)2
+ x0, z

)
+

f1

(
−
√
r2 − 1 + (−1)jr

√
1−

(z
r

)2
+ x0, z

))
dz, (2.2)

where f1(x, z) = f(x, 2− z).

In the original study of this modality, the invertibility of the corresponding Radon transform as well as

its analytical inversion formula has been established. The invertibility was proven using the theory of integral

equations and resulted in a Volterra integral equation with a weakly singular kernel in the Fourier domain. This

study also leads to a formulation for inversion formula as an integral transformation with a kernel computed

iteratively. The numerical calculation of this kind of kernel may require high computational time and/or memory.

Furthermore, as mentioned in the Remark 3.4 of the original paper, the proposed approach by Webber is severely

ill-posed, particularly in terms of stability. Implementing such a method can lead to large instabilities, even

when these are due to small changes in the data.

3 An alternative formulation for the inversion formula of the Radon

transform on double circle arcs

In this section, we state the main result of the paper, a different formulation for the associated inversion formula,

that will be easier to implement numerically. Let us introduce before some notations that will be used in the
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proofs.

3.1 Notations

It is useful to define the following transform pairs.

Definition 2 (Fourier transform). Let f be a compactly supported function in Rn. The n-dimensional Fourier

transform of f , denoted f̂ , is given by

f̂(ξ) =

∫
Rn
f(x)e−ix·ξdx (3.1)

with ξ ∈ Rn. The inverse Fourier transform is

f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ. (3.2)

Definition 3 (Fourier cosine transform [32]). Let f be a compactly supported function in R+. The Fourier

cosine transform of f , denoted f̂ c, is given by

f̂ c(ξ) =

√
2

π

∫ ∞
0

f(x) cos(xξ)dx (3.3)

with ξ ∈ R. The inverse Fourier cosine transform is

f(ξ) =

√
2

π

∫ ∞
0

f̂ c(ξ) cos(xξ)dξ. (3.4)

We define also the Hankel transform.

Definition 4 (Hankel transform [33]). Let f be a compactly supported function in R+. The zero-order Hankel

transform of f is defined as

H0f(η) =

∫ ∞
0

f(r)J0(ηr)rdr (3.5)

where J0 stands for the Bessel function of the first kind of order 0.

Finally, we recall the integral representation of the Bessel function J0:

J0(x) =
1

2π

∫ π

−π
eix sin θdθ. (3.6)

3.2 Inversion formula

Proposition 1. Denoting Gf(x0, r) the operator whose Fourier transform according to the first variable is

Ĝf(ξ, r) =
R̂Df(ξ, r)

2r cos (ξ
√
r2 − 1)

, (3.7)

if r > 1 and 0 when r ∈ [0, 1], the unknown function f is completely recovered from Ĝf as follows

f(x, z) =
1

4π

∫ ∞
−∞

eixξ
∫ ∞
0

H0Ĝf(ξ,
√
ξ2 + σ2) cos (σ(2− z))σdσdξ. (3.8)

Proof. With the change of variables s = z/r in (2.2) and taking the Fourier transform of RD respectively to

variable x0, one gets

R̂Df(ξ, r) =

∫ ∞
−∞

dx0

∫ 1

1/r

ds
re−ix0ξ

√
1− s2

· 2∑
j=1

f1

(√
r2 − 1 + (−1)jr

√
1− s2 + x0, rs

)
+ f1

(
−
√
r2 − 1 + (−1)jr

√
1− s2 + x0, rs

) . (3.9)

With the second change of variables x = x0 ±
√
r2 − 1 + (−1)jr

√
1− s2, one gets
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R̂Df(ξ, r) = 4

∫ 1

1/r

ds
r√

1− s2
f̂1(ξ, rs) cos (ξ

√
r2 − 1) cos (ξr

√
1− s2) (3.10)

where f̂1 stands for the one-dimensional Fourier transform relatively to the variable x.

Using relation (3.7), multiplying both sides of (3.10) by r · J0(ηr) with η ≥ 1 and integrating with respect

to variable r, for r > 1, one recognizes the Hankel transform of Ĝf , denoted H0Ĝf

H0Ĝf(ξ, η) = 2

∫ ∞
1

dr

∫ 1

1/r

ds
r√

1− s2
f̂1(ξ, rs) cos (ξr

√
1− s2)J0(ηr). (3.11)

Then, with the double substitution (r =
√
z2 + b2, s = z/

√
z2 + b2), one gets

H0Ĝf(ξ, η) = 2

∫ ∞
1

dzf̂1(ξ, z)

∫ ∞
0

db cos (ξb)J0(η
√
z2 + b2). (3.12)

The result of the b-integral is given in the table [34, p. 55, eq. (35)]. Finally, one gets for 0 < ξ < η

H0Ĝf(ξ, η) = 2

∫ ∞
1

dzf̂1(ξ, z)
1√

η2 − ξ2
cos (z

√
η2 − ξ2) (3.13)

and H0Ĝf(ξ, η) = 0 if η ≤ ξ.
Let 0 < ξ < η. Then with the fact f1(x, z) = 0 for z ∈ [0, 1],∫ ∞

0

dzf̂1(ξ, z) cos (z
√
η2 − ξ2) =

√
η2 − ξ2

2
H0Ĝf(ξ, η). (3.14)

The left-hand side is the Fourier cosine transform of f̂1(ξ, z) according the variable z. We can then extract

f̂1(ξ, z), applying the inverse cosine transform to (3.14)

f̂1(ξ, z) =
1

2

∫ ∞
0

dσH0Ĝf(ξ,
√
ξ2 + σ2) cos (zσ)σ (3.15)

where σ =
√
η2 − ξ2. The final equation is obtained going back to variable f , and applying the inverse Fourier

transform.

Remark 1. The projections Ĝf (3.7) contain zeros in the denominator, since the cosine function vanishes when

ξ
√
r2 − 1 = 2kπ ± π

2 , k ∈ Z. From (3.11) to the end of the demonstration, it was supposed that r is different

from

√
1 +

(
π
2ξ (2k + 1)

)
. Furthermore, this may be a source of instability in the simulations. The addition of

a regularization parameter for simulations is discussed in Section 4.2 to prevent this.

Remark 2. Another reconstruction algorithm is also possible from the projections of Gf . This process is achieved

performing geometric inversion. Geometric inversion is a mapping converting a point X into a point X̃ such

that X̃XT = q2, where q ∈ R∗+ is a constant value. The mapped point X̃ has the same direction as the original

point X but a distance of q2/||X|| to the origin of the considered coordinate system. As an example, geometric

inversion converts circles passing through the origin into straight lines. In the present case, the Radon transform

on double circle arcs is converted into a Radon transform on an apparent family of circle arcs of similar geometry

as the one studied in [19, 35]. Although the inverse problem can be alternatively solved using geometric inversion,

the approach we employ here is more straightforward.

4 Numerical formulations for the forward and inverse transform

4.1 Image formation

Let NSD be the number of positions for the pair source - detector and Nr the number of double scanning

circle arcs per sensor position. We denote x0,k, k ∈ {1, ..., NSD} and rl, l ∈ {1, ..., Nr} the discrete variables

corresponding respectively to x0 and r. The matrix of projection data RDf(x0,k, rl) is then computed, writing

(2.2) under a discrete form, with the change of variables z = r cos θ
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RDf(x0,k, rl) = rl ∆θ ·∑
θ∈
[
arcsin

(
1
rl

)
,π2

]
 2∑
j=1

f1(x0,k +
√
r2l − 1 + (−1)jrl cos θ, rl sin θ) + f1(x0,k −

√
r2l − 1− (−1)jrl cos θ, rl sin θ)

 ,

(4.1)

where ∆θ is the sampling angular distance of θ. The above Cartesian parameterization allows having a

constant distance between running points of the considered scanning circle arcs during simulations.

4.2 Image reconstruction

For image reconstruction, we need to compute the projections Gf in the Fourier domain according to (3.7). This

expression contains zeros in the denominator. This may induce instabilities on reconstruction. For simulations,

we add a small regularization parameter denoted ε

Ĝf(ξ, r) =
R̂Df(ξ, r)

2r

cos (ξ
√
r2 − 1)

ε2 + cos (ξ
√
r2 − 1)

2 . (4.2)

In terms of computational cost, the most demanding step in the implementation of (3.8) is the calculation of

H0Ĝf . The idea is to establish a relation between the above operator with the Fourier transform of G‡f , defined

as follows

G‡f(x, z) =

∫ ∞
−∞
Gf(x0,

√
(x− x0)2 + z2) dx0. (4.3)

We have now the following proposition.

Proposition 2. Let (σ, ξ) ∈ [0,∞[×R. H0Ĝf(ξ,
√
ξ2 + σ2) is related with the two-dimensional Fourier trans-

form of the operator G‡ as

H0Ĝf(ξ,
√
ξ2 + σ2) = 2πĜ‡f(ξ, σ). (4.4)

Consequently, from the inversion formula (3.8), it follows in the Fourier domain

f̂1(ξ, σ) = 2π2|σ|Ĝ‡f(ξ, σ). (4.5)

where f̂1 is the two-dimensional Fourier transform of f1.

Proof. From the definitions of Fourier and Hankel transforms and with the integral representation of the Bessel

function, one gets

H0Ĝf(ξ,
√
ξ2 + σ2) =

1

2π

∫ ∞
−∞

dx0

∫ ∞
0

dr Gf(x0, r)

(∫ π

−π
eir
√
ξ2+σ2 sin(θ)dθ

)
e−iξx0 . (4.6)

There is an angle φ(σ, ξ) ∈ [0, 2π[ which corresponds to the angular coordinate of the point (σ, ξ), such that

σ =
√
ξ2 + σ2 cos (φ(σ, ξ)) and ξ =

√
ξ2 + σ2 sin (φ(σ, ξ)). Using the property of periodicity of trigonometric

functions, it follows that

H0Ĝf(ξ,
√
ξ2 + σ2) =

1

2π

∫ ∞
−∞

dx0

∫ ∞
0

dr Gf(x0, r)

(∫ π

−π
eirξ sin θ+σ cos θdθ

)
e−iξx0 . (4.7)

Changing variables x = r cos θ and z = r sin θ,

H0Ĝf(ξ,
√
ξ2 + σ2) =

1

2π

∫
R2

dxdz

(∫ ∞
−∞

dx0Gf(x0,
√

(x− x0)2 + z2)

)
e−i(xξ+zσ) (4.8)

The right-hand side of (4.8) is the two-dimensional Fourier transform of G‡, weighted by 2π (4.4). We are

now able to reformulate the inversion formula (3.15) as

f̂1(ξ, z) = 2π

∫ ∞
−∞

dσĜ‡f(ξ, σ)eizσ|σ|. (4.9)

Taking the Fourier transform according to variable z to the above equation (4.9) leads to (4.5).

This leads to the reconstruction algorithm summed up in Algorithm 1.
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Algorithm 1: Reconstruction of object f

Data: RDf(x0, r), projections on double circular arcs of function f

Result: f(x, y)

1 Compute the one-dimensional Fourier transform of RDf(x0, r) using FFT relative to the first variable ;

2 Compute Ĝf(ξ, r) according to (4.2) and perform the inverse FFT to recover Gf(x0, r);

3 For each x0, interpolate the obtained data and sum on all values of x0 to have the back-projected data G‡f(x, z);

4 Perform the 2D FFT of G‡f(x, z) and weight by 2π2|σ|;
5 Compute the inverse FFT of the result to recover f ;

5 Simulations results

The original object used for simulations is Derenzo phantom, an object made of multiple circles of different sizes.

The circles in the object also allow the study of the performance of the algorithm in front of different contrasts

and spatial resolution, as well as its ability to reconstruct features locally tangent to lines of any slope. The unit

length used here is the pixel. We suppose thus that the distance between the source and the detector paths of

the modality is two pixels. The size of the object is N ×N = 256× 256 pixels in all simulations. Furthermore,

given the linear geometry of this modality, there is no loss of generality to consider the object centred relatively

to the z-axis.

5.1 Data acquisition

Data measurement is calculated according to (4.1). Figure 4 shows an example of data obtained for Derenzo

phantom.

(a) (b)

Figure 4: (a) Original object: Derenzo phantom. (b) Corresponding acquired data for NSD = 2048 and Nr = 1024.

A distance of one pixel is left between the upper part of the image and the detector path (δ = 1, see 5.2.1).

5.2 Influence of some parameters on reconstruction quality

In the following paragraphs, we study the influence of the other general parameters of the system such as the

position of the object, the number of required positions for sensors or the number of scanning circle arcs. In

addition to a visual comparison of the reconstruction quality, we propose here to measure quantitatively the

error rate between the original object f0 and the reconstruction f with the Normalized Mean Squared Error

(NMSE) = ||f − f0||22/N2 where ||.||2 refers to the 2-norm.

The regularization parameter ε, which has to be small, was arbitrarily set to 0.01.

5.2.1 Position of the object relative to the detector path

We analysed here the influence of the position of the object on reconstruction quality. Firstly, the number of

positions NSD for the pair source - detector and the number of scanning circles per position Nr was chosen

to largely satisfy the well-known condition [33] NSD × Nr ≥ N2 and are set arbitrarily to NSD = 1024 and

Nr = 1024. A convenient choice for these parameters will be discussed later. We performed various acquisition,
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modifying the gap δ between the detector path and the upper part of the object (see Figure 3). Consequently,

the object is in the square of Cartesian coordinates
(
x ∈

[
−N2 + 1, N2

]
; z ∈ [−N − δ,−δ + 1

]
). Figure 5 shows

the reconstruction results for δ = 1, 26 and 51 pixels which correspond respectively a position for the object

in the respective domains [−N − 1, 0], [−N − 26,−25] and [−N − 51,−50] along the z-axis. The difference

between the three reconstructions is on the top of the object. If the object is close to the line of movement of

the detector, then this part is less well reconstructed. Indeed, this distance between the object and the detector

path allows having arcs of circle tangent horizontally to this part of the object. An offset of δ = 51 seems to be

a good trade-off between quality of reconstruction and the applicability of such a measure in practical use. For

the rest of the simulations, δ is set to 51.

(a) Reconstruction for δ = 1

NMSE = 0.0112

(b) Reconstruction for δ = 26

NMSE = 0.0074

(c) Reconstruction for δ = 51

NMSE = 0.0061

Figure 5: Reconstruction results of the Derenzo phantom 4a for δ = 1 (a), δ = 26 (b) and δ = 51 (c) pixel(s).

5.2.2 Number of necessary positions for the pair source-detector

We studied then the number of different positions required for a good quality of reconstruction. The influence

of two running parameters is analysed, first, the farthest position x0,max from the object for the source-detector

pair (that is an array of length [−x0,max, x0,max] for the source and detector paths) and the distance ∆x0 between

two adjacent positions of the pair.

Figures 6a, 6b and 6c show the reconstruction results when the farthest position from the object to the pair

source detector is respectively 2N, 3N and 4N with a common ∆x0
set to 1. Reconstruction from a domain

[−x0,max, x0,max] = [−2N, 2N ] appears to be blurred with strong artefacts in the upper parts of the image. For

x0,max = 3N and 4N , reconstruction quality seems to be visually equivalent, even if the NMSE for x0,max = 4N

is higher. This may be due to numerical approximations. For the rest of the simulation, x0,max is set to 3N .

The influence of the distance ∆x0
between two adjacent positions of the pair is now evaluated. Figures 6d,

6e and 6f show the result for ∆x0
= 2, 1 and 0.5 pixels. This represents a respective amount of 0.5, 1 and 2

detectors per unit length. In Figure 6d (∆x0 = 2), we can see streaks suggesting a lack of data for reconstructing

the object. On the contrary, the doubling of the number of detectors between Fig. 6e and Fig. 6f does not bring

a better quality of reconstruction. Consequently, the use of one detector per unit length seems to be a good

trade-off, and the value will remain constant in the rest of the paper.

5.2.3 Number of scanning circles per position of the pair source-detector

The number of scanning circles necessary for reconstruction is now under study. In the same way, two parameters

are of interest, that is, the maximum radius rmax of the scanning double circle arcs to be taken and the

discretization step ∆r that have to be chosen. We first evaluate the consequences of the value of rmax with three

examples on Fig. 7a, 7b and 7c where rmax is set respectively to 2N, 3N and 4N and ∆r = 1. For rmax = 2N ,

the reconstruction suggests a lack of data in front of the obtained results for rmax = 3N and rmax = 4N . Notice

the higher NMSE for rmax = 4N , probably due to numerical approximations.

We were finally looking for the appropriate discretization step for r, setting ∆r to 1, 2 and 4. Reconstruction

results are shown respectively in Fig. 7d, 7e and 7f. Reconstructions with a large discretization step exhibit

blur.
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(a) Reconstruction for x0,max =

2N . NMSE = 0.0084

(b) Reconstruction for x0,max =

3N . NMSE = 0.0049

(c) Reconstruction for x0,max =

4N . NMSE = 0.0061

(d) Reconstruction for 0.5 detec-

tors per unit length. NMSE =

0.0046

(e) Reconstruction for 1 detec-

tors per unit length. NMSE =

0.0049

(f) Reconstruction for 2 detectors

per unit length. NMSE = 0.0049

Figure 6: Evaluation of the number of source-detector positions on reconstruction quality. First row: Reconstruc-

tion results of the Derenzo phantom 4a for x0,max = 2N 6a, 3N 6b and 4N 6c where ∆x0 = 1. Second row:

Reconstruction results for 0.5 6d, 1 6e and 0.5 6f detector per unit length and x0,max = 3N remains constant.

5.2.4 Discussions

The above simulations results show some interesting issues for the CST modality and the reconstruction quality

that can be expected with such a system. First, this system is able to scan objects whose depth is largely

oversized relative to the source-detector distance. However, this seems to be counterbalanced by the need

for a consequent length for the source and detector linear paths, since sufficient reconstruction results appear

for source and detector paths of length size six times greater than the object size. The necessary number of

scanning circle arcs is also very important since, if we relate the values of rmax with the scattering angles, the

reconstruction quality is largely improved when rmax is high whereas the angular distance between two values

of rmax is very small. Considering a larger distance between the source and the detector paths for the system

may reduce partially the required amount of projection data.

Moreover, the geometry offers a sufficient reconstruction quality for every tangent with arbitrary slopes.

However, one can notice that vertical slopes are slightly less well reconstructed than the other ones. This can

be seen if we pay carefully attention to the left and right sides of the reconstruction. This may be problematic if

the object to scan is essentially made of vertical features. One way to avoid this is to perform additional scans

by rotating the object, if possible.

Some artefacts that look like shadows around the circles which compose the object remains clearly visible.

The issue of artefacts in CST has already been addressed in different manners, for instance in [36], where

microlocal analysis was employed to alleviate artefacts in reconstructions from limited data. Moreover, in [37], a

penalized iterative algorithm was developed for a mixed modality. Regarding our approach, it can be combined

in a pipeline with post-processing stages based on machine learning, as we did in [38] for limited data issues in

classical computed tomography. Some work is on the way.
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(a) Reconstruction for rmax =

2N . NMSE = 0.0058

(b) Reconstruction for rmax =

3N . NMSE = 0.0040

(c) Reconstruction for rmax =

4N . NMSE = 0.0049

(d) Reconstruction for ∆r = 1.

NMSE = 0.0040

(e) Reconstruction for ∆r = 2.

NMSE = 0.0043

(f) Reconstruction for ∆r = 4.

NMSE = 0.0043

Figure 7: Evaluation of the number of scanning circles on reconstruction quality. First row: Reconstruction results

of the Derenzo phantom 4a for rmax = 2N 7a, 3N 7b and 4N 7c where ∆r = 1. Second row: Reconstruction

results for ∆r = 1 7d, 2 7e and 4 7f detector per unit length and rmax = 3N remains constant.

6 Concluding remarks

In this article, we proposed a new reconstruction algorithm for a recently proposed CST modality with trans-

lational geometry. The algorithm can be numerically implemented efficiently and reconstructions exhibit good

quality. A quantitative study of the required data has also been carried out. This study proved the ability for

such a CST system to reconstruct larger objects than the system itself. This advantage is moderated by the fact

that it is necessary to have an important amount of source-detector positions, which can make the acquisition

time longer. An interesting issue of this work concerns a reconstruction algorithm for the three-dimensional

extension of this system with planar paths for the source and the detector.
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[13] J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Akad.
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