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Abstract. The judicious use of Compton scattered radiation continues to be a relevant challenge
for the future of tomographic imaging. In this context, a new modality of Compton scattering
tomography has been recently proposed. This new system has the advantage of being fixed, with
a source and detectors placed on a ring passing through the source. The objective of this paper is
to explore new possibilities for this new modality: scanning both small and large objects via
a double scanning configuration. In fact, when an object under study is small and can be placed
inside the detector ring, its scanning will be performed by the interior configuration. Otherwise,
a large object placed outside the system will be scanned by the exterior configuration. The
modeling of data acquisition of these two scanning modes leads to a new Radon transform
on circular arcs (CirArcRT), established for the first time. Image reconstruction requires the
inversion of CirArcRT, which is obtained via geometric inversion (GI). In fact, GI allows
converting the circular arcs into corresponding half-lines, and consequently, the CirArcRT into
a new Radon transform on half-lines, whose inversion is established. Numerical simulations are
carried out to demonstrate the feasibility of the new modality. The ability for the same system
to scan both small and large objects enlarges the fields of applications for tomography from
biomedical imaging to nondestructive testing in industry as well as cultural heritage objects
imaging. © 2020 SPIE and IS&T [DOI: 10.1117/1.JEI.29.1.013005]
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1 Introduction

The possibility to probe matter and see (invisible) hidden structures becomes a reality with
various imaging techniques, especially with ionizing radiation imaging, thanks to its ability of
deep penetration into matter. This explains why the latter is widely used in nuclear medicine,
nondestructive evaluation in industry or security surveillance, etc.

Computed tomography (CT) falls within the conventionally used imaging techniques. CT
exploits transmitted radiation, attenuated by the object under study. Data acquisition and image
reconstruction with this technique are modeled, respectively, by the forward and inverse Radon
transform (RT) on straight lines.1,2 CT uses only primary (that is, not deviated) radiation for
image reconstruction. As a consequence, scattered radiation is considered as noise that degrades
image quality (causing blurs, loss of image contrast, false detection, etc.). The solution for
CT is the use of collimators in order to eliminate as much as possible the scattered photons.
This reduces drastically the acquired data (one photon over ten thousands emitted photons
arrives at detector due to the presence of collimators3).
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1.1 Emergence, Functioning Principle, and Advantages of
Compton Scattering Tomography

Over the past century, many studies prove that scattered radiation contains useful information
about the structures of an object, sufficient information for image reconstruction. Moreover,
in some practical cases where it is impossible to rotate the couple source–detector (one-sided
massive objects like walls, for example), conventional CT cannot be used. Hence, the idea to
wisely use the information from Compton scattered radiation for image reconstruction came up,
with the proposition of modalities of Compton scattering tomography (CST). CST modalities
allow the access to a new characteristic of the object namely the density of electrons (scattering
sites in the object).

The Compton formula, is the key of the functioning principle of CST modalities, giving
a bijection between energy EðωÞ and scattering angle ω:

EQ-TARGET;temp:intralink-;e001;116;584EðωÞ ¼ E0

1þ E0

mc2 ½1 − cosðωÞ� ; (1)

where E0 is the energy of the emitted ray and mc2 is the energy of an electron at rest. Moreover,
this one-to-one correspondence means also that scattered photons at EðωÞ have their scattering
sites on a circular arc. This circular arc passes through the source and the detector, subtending the
angle ðπ − ωÞ. Figure 1 shows examples of scattered photons paths for two different scattering
angles ω1 and ω2, given a source S and a detector D. The circular arcs AðS;D;ω1Þ and
AðS;D;ω2Þ are loci of the possible scattering sites, respectively, for ω1 and ω2. Finally, Mk

and M 0
k are running points (scattering sites) of these circular arcs.

Advantages of CST systems are numerous for both biomedical and industrial imaging. For
the energy range of x-rays used for biomedical imaging, Compton effect is the predominant
physical interaction in tissues and single scattering represents almost 80% of scattered
radiation.4 The measurement of electronic density is particularly useful for radiation therapy.5

Consequently, CST can offer a higher contrast (compared to the classical tomographic imaging)
useful for scanning small objects, tracking tumors or to observe calcification in the breast5,6 with
no additional radiation dose. Second, for industrial applications, CST systems are convenient
for scanning one-sided objects7 or objects with thin layers. Moreover, Compton scattering is
the predominant attenuation effect for materials having a low atomic number (like carbon and
aluminum) for the energy range of 100 to 200 keV, making the CST imaging particularly inter-
esting for composite materials.7 More notably, the performance of CST has been studied earth-
quake engineering,8 cultural heritage objects imaging,9,10 landmine detection,11 and agricultural
measurements.12

Fig. 1 Functioning principle of CST modalities.
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1.2 Challenges Raised by CST Modalities

CST modalities lead to two different challenges: theoretical and technological. The theoretical one
concerns the modeling of image formation and reconstruction. In fact, image formation with CST
modalities are mathematically modeled by generalizations of the classical RT on families of cir-
cular arcs (corresponding to the locations of the scattering sites), according to the geometry of the
CST system. Finally, image reconstruction requires the inversion of these new generalized RTs and
this step constitutes the main theoretical challenge raised by CST. Furthermore, designing CST
modalities imposes the use of multienergy range detectors having a sufficient energy resolution.

1.3 Review on Previous CST Modalities

In this context, some CST modalities and the associated RT have been introduced in order to
answer to the theoretical challenge of CST systems. The first CST system was proposed by
Norton.13 This modality, composed of a source and a line of detectors passing through the source
has the advantage to be a fixed system and can be used for one-sided massive objects. This
modality leads to a RT on a family of circular arcs with a common fixed extremity (the point
source) and the other extremity point is located on the detector line. An improved version of this
modality with a double scanning14 has been also proposed. For biomedical imaging and small
objects scanning, a CST modality, proposed by Nguyen,15,16 is composed of a pair source–
detector diametrically opposed on a circle. The pair source–detector rotates around its fixed axis
during the imaging process. Data acquisition and image reconstruction of this system is modeled
by a RT on a family of circular arcs having a chord of fixed length.

1.4 Motivation of This Work and Outline of the Paper

The purpose of this paper is to propose and study new potentials of a CST modality named
circular Compton scattering tomography (CCST) recently proposed in Refs. 17–20. Here the
objective is explore the possibility for the same system to scan both small and large objects.
Thus with the same system, both kinds of applications either biomedical imaging or nondestruc-
tive evaluation can be performed, enlarging in this way fields of applications for the same CST
system. In this context, the modeling of these two scanning modes is studied in this paper.

This paper is organized as follows: Sec. 2 presents the new imaging system with its double
scanning configuration and gives working assumptions of this study. Section 3 describes the
modeling of the two possible modes of acquisition, internal scanning and external scanning,
which leads to a RTon a new family of circular arcs never studied before. This new RT is named
CirArcRT in the remainder of the paper. We will see that the CirArcRT can be inverted via
geometrical inversion, leading to a Radon transform on half-lines (HLineRT). Inversion of the
HLineRT is established in Sec. 5. The complete general algorithm for image reconstruction and
simulation results for the two scanning modes are presented in Sec. 6. Perspectives of this work
are proposed in Sec. 7.

2 Presentation of the System Circular Compton Scattering Tomography
and Its Double Scanning Mode

CCST has been recently proposed in Refs. 17–20 with the first objective to merge both advan-
tages of previous ones, that is a fixed system (which avoids a cumbersome mechanical rotation)
while being convenient for biomedical imaging. Before introducing double scanning mode, the
two next paragraphs remind us of on the geometry of CCST and provide working assumptions
for the study of this modality.

2.1 Geometry of the New System and Its Advantages

The proposedmodality is made of a fixed source and a ring of detectors passing through the source.
Without any motion of the system source–detectors, this newmodality can collect a complete set of
projections, useful for image reconstruction. Moreover, designing a system with multiple detectors
like CCST allows making the acquisition time shorter and then reducing the radiation dose.
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2.2 General Assumptions for This Study

This study is part of a mathematical approach to validate from a theoretical point of view the
feasibility of this new system. Consequently, as in other publications about CST systems,13–20

the model is idealized in the sense as follows.

• First-order scattering is dominant in comparison to higher order scattering.
• Compton scattering is the unique physical interaction responsible for radiation attenuation.
• Both scanning modes use idealized source and detectors with a perfect collimation.

Considering these assumptions, modeling data acquisition for CCST leads to a RT on the
family of circular arcs having a common fixed extremity (the point source) and the other end-
point is located on a circle (the ring of detectors). Image reconstruction requires the inversion of
the CirArcRT. This RT and its inversion, proposed here, have never been studied elsewhere and
are completely different from previous works17,18,20 about CCST.

The procedure for inversion uses geometric inversion (GI) to convert the CirArcRT into
a HLineRT, whose inversion is derived from the work about the half-space RT.21

2.3 First Scanning Mode for Small Objects: Internal Scanning

The first scanning mode concerns small objects that can be placed inside the ring of detectors.
Figure 2 shows this internal scanning mode, with the concerned set of circular arcs for
a particular scattering angle ω.

2.4 Second Scanning Mode for Large Objects: External Scanning

The second mode is the external scanning, with the object placed next to the ring of detectors.
This mode can be used for large objects, which cannot be placed inside the ring of detectors.
Figure 3 illustrates the external scanning mode and the set of circular arcs used for image
acquisition is shown for a particular scattering angle ω.

3 Modeling of CCST and Its Two Acquisition Modes of Circular
Compton Scattering Tomography

3.1 Setup of the Fixed System

Considering a source S, placed at the origin of the coordinates system, the polar equation of
the detectors ring (in black in Figs. 2–5) passing through the source is

Fig. 2 Internal scanning of the CCST modality. In red: set of scanning circular arcs for an arbitrary
angle ω.
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EQ-TARGET;temp:intralink-;e002;116;241∀ θ ∈ ½π; 2π½; Cfixed∶ r ¼ P · cos
�
θ þ π

2

�
; (2)

where P is the diameter of the ring.
K detectors Dk, k ∈ f1; : : : ; Kg and the source S are equally spaced on the ring. This point

is achieved defining first the angle subtending the y axis and ODk, denoted θDk;int
for each

detector Dk

EQ-TARGET;temp:intralink-;e003;116;176θDk;int
¼ 2π

k
K þ 1

; (3)

and related with the angular polar coordinates of Dk by

EQ-TARGET;temp:intralink-;e004;116;123θDk
¼ π þ θDk;int

2
: (4)

Fig. 4 Modeling of internal scanning.

Fig. 3 External scanning of the CCST modality. Plain red curves: set of scanning circular arcs for
an arbitrary angle ω. Dotted curves: rest of supported circle not used for data acquisition.
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Hence, polar coordinates ðrDk
; θDk

Þ of detector Dk are

EQ-TARGET;temp:intralink-;e005;116;723DkðrDk
; θDk

Þ with
8<
:

rDk
¼ P cos

�
θDk

þ π
2

�
θDk

¼ π
�
1þ k

Kþ1

�
:

(5)

3.2 Characterizing the Circular Arcs for the Internal Scanning

Given a detector DkðrDk
; θDk

Þ and an arbitrary angle ω ∈�0; π½, the corresponding scanning
circular arc A is characterized in polar coordinates by its diameter ρðDk;ωÞ and the angle
between the x axis and its radius passing through the origin ΦðDk;ωÞ. An example of these
circular arcs ADk;ωðρ;ϕÞ is shown in plain red for internal scanning in Fig. 4.

The family of circular arcs, considered here, has the common endpoint S, the origin of
the coordinate system. Consequently, this family of circular arcs is a subfamily of the family
of circles passing through the origin, with the variable θ going through a limited domain
½θ1ðDk;ωÞ; θ2ðDk;ωÞ� [whereas ½π; 2π½ is the domain for the whole circle supporting the
considered scanning arc]:

EQ-TARGET;temp:intralink-;e006;116;524ADk;ωðρ;ϕÞ∶ r ¼ ρ · cosðθ − ϕÞ; θ ∈ ½θ1ðDk;ωÞ; θ2ðDk;ωÞ�; (6)

where

EQ-TARGET;temp:intralink-;e007;116;480

(
ρðDk;ωÞ ¼ rDk

sinðωÞ
ϕðDk;ωÞ ¼ θDk

þ ω − π
2
;

(7)

and the domain of θ is

EQ-TARGET;temp:intralink-;e008;116;417θ ∈

(
½θDk

; θDk
þ ω� if ϕ ∈ ½0; 3π

2
½

½θDk
þ ω; θDk

þ π� if ϕ ∈ ½3π
2
; 2π½: (8)

3.3 Characterizing the Circular Arcs for the External Scanning

The general parametrization of the system for external scanning is illustrated in Fig. 5.

Fig. 5 Modeling of external scanning.
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The scanning arcs for the external scanning mode derive from the same family of circles
passing through the origin [see Eq. (6)], where ½θ1ðDk;ωÞ; θ2ðDk;ωÞ� describes the complemen-
tary domain of the internal scanning one

EQ-TARGET;temp:intralink-;e009;116;699θ ∈

(
½θDk

þ ω; θDk
þ π� if ϕ ∈ ½0; 3π

2
½

½θDk
; θDk

þ ω� if ϕ ∈ ½3π
2
; 2π½: (9)

4 Corresponding Radon Transform on Circular Arcs

From the previous paragraphs, one can see that modeling data acquisition for either internal or
external scanning differs one to the other only from the domain of θ and consequently leads to the
same RT on circular arcs named CirArcRT. This is why equations of image acquisition and recon-
struction of the CirArcRTwill be established once in this section. In the remainder of this paper, the
family of circular arcs corresponding to internal (resp. external) scanning will be denoted interior
(resp. exterior) circular arcs according to their position relative to the fixed ring of detectors.

4.1 Image Acquisition

In the remainder of this paper, f represents the object to scan and denotes a non-negative,
continuous, and compactly supported unknown function. The CirArcRT of f is

EQ-TARGET;temp:intralink-;e010;116;491RCirArcfðρ;ϕÞ ¼
Z
ADk;ω

ðρ;ϕÞ
fðr; θÞds; (10)

where s being a parameter associated to the circular arc ADk;ωðρ;ϕÞ. Equation (10) is the image
acquisition equation for internal and external scanning.

Another writing for the CirArcRT is

EQ-TARGET;temp:intralink-;e011;116;413RCirArcfðρ;ϕÞ ¼
Z

∞

−∞

Z
θ2

θ1

ρfðr; θÞδ½r − ρ cosðθ − ϕÞ�dr dθ; (11)

where ½θ1; θ2� describes the considered domain of θ either for internal or external scanning case.
Equation (11) of image formation with the use of a delta function kernel shows the difficulty

to inverse stably the CirArcRT in the case of missing data and/or noise.

4.2 Inverting the CirArcRT

Image reconstruction requires the inversion of the CirArcRT. However, the analytic inversion of
the CirArcRT has not been found at present. We will proceed via GI, a planar transformation that
converts circular arcs in half lines. Consequently, this transformation allows us to convert our
circular arc RT in a RT on a family of half-lines never made explicit before, and the inversion of
this new RT is established in the next section.

4.3 Geometric Inversion of the Families of Interior and Exterior Circular Arcs

GI is characterized in polar coordinates by the change of variables:

EQ-TARGET;temp:intralink-;e012;116;191r 0 ¼ q2∕r; (12)

where q is the module of inversion.
Then using Eq. (12) in Eq. (6), one can obtain

EQ-TARGET;temp:intralink-;e013;116;139ρ 0 ¼ r 0 cosðθ − ϕÞ where ρ 0 ¼ q2∕ρ and θ ∈ ½θ1; θ2�: (13)

As our families of interior and exterior circular arcs have the origin as their common extrem-
ity point, this point will be rejected to infinity after GI. Furthermore, the other extremity points,
located before GI on a circle, are now on a straight line. Considering these two points, one can
see that Eq. (13) is an equation of a half line of polar parameters ðρ 0;ϕÞ.
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Another method to characterize the obtained family of half-lines is to proceed schematically
(see Fig. 6). In fact, GI is characterized geometrically by an inversion circle [denoted ΓðS; jqjÞ,
in brown] with its centre S at the origin of the coordinate system and radius jqj, with q ∈ R�.

Figure 6 illustrates the process of GI of our families of circular arcs into half-lines, with an
example for each scanning case. The fixed detector ring is represented by the fixed circle in
black. The next paragraphs describe GI for the two scanning cases and for the fixed setup.

4.3.1 Geometric inversion of the fixed setup

The fixed ring of detector is converted into a fixed horizontal line of the plane and shows the
location of the apparent detectors after GI. As an example, in Fig. 6, the apparent detector D 0

corresponds to the GI of the detector D.

4.3.2 Geometric inversion of the interior arcs

For the particular detectorD (in light blue), an example of interior arc is represented in red. Then
by GI, the interior arc is converted into the red half-line located above the black line.

More generally, interior arcs will be converted into half-lines having their extremity on the
black line and located above it. For the sake of continuity, half-lines corresponding to internal
scanning will be called interior half-lines.

4.3.3 Geometric inversion of the exterior arcs

For the same detector D, an example of exterior arc is represented in blue. Similar to the internal
case, this exterior arc is converted into an half-line, but this half-line is located below the line of
detectors. By analogy, the family of exterior arcs becomes by GI the family of half-lines located
below the line of apparent detectors.

4.3.4 Toward a new family of half-lines

Consequently, the internal scanning and the external scanning lead to an RT on a family of half-
lines located below or above a horizontal line of the plane. The equation of this fixed straight line

Fig. 6 GI of the interior and exterior circular arcs.
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is relative to the choice of the radius of the inversion circle jqj and P the diameter of the fixed
detectors ring in Cartesian coordinates: y ¼ q2∕P.

A previous work of Truong and Nguyen21 studies the inversion of the RT in half space.
This corresponds to our family of half-lines with the x axis as the fixed dividing line. We will
generalize this work in order to invert the RT on our family of half-lines, named HLineRT, con-
sidering any arbitrary fixed horizontal line separating the plane. This horizontal line will contain
the extremities of half-lines.

4.4 Relation Between the CirArcRT and the HLineRT

Applying the change of variables r 0 ¼ q2∕r to Eq. (11), one can obtain

EQ-TARGET;temp:intralink-;e014;116;603RCirArcfðρ;ϕÞ ¼
Z
Rþ×ðθ1;θ2Þ

r 0
q2

r 02
f

�
q2

r 0
; θ

�
· δ½ρ 0 − r 0 cosðθ − ϕÞ�dr 0 dθ: (14)

Consequently, by GI, the CirArcRT of a function f leads to a the HLineRT of an apparent
function denoted by fapp

EQ-TARGET;temp:intralink-;e015;116;531RCirArcfðρ;ϕÞ ¼ RHLinefapp

�
q2

ρ
;ϕ

�
; (15)

where fapp is the GI of f, weighted by q2∕r2:

EQ-TARGET;temp:intralink-;e016;116;475fappðr; θÞ ¼
q2

r2
f

�
q2

r
; θ

�
: (16)

5 Inverting the Radon Transform on Half-Lines

As the RT in our modality is the HLineRT of a part of the space 2-D delimited by the lowest or
the highest values by a horizontal straight line, it is more convenient to consider the situation in
Cartesian coordinates with the parametrization proposed in Fig. 7.

Moreover, for a ∈ R, y ¼ a represents the equation of the horizontal fixed straight line of
detectors. Consequently,RHline is renamedRþ

a andR−
a according to their reference for half-lines

located, respectively, below and under the considered horizontal line.
Thus using the change of variables associated to Fig. 7:

EQ-TARGET;temp:intralink-;e017;116;314τ ¼ tan ϕ; ξ ¼ ρ

cos ϕ
; dξ dτ ¼ 1

cos ϕ
dρ dϕ; (17)

Fig. 7 Chosen parameters for a straight line in Cartesian coordinates.
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R−
a fapp and Rþ

a fapp are, respectively, written in Cartesian coordinates:

EQ-TARGET;temp:intralink-;e018;116;723R−
a fappðξ; τÞ ¼

Z
a

−∞
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
fappðξ − yτ; yÞ (18)

and

EQ-TARGET;temp:intralink-;e019;116;668Rþ
a fappðξ; τÞ ¼

Z
∞

a
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
fappðξ − yτ; yÞ: (19)

After calculations (summed up in Sec. 9), apparent function fapp can be entirely recovered
from projections of, respectively, R−

a fapp and Rþ
a fapp using, the equations:

EQ-TARGET;temp:intralink-;e020;116;602fappðx; yÞ ¼
1

2π2
H−

a ðyÞ p:v:

Z
R2

dτdξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p 1

ðξ − τy − xÞ
∂
∂ξ

R−
a fappðξ; τÞ (20)

and

EQ-TARGET;temp:intralink-;e021;116;546fappðx; yÞ ¼
1

2π2
Hþ

a ðyÞ p:v:

Z
R2

dτ dξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p 1

ðξ − τy − xÞ
∂
∂ξ

Rþ
a fappðξ; τÞ; (21)

where p.v. denotes the Cauchy principal value.
Then considering the change of variables

EQ-TARGET;temp:intralink-;e022;116;478ϕ ¼ tan−1 τ; s ¼ ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p and ds dϕ ¼ 1

ð1þ τ2Þ32 dξ dτ; (22)

inverse equations of R−
a fapp [Eq. (21)] and Rþ

a fapp [Eq. (20)] are, respectively, expressed with
acquired data in polar coordinates

EQ-TARGET;temp:intralink-;e023;116;409fappðx; yÞ ¼
1

2π2
H−

a ðyÞ
Z

2π

0

dϕ p:v:

�Z
∞

0

dρ

ρ − x cos ϕ − y sin ϕ

∂
∂ρ

R−
a fappðρ;ϕÞ

�
(23)

and

EQ-TARGET;temp:intralink-;e024;116;352fappðx; yÞ ¼
1

2π2
Hþ

a ðyÞ
Z

2π

0

dϕ p:v:

�Z
∞

0

dρ

ρ − x cos ϕ − y sin ϕ

∂
∂ρ

Rþ
a fappðρ;ϕÞ

�
: (24)

Finally, the function f is recovered from fapp with the equation

EQ-TARGET;temp:intralink-;e025;116;296fðr; θÞ ¼ q2

r2
fapp

�
q2

r
; θ

�
; (25)

in polar coordinates and the equation

EQ-TARGET;temp:intralink-;e026;116;241fðx; yÞ ¼ q2

x2 þ y2
fapp

�
q2x

x2 þ y2
;

q2y
x2 þ y2

�
(26)

in Cartesian coordinates.

6 General Reconstruction Algorithm and Numerical Simulation Results

This section gives details about practical simulations of internal and external scanning modes
for CCST. These simulations are performed under the conditions stated in Sec. 2.2 in order to
validate the analytic inversion procedure for the CirArcRT for this first study and the theoretical
feasibility of CCST, in the sense that this system is able to recover sufficient data for recon-
struction. Some works are on the way in order to approach realistic measurements. This point
is discussed in Sec. 7.

Simulations have been performed with MATLAB R2018b.
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6.1 General Reconstruction Algorithm

First, the general algorithm is summed up in Fig. 8.

6.2 Step 1: Parameter Choices

For simulations, the parameters that have to be chosen are: P the diameter of the fixed ring of
detectors, ND the number of detectors placed on the ring, Nω ¼ Nϕ the number of scanning arcs
per detector, and jqj the radius of the inversion circle.

Broadly speaking, ND and Nϕ have to satisfy the well-known condition given in Ref. 22 and
reformulated in our case as

EQ-TARGET;temp:intralink-;e027;116;458ND × Nϕ > N1 × N2; (27)

where ðN1; N2Þ represents the size of the scanned object.
This condition allows having the lower limitation of required parameter numbers for data

acquisition, in an idealized case of uniform sampling, without perturbations like missing data
or noise. However, the condition of data sampling is not respected because data are acquired on
circular arcs. This is why parameters Nϕ and ND have to be overestimated.

The choice of the parameter jqj of GI does not influence the quality of reconstruction. It has
just to be chosen to encompass the whole system and the object inside the inversion circle.

6.2.1 Parameter choices for the fixed setup: choice of Nϕ, ND , and P

The main objective of these simulations is to show the ability for the same system (same size of
ring and same number of detectors) to reconstruct both small and large objects. Consequently, P,
ND, and Nϕ are chosen once for all presented simulations. ND ¼ 3217 detectors are equally
placed on a ring of diameter P ¼ 1024. This represents one detector per unit length. For the
projections, we take Nϕ ¼ 3000 in order to satisfy Eq. (27).

6.2.2 Parameter choices and chosen objects for internal scanning

Internal scanning is performed for two objects, the medical Shepp–Logan phantom and a
defected connector. The objective is to verify the ability for CCST to reconstruct small
details as the welding defect [framed in red in Fig. 9(a)] of the connector and small nodules
of Shepp–Logan [Fig. 10(a)]. The size of these objects is N × N ¼ 512 × 512 that is smaller
than the ring of detectors. The radius of the inversion circle is jqj ¼ 1100. Simulation
results are presented for the connector and for Shepp–Logan phantom, respectively, in
Figs. 9 and 10.

6.2.3 Parameter choices and chosen objects for external scanning

External scanning is also performed for two objects, a test object with multiple layers
[Fig. 11(a)], previously used in Ref. 10) and a cracked bar [Fig. 12(a)]. Here the objective

Fig. 8 General algorithm for image reconstruction.
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is to verify the ability for CCST to be able to reconstruct larger objects than the ring, in this case,
object of size N1 × N2 ¼ 1200 × 360. The radius of the inversion circle is jqj ¼ 1500.
Simulation results are presented for the phantom with multiple layers and for the cracked bar,
respectively, in Figs. 11 and 12.

6.3 Step 2: Image Formation

Data of the original object are acquired first according to the parameters of the scanning circular
arcs θDk;int

and ϕ. The parameter θDk;int
allows choosing the considered detector and ϕ, which is

related to ω, allows specifying the scanning circular arc.

Fig. 9 Interior scanning: (b) data acquisition, (c) rearranged data, (d) GI, and (e) image recon-
struction of a connected defector (a) (NMSE ¼ 0.0039).
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Then, denoting ϕl the discretized version of ϕ, scanning arcs are parametrized in Cartesian
coordinates as follows for simulations:

EQ-TARGET;temp:intralink-;e028;116;144AðθDk
;ϕlÞ∶

(
xðγÞ ¼ ρðθDk

;ϕlÞ
2

½cosðγÞ þ cosðϕlÞ�
yðγÞ ¼ ρðθDk

;ϕlÞ
2

½sinðγÞ þ sinðϕlÞ�
; (28)

where the respective domain of γ ∈ ½γ1; γ2� is as follows.

Fig. 10 Interior scanning: (b) data acquisition, (c) rearranged data, (d) GI, and (e) image recon-
struction of Shepp–Logan phantom (a) (NMSE ¼ 0.014).
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• For the internal scanning case:

EQ-TARGET;temp:intralink-;e029;116;152γ ∈
	 ½ϕl − 2ω − π;ϕl − π� if ϕ ∈ ½0; 3π

2
½

½ϕl − π;ϕl − 2ωþ πÞ� if ϕ ∈ ½3π
2
; 2π½ ; (29)

• For the external scanning case:

EQ-TARGET;temp:intralink-;e030;116;96γ ∈
	 ½ϕl þ π;ϕl − 2ωþ π� if ϕ ∈ ½0; 3π

2
½

ð½ϕl − 2ω − π;ϕl − π� if ϕ ∈ ½3π
2
; 2π½: (30)

Fig. 11 Exterior scanning: (b) data acquisition, (c) rearranged data, (d) GI, and (e) image recon-
struction of a multilayer phantom (a) (NMSE ¼ 0.044).
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Consequently, the integral for image acquisition is also reformulated in Cartesian coordinates.
One gets

EQ-TARGET;temp:intralink-;e031;116;143RCirArcfðθDk
;ϕlÞ ¼

ρðDk;ϕlÞ
2

Z
γ2

γ1

f½xðγÞ; yðγÞ�dγ: (31)

For each scanning arcAðDk;ϕÞ, we obtain by interpolation the pairs ðx; yÞ belonging to both
the object and AðDk;ϕÞ. These pairs are integrated via a discrete trapezoidal integration and
the result, weighted by ρðDk;ϕlÞ∕2, forms the projection RCirArcðθD;ϕÞ.

Fig. 12 Exterior scanning: (b) data acquisition, (c) rearranged data, GI (d) and image reconstruc-
tion (e) of a cracked bar (a) (NMSE ¼ 0.055).
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Algorithm 1 summarizes the computation steps to obtain data acquisition of an object f.
Then obtained dataRCirArcðθDk;int

;ϕÞ need to be interpolated to have data acquisition relative
to ðρ;ϕÞ. This process allows having after GI data projection on half-lines according to ðρ;ϕÞ.

6.4 Step 3: Geometric Inversion of Acquired Data

Acquired data are transposed to a projection on half-lines via GI with Eq. (15).

6.5 Step 4: Reconstruction of the Apparent Object

The apparent object is recovered with the inverse HLineRT expressed by Eqs. (23) and (24).
For simulations, these equations are reformulated with the Hilbert transform, defined as

follows:

EQ-TARGET;temp:intralink-;e033;116;329HfugðtÞ ¼ 1

π
p:v:

�Z
∞

−∞

uðτÞ
t − τ

dτ

�
: (33)

Then the Hilbert transform is computed in the Fourier domain via the following equation:

EQ-TARGET;temp:intralink-;e034;116;272H
	
∂u
∂t



ðtÞ ¼ F−1½jνj · F ðuÞðνÞ�ðtÞ; (34)

where F denotes the one-dimensional Fourier transform.
Final reconstruction equations for the apparent object are respectively, for the external

scanning

EQ-TARGET;temp:intralink-;e035;116;191fappðx; yÞ ¼
1

2π

Z
2π

0

dϕF−1fjνjF ½Rþ
a fappðρ;ϕÞ�ðνÞgðx cos ϕþ y sin ϕÞ (35)

and for the internal scanning

EQ-TARGET;temp:intralink-;e036;116;135fappðx; yÞ ¼
1

2π

Z
2π

0

dϕF−1fjνjF ½R−
a fappðρ;ϕÞ�ðνÞgðx cos ϕþ y sin ϕÞ: (36)

Similar to the classical RT, Eqs. (35) and (36) need to be regularized, due to the divergence of
the ramp filter for high frequencies. We use the Hamming apodization window in the Fourier

Algorithm 1 Image formation on circular arcs.

Data: Original object f ðx; yÞ

Result: Data acquisition RCirArcf ðθDk;int
;ϕÞ

1 Choice of ND the number of detectors and Nϕ the number of scanning arcs per detector;

2 Computation of discrete variables θDk
and ϕl as follows:

EQ-TARGET;temp:intralink-;e032;116;643θDk
¼ π

�
1þ k

ND þ 1

�
and ϕl ¼

2πl
Nϕ

(32)

for each pair ðθDk
;ϕl Þ do

3 Computation of the pairs ðx; yÞ of the Cartesian parametrization of AðθDk
;ϕl Þ [Eq. (28)];

4 Interpolation with the position of object f ;

5 Trapezoidal integration and weight the result by ρðDk ;ϕl Þ∕2 to obtain RCirArcðθDk
;ϕl Þ;

6 end
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domain to reduce the amplification that may be caused by the outline of the object:

EQ-TARGET;temp:intralink-;e037;116;515wðνÞ ¼ 0.54 − 0.46 cosð2πνÞ; (37)

where ν is the normalized frequency. Then the new filter is

EQ-TARGET;temp:intralink-;e038;116;472ΨðνÞ ¼ jνj · wðνÞ ¼ jνj½0.54 − 0.46 cosð2πνÞ�: (38)

This new filter Ψ replaces the ramp filter jνj in Eqs. (35) and (36).
Algorithm 2 summarizes the different steps for reconstructing the apparent object.

6.6 Step 6: Reconstruction of the Original Object

The physical object fðx; yÞ is recovered via GI of fappðx; yÞ with Eq. (26).

6.7 Step 7: Evaluation of the Quality of Reconstruction

We use the normalized mean square error (NMSE) defined by

EQ-TARGET;temp:intralink-;e039;116;318NMSE ¼
P

ði;jÞ∈ðj1;N1jÞ×ðj1;N2jÞ½Ioði; jÞ − Irði; jÞ�2
max

ði;jÞ∈ðj1;N1jÞ×ðj1;N2jÞ
Ioði; jÞ2

·
1

N1N2

; (39)

where Io and Ir are, respectively, the original and the reconstructed images and ðN1; N2Þ is
the size of the considered image.

6.8 Discussion on Simulation Results

Reconstruction is globally acceptable in the sense that small details are visible by internal
scanning and objects larger than the system can also be reconstructed by external scanning.
Furthermore, both simulations for internal and external scanning cases lead to a similar quality
of reconstruction and this point ensures the independence of the chosen object to the reconstruc-
tion algorithm.

However, reconstructions have some artifacts. For example, in the case of Shepp–Logan
phantom, artifacts are visible in the lower left and right edges of the object. These artifacts are
due to missing data because projection on circular arcs has to be limited to a finite diameter
(whereas circular arcs having an infinite diameter gives also information). The mathematical
theory explaining these artefacts due to missing data is microlocal analysis. The case of
the classical RT on straight lines has been studied particularly by Nosmas,23 Krishnan, and

Algorithm 2 Reconstruction of apparent object.

Data: R�
a f appðρ;ϕÞ, projections on half-lines of apparent function f app

Result: f appðx; yÞ

1 Filter R�
a f appðρ;ϕÞ in the Fourier domain with filter Ψ [Eq. (38)];

2 for each ϕl do

3 Interpolate filtered data on the considered circle of coordinates X cos ϕl þ Y sin ϕl ,

where ½X;Y � are the matrices of Cartesian coordinates of f app;

4 end

5 Sum the interpolations;

6 Weight the result by 1∕2π;
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Quinto,24 Frikel and Quinto,25 and Quinto.26 Some extra works to extend microlocal analysis
theory for generalized RTs such as CirArcRT are needed.

7 Perspectives

This first work about the double scanning configuration opens new perspectives that will be part
of our future works.

7.1 Introduce Attenuation of Scattered Radiation in the Model

In addition to scattering events, radiation is attenuated inside matter. Consequently, a more com-
plete model for data acquisition and image reconstruction should consider also attenuation. For a
CST system, this leads to an attenuated RT on the corresponding family of circular arcs, accord-
ing to the geometry of the system. However, no exact inversion for this kind of RT has been
found for any CST system. An alternative is to propose an algorithm that corrects iteratively
reconstruction, from a error computation. Such algorithm has been proposed for the previous
Nguyen and Truong modality.27 A first work28 on this subject has been proposed for the internal
scanning of CCST in the special case of the a priori knowledge of the attenuation map.

7.2 Take into Account a Practical System for Simulations to Approach Real
Measurements

A perspective of this work concerns simulations of the CCST system in more realistic conditions
(particularly the properties of source and detectors such as energy range and resolution, intro-
duce Klein–Nishina probability, and collimation at detectors). In this context, Monte Carlo
simulations will be considered.

7.3 An Extension of CCST in Three Dimensions

An extension of CCST in three dimensions is also under study in order to take into account the
Compton effect in the whole space (and not restricted in the plane). This 3-D modality will be
made of a fixed source and a fixed sphere of detectors. The advantages of CCST will be pre-
served with this extension. Modeling image formation of this extension leads to a new RT on a
family of torus having a fixed end-point (the point source) and the other is located on the sphere
of detectors.

In a previous work, Webber and Lionheart,29 Webber and Holman30 proposed an extension of
the previous Nguyen and Truong’s modality, proved injectivity and stability of the associated
torus transform. This work is one of the leading routes for this perspective.

8 Concluding Remarks and Perspectives

This paper introduces the two possible modes of acquisition for the CCST.
For small objects that can be placed inside the detector ring, the CCST works in interior

mode. Otherwise, the CCST offers the possibility to scan large objects, in exterior mode, by
placing them outside the detectors ring.

Moreover, the circular geometry of this new system offers the advantage to be fixed while
collecting a complete data set necessary for image reconstruction and reducing the data acquis-
ition time.

The CCST enlarges the application fields for the same system from biomedical imaging to
nondestructive evaluation (detection of welding defects in a printed circuit board and detection of
defaults on metallic pieces, for instance) and historical exploration (cultural heritage objects
research).

The modeling of the proposed CCST leads to a new generalized CirArcRTwhose inversion is
possible via GI. In fact, after GI the considered CirArcRT is reduced to the HLineRT whose
inversion formula has been established and inverted for the first time in this paper. This math-
ematical result allows solving the theoretical challenge raised by CCST.
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The simulation results for internal and external scanning are promising and supporting the
theoretical feasibility of the proposed CCST with a double scanning configuration.

9 Appendix A: Inversion of the Radon Transform of Half-Lines

We will only inverse Raþf, the proof for Ra−f is completely similar.
First, we reformulate Eq. (19) as follows:

EQ-TARGET;temp:intralink-;e040;116;644

Raþfðξ; τÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p ¼
Z

∞

a
dyfðξ − yτ; yÞ: (40)

Replacing fðx; yÞ by its representation in the Fourier domain f̃ðx; yÞ as

EQ-TARGET;temp:intralink-;e041;116;586fðx; yÞ ¼
Z
R2

dp dqe2iπðpxþqyÞf̃ðp; qÞ; (41)

one gets

EQ-TARGET;temp:intralink-;e042;116;530

Raþfðξ; τÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p ¼
Z
R2

dp dqf̃ðp; qÞe2iπpξ
Z

∞

a
dye−2iπyðpτ−qÞ: (42)

Moreover,

EQ-TARGET;temp:intralink-;sec9;116;471

Z
∞

a
dye−2iπyðpτ−qÞ ¼

Z
∞

−∞
dyHþ

a ðyÞe−2iπyðpτ−qÞ;

where Hþ
a ðyÞ¼Hðy−aÞ and H is the Heaviside step function: Hþ

a ðyÞ¼0;5þ0;5 · signðy−aÞ.
Then

EQ-TARGET;temp:intralink-;e043;116;404Z
∞

a
dye−2iπyðpτ−qÞ ¼ 1

2

Z
∞

−∞
e−2iπyðpτ−qÞdyþ 1

2

Z
∞

−∞
sgnðy − aÞe−2iπyðpτ−qÞdy

¼ 1

2

�
δðpτ − qÞ þ e−2iπaðτp−qÞ

iπðpτ − qÞ
�
: (43)

Equation (42) becomes

EQ-TARGET;temp:intralink-;sec9;116;318

Raþfðξ; τÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p ¼
Z
R2

dp dqf̃ðp; qÞe2iπpξ · 1
2

�
δðpτ − qÞ þ e−2iπaðτp−qÞ

iπðpτ − qÞ
�

¼ 1

2

�Z
R
dpf̃ðp; τpÞe2iπpξ þ

Z
R
dp dq

1

iπ
f̃ðp; qÞ
pτ − q

e2iπpξ · e−2iπaðpτ−qÞ
�
:

Applying the Fourier transform on ξ on both sides of the equation, one gets

EQ-TARGET;temp:intralink-;e044;116;229

Z
R
dξe−2iπξp

Raþfðξ; τÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p ¼ 1

2

�
f̃ðp; τpÞ þ 1

iπ

Z
R
dq

1

iπ
f̃ðp; qÞ
pτ − q

· e−2iπaðpτ−qÞ
�
: (44)

Denoting

EQ-TARGET;temp:intralink-;e045;116;170f̃ðp; qÞ ¼
Z
R
dξe−2iπξqgðp; ξÞ; (45)
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and considering the change of variables u ¼ pτ − q, the second part of Eq. (44) can be
rewritten as

EQ-TARGET;temp:intralink-;sec9;116;711Z
R
dq

f̃ðp; qÞ
pτ − q

e−2iπaðpτ−qÞ ¼
Z
R
dξe2iπξpτgðp; τÞ

Z
R
du

e2iπðξ−aÞu

u

¼
Z
R
dξe2iπξpτgðp; τÞ · iπsgnðξ − aÞ:

Thereby,
EQ-TARGET;temp:intralink-;e046;116;632Z
R
dξe−2iπξp

Raþfðξ; τÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p ¼ 1

2

Z
R
dξe−2iπξpτgðp; ξÞ½1þ sgnðξ − aÞ�;

¼
Z
R
dξe−2iπξpτHþ

a ðξÞgðp; ξÞ: (46)

For p ∈ R, multiplying Eq. (46), by ∫ RdðτpÞe2iπτpz, one gets
EQ-TARGET;temp:intralink-;sec9;116;548Z
R
dðτpÞe2iπτpz

Z
R
dξe−2iπξp

Raþfðξ; τÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p ¼
Z
R
dðτpÞe2iπτpz

Z
R
dξe−2iπξpτHþ

a ðξÞgðp; ξÞ

¼
Z
R
dξHþ

a ðξÞgðp; ξÞ
Z
R
dðτpÞe2iπτpðz−ξÞ;

EQ-TARGET;temp:intralink-;sec9;116;464 ¼
Z
R
dξHþ

a ðξÞgðp; ξÞδðz − ξÞ;

EQ-TARGET;temp:intralink-;e047;116;430 ¼ Hþ
a ðzÞgðp; zÞ: (47)

Then ∀ z > a

EQ-TARGET;temp:intralink-;e048;116;407gðp; zÞ ¼ jpj
Z
R2

dτ dξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p e−2iπðξ−τzÞpRaþfðξ; τÞ; (48)

and

EQ-TARGET;temp:intralink-;e049;116;355f̃ðp; qÞ ¼
Z
R
dze−2iπzqjpj

Z
R2

dτdξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p e−2iπðξ−τzÞpRaþfðξ; τÞ: (49)

From Eq. (41), we can reconstruct fðx; yÞ

EQ-TARGET;temp:intralink-;e050;116;302fðx; yÞ ¼
Z
R2

dp dqe2iπðpxþqyÞ
Z
R
dze−2iπzqjpj

Z
R2

dτ dξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p e−2iπðξ−τzÞpRaþfðξ; τÞ: (50)

Integrating first on dq and then on dzwith z > a, one can find that the result is nonzero if and
only if y > a. Then one can obtain

EQ-TARGET;temp:intralink-;e051;116;235fðx; yÞ ¼ Hþ
a ðyÞ

Z
R2

dτ dξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p Raþfðξ; τÞ
Z
R
jpjdpe−2iπðξ−τy−xÞp: (51)

With the Fourier table, we have

EQ-TARGET;temp:intralink-;e052;116;183

Z
R
jpjdpe−2iπðξ−τy−xÞp ¼ −1

2π2
1

ðξ − τy − xÞ2 . (52)

Hence,

EQ-TARGET;temp:intralink-;e053;116;130fðx; yÞ ¼ −1
2π2

Hþ
a ðyÞ p:v:

�Z
R2

dτ dξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p 1

ðξ − τy − xÞ2 R
aþfðξ; τÞ

�
: (53)
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Finally, using partial integration on ξ, the reconstruction equation for an function f with the
HLineRT Raþf is

EQ-TARGET;temp:intralink-;e054;116;711fðx; yÞ ¼ 1

2π2
Hþ

a ðyÞ p:v:

�Z
R2

dτ dξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p 1

ðξ − τy − xÞ
∂
∂ξ

Raþfðξ; τÞ
�
: (54)
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