
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 1

A new concept of Compton Scattering tomography
and the development of the corresponding circular

Radon transform
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Abstract—A new modality of Compton Scattering Tomogra-
phy is presented. This model is composed of a fixed source
and detectors placed on a fixed ring passing through the
source. This new modality, called Circular Compton Scattering
Tomography, allows to register a complete set of data and,
regarding constructive features like compactness or the absence
of moving components, outperforms other existing Compton
scattering tomography designs. A bi-imaging system combining
this new system and Fan-beam computed tomography can also
be considered, and such system will provide both the attenuation
map and the distribution on electrons of the object under study.
The modeling of the Circular Compton Scattering Tomography
leads to the Radon transform on circles passing through a fixed
point. A reconstruction algorithm based on an exact inversion
formula of the Radon transform on circles is proposed and
numerical simulations for image formation and reconstruction
are carried out. The results show the viability of this new image
system which is particularly suitable for small objects such as
biomedical objects.

Index Terms—Bi-imaging, Compton Scattering Tomography,
Image formation, Image reconstruction, Radon Transform on
circles

I. INTRODUCTION

THE Radon transform (RT) established by Radon [1]
in 1917 and the equivalent inverse formula found by

Cormack [2], [3], [4] are the seminal works which allow
the development of current Computed Tomography (CT).
Conventional CT is based on the transmission of X-rays in
matter and the transmitted flux density recovered by detectors.
Thus, CT allows us to recover the attenuation map of an object.

CT uses only primary (not deviated) radiation to reconstruct
the attenuation map of the object. However, there exists
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several ray-matter interactions which can deviate photons
and Compton scattering is the dominant effect in the energy
range of X and gamma rays used in medical applications
[5] . Compton scattering causes blurring, loss of contrast in
reconstructed images and may cause false detection. This is
why conventional CT attempts to eliminate scattered radiation
by the use of collimators.

A. Compton Scattering

When a source emits rays, part of these rays are scattered.
According to the Compton formula, the energy registered

by a detector E(ω) is related to a scattering angle ω by

E(ω) =
E0

1 + E0

mc2 (1− cos(ω))
, (1)

where E0 is the energy of an emitted ray, mc2 the energy of
the electron at rest and E(ω) is the energy of the photon after
interaction.

Towards the end of the past century, the idea of using the
scattered radiation as a source of information came up, with
the proposition of Compton Scattering Imaging (CSI) [6], [7]
modalities. The idea behind Compton Scattering Imaging is to
register scattered photons of given energy to reconstruct the
object.

CSI systems have been proposed based on emission or
transmission. Emission modalities have been proposed in [8],
[9] and these modalities lead to V-line Radon transform
for two-dimensional systems and conical Radon transforms
for the three-dimensional ones. We will here focus on the
second type of CSI which concerns transmission imaging,
usually named Compton Scattering Tomography (CST). The
functioning principle of such systems will be developed in
the next paragraphs. The introduction of a combined modality
with an emission / transmission imaging system has been also
proposed in [10].

B. Compton Scattering Tomography (CST): functioning prin-
ciple, advantages, challenges and short review

In a CST modality, the point source S emits primary
radiation towards an object, of which M (scattering site) is
a running point. A point detector D collects, at given energy
E(ω), scattered radiation from the object.

The physics of Compton Scattering demands that the regis-
tered radiation flux at site D is due to the contribution of all
scattering sites (electrons) M lying on an arc of circle from S
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to D subtending an angle (π − ω), where ω is the scattering
angle corresponding to the outgoing energy E(ω), as given by
(1) (see Fig. 1).

Fig. 1: Functioning principle of CST modalities

Consequently, CST is a new challenging technique which
can offer the possibility to access a new type of information,
which is the electronic density of the object, complementary
to the attenuation map obtained by conventional CT.

Furthermore, CST has multiple advantages for biomedical
imaging:
• the access to a directly measured electron density can be

useful for radiation therapy applications [11]
• the higher contrast of scattering-based images compared

to CT images, which would be helpful in imaging, for
example, calcification in the breast or when scanning
small objects (without an additional radiation dose) or
in tracking tumors [11], [12].

However, CST modalities present a double challenge, both
mathematical and technological. In fact, the modelling of
integral data acquisition leads to generalizations of Radon
transforms on families of circular arcs (CARTs). Consequently,
the image reconstruction depends on the invertible correspond-
ing CART.

Moreover, CST systems require multi-energy detectors with
sufficient energy resolution. It is a challenge for detector
technology.

Before introducing our new CST modality, we will give
a short review of two previous main modalities in the next
paragraphs.

1) First CST modality (proposed by S. J. Norton 1994):
In the Norton’s scanner [13], the source S is fixed and the
detector D moves along a line intersecting the source site.
Equivalently, a fixed array of detectors Dk, k ∈ {1, ...,K}
can be used (see Fig. 2).

Norton provided an inversion formula for his family of
half of circles. A second inversion algorithm has been also
proposed in [14], [15], based on the seminal work of Cormack
on circles intersecting a fixed point. Then, an extended version
of Norton’s system has been studied [16] for one side scanning
in large objects (in non-destructive evaluation, for example).

2) Second CST modality (proposed by Nguyen and Truong
2010): The model is composed of a source S, placed at a
distance 2p from a detector D. The segment SD rotates around

Fig. 2: Norton’s modality (1994)

its middle point O and its angular position is given by the angle
ϕ (see Fig. 3).

This modality is suitable for small objects scanning thanks
to the rotation of the system around the object which can be
placed inside the circle of centre O and of radius p.

Fig. 3: Nguyen and Truong’s modality (2010)

For a fixed position of the source S and the detector D, all
photons scattered by the object and registered with the same
energy by the detector have their scattering sites on a same
circular arc passing through S and D.

Thus, this modality leads to a new generalized Radon
transform on a family of circular arcs which has been inverted
in [17], and the feasibility of this system has been proved with
simulation results in [14], [15], [18].

C. Objectives of the paper

The aim of this paper is to propose a new CST which
is completely fixed (fixed source and fixed detectors), while
allowing to scan small objects. This modality allows to avoid
motion of detectors (required for Nguyen’s system) while
having a compact system as those used in biomedical imaging.
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The paper is organized as follows : section II introduces the
new concept of CCST with its advantages and assumptions.
The modelling of the CCST is presented in section III and the
simulation in section IV. Open issues related to the general
CST concept and particular CCST are discussed in section V.
Concluding remarks end the paper.

II. NEW CST MODALITY : CIRCULAR COMPTON
SCATTERING TOMOGRAPHY (CCST)

A. Presentation of CCST

The proposed modality is composed of a source S and K
fixed detectors Dk, k ∈ {1, ...,K} placed on a ring passing
through the source (see Fig. 4). This modality is named
Circular Compton Scattering Tomography (CCST).

Fig. 4: Circular Compton Scattering Tomography modality

B. Main advantages of CCST

The new modality of CST has the following features and
some advantages regarding previous modalities:

1) No motion or rotation of Source - Detector couple is
needed to obtain a complete dataset for image recon-
struction.

2) Geometry of CCST is convenient for small object scan-
ning.

3) The detector ring (multiple detectors) of CCST allows to
reduce the practical scanning time and thus the time of
exposure to radiation. In addition, the circular layout of
detectors reduces the size of the system in comparison
with the linear configuration.

4) Possibility of combining CCST with conventional fan-
beam CT to design a double imaging system thanks to
the similar configuration of two systems (see Fig. 5).
In fact, if the detectors of the system are set to register
the primary photon energy (E0), the system works as
fan-beam CT. Nevertheless, this complementary config-
uration requires mechanical rotation of the system to

Fig. 5: Bi-imaging system combining Fan-beam CT and CCST

have a complete dataset. When the detectors register the
energies lower than E0, the system operates as CCST.
Then, this bi-imaging system provides both the atten-
uation map (by fan-beam CT) and the distribution of
electrons (by CCST), which are two physical properties
of the object under study.

C. General assumptions for the study of the modelling of
CCST

All scattered photons collected by a detector Dk at the same
energy arise from scattering sites lying on a circular arc with
S and Dk as extremities subtending a angle (π − ω). In this
work, we take into account the circles which are supporting the
considered scanning circular arcs, with the understanding that
the external part (outside of the detector ring) of the circles
give no contribution in data acquisition.

Consequently, the scattered radiation flux density registered
by detectors can be modelled by a generalized Radon trans-
form on circles passing through a fixed point.

However, the analysis described here and in many other
publications of CST ([13], [16], [17], [19], [20], [21]) is
idealized. In fact, for the sake of mathematical tractability,
it is assumed that :
• first order scattering is so dominant that the higher order

scattering can be neglected,
• attenuation is absent,
• we have idealized detectors with perfect energy resolu-

tion.
These assumptions provide insight into the reconstruction

problem in the same way that the inverse classical Radon
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transform does as the idealized solution to the conventional
CT problem. Furthermore, additional issues such as detector
performance or accounting for attenuation are discussed in
section V.

III. MODELLING OF THE NEW MODALITY OF CCST

A. Setup of the system

Fig. 6: Principle of our CCST - In black: fixed ring of
detectors, in red: example of scanning circle

We consider a non-moving source S at the origin of our
coordinates system and a fixed ring of K detectors Dk with
k ∈ {1, 2, ...,K} passing through the source (see Fig. 6).
Denoting P as the diameter of the fixed ring of detectors,
the polar equation of the ring centered at O is

r = P · cos
(
α+

π

2

)
, α ∈ [π, 2π[. (2)

In order to have a constant distance between adjacent
detectors, we define first αDkint

the angle subtending the y-
axis and the radius ODk of the fixed ring (see Fig. 6):

αDk,int
= 2π

k

K + 1
. (3)

Angle αDkint
is related to polar angular coordinate αDk

of
detector Dk according to the relation

αDk
= π +

αDk,int

2
. (4)

With (3) and (4), one can make explicit polar coordinates
(rDk

, αDk
) of each detector Dk :

Dk(rDk
, αDk

) with


rDk

= P cos
(
αDk

+ π
2

)
αDk

= π
(

1 + k
K+1

)
.

(5)

Elementary geometry allows to verify that the distance d
between adjacent detectors is uniform:

d = ||Dk+1Dk|| = P sin

(
π

K + 1

)
= constant. (6)

B. Parametrization of the scanning circles

In the rest of the paper, the parameters (r, θ) denote the
polar coordinates of a point on a circle. First of all, the family
of the scanning circles passing through the origin has the
following general equation form, depending on its diameter
ρ and its angle φ relative to x-axis

CDk,ω(ρ, φ) : r = ρ(Dk, ω) · cos (θ − φ(Dk, ω)),

θ ∈ [π, 2π[. (7)

An example of such scanning circle, centered at Ω, is shown
with a particular scattering site denoted M in Fig. 6.

The parameters of each scanning circle depend on the
considered detector Dk and the scattering angle ω as follows: ρ (Dk, ω) = rDk

/ sin (ω)

φ (Dk, ω) = αDk
+ ω − π

2

(8)

where ω ∈]0, π[.

C. Image acquisition

Data measurement for this system is modelled by the
integral of the electronic density on the parametric circles.
This integral is called the Radon transform on circles passing
through a fixed point (CirRT):

RCirf(ρ, φ) =

∫
CDk,ω(ρ,φ)

f(r, θ)ds (9)

where ds is the integration element on the circle CDk,ω(ρ, φ).
Equation (9) is the image formation equation.

Moreover, it can be written with a delta function kernel as
follows :

RCirf(ρ, φ) =

∫ ∞
0

dr

∫ 2π

π

dθ ρf(r, θ)δ(r − ρ cos (θ − φ)).

(10)
This formulation (10) shows that the presence of noise

or missing data may cause important instabilities in image
reconstruction.

D. Image reconstruction

In a previous work, Cormack [4] defined two families of
curves and established the equations of the forward and inverse
Radon transforms for these families. Our family of circles is
a special case of his curves.

Using consistency conditions [3], he proposed a stable
solution for the inverse transform for its family of parametrized
curves. Then, we rewrite the Cormack reconstruction equation
in our case, as follows :
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f(r, θ) = R−1
Cir f(r, θ) =

1

2π2r

∫ 2π

0

dφ

p.v.
{∫ ∞

0

dρ
∂RCirf(ρ, φ)

∂ρ

ρ

r − ρ cos (θ − φ)

}
(11)

where p.v. denotes Cauchy principal value.
Equation (11) is the image reconstruction equation.

In order to numerically implement (11), we use the Hilbert
transform, denoted H and defined as follows:

H{u}(t) =
1

π
p.v.

{∫ ∞
−∞

u(τ)

t− τ
dτ

}
(12)

Then, (11) becomes:

f(r, θ) = R−1
Cir f(r, θ) =

1

2πr

∫ 2π

0

dφ
1

cos(θ − φ)

H
{
∂RCirf(ρ, φ)

∂ρ
· ρ
}(

r

cos (θ − φ)

)
. (13)

In (13), the Hilbert transform can be easily computed via
the Fourier transform.

IV. SIMULATION OF THE NEW MODALITY AND RESULTS

The simulations were carried out using for a medical object,
the Shepp-Logan phantom (see Fig. 7).

A. Parameter choices

The size of the object is N ×N = 512× 512 pixels.
The phantom is placed inside a ring of detectors of radius

proportional to the size of the object, that is 512 length unities.
We place on the circular ring a detector per unit length, what
represents an amount of ND = 3712 detectors. For the number
of projections, we take Nω = Nφ = 3000.

These parameter choices satisfy the condition Nφ ×ND >
N×N [22], which gives the lower limitation for data acquisi-
tion with uniform sampling and in the absence of perturbations
such as noise or missing data. In our case, ND and Nφ were
overestimated because of the spatial non uniform sampling
with acquisition on circles.

B. Image formation

We first simulate the acquisition of physical data using
parameters αDk,int

, which gives us the angular position of
the considered detector Dk on the fixed ring, and φ, which is
related to the scattering angle ω according to (8).

Given a detector Dk and a scattering angle ω, we denote
Ω the center of the corresponding circle CDk,ω . Cartesian
coordinates of Ω are xΩ = ρ(Dk,ω)

2 (cos (φ(Dk, ω)))

yΩ = ρ(Dk,ω)
2 (sin (φ(Dk, ω))) .

(14)

Then, a point M with the Cartesian coordinates (x, y)
belongs to the circle CDk,ω , centered at Ω if

(x(γ), y(γ)) = (xΩ, yΩ) +
ρ(Dk, ω)

2
(cos γ, sin γ),

γ ∈ [0, 2π[ (15)

Hence, we obtain the following parametrization for scanning
circles

CDk,ω :

 x(γ) = ρ(Dk,ω)
2 (cos (γ) + cos (φ(Dk, ω)))

y(γ) = ρ(Dk,ω)
2 (sin (γ) + sin (φ(Dk, ω))) ,

γ ∈ [0, 2π[ (16)

We finally obtain the forward transform formula for imple-
mentation

RCirf(αDk,int
, φ) =

ρ

2

∫ 2π

0

f (x(γ), y(γ)) dγ (17)

Figure 8 shows the result of data acquisition.
This result cannot be used directly: in fact, to reconstruct our

object, the data acquisition have to be relative to the parameters
(ρ, φ) according to (9). This change of variables is carried out
by data interpolation and the result is showed on Fig. 9. Data
acquisition has the form of the letter U with a slight hole on
his basis (see Fig. 9): this hole is due to the missing detectors
near to the source and is filled with a spline interpolation.

C. Image reconstruction

1) Formulation: We proceed similarly to transform (13) in
Cartesian coordinates. With r =

√
x2 + y2

r cos (θ − φ) = x cosφ+ y sinφ,
(18)

Equation (13) becomes

f(x, y) = R−1
Cir f(x, y) =

1

2π

∫ 2π

0

dφ
1

x cosφ+ y sinφ

H
{
∂RCirf(ρ, φ)

∂ρ
· ρ
}(

x2 + y2

x cosφ+ y sinφ

)
. (19)

Furthermore, for the simulations, we will compute the
Hilbert transform in the Fourier domain. In fact, we have

H{u} (t) = F−1(−i · sign(ν) · F(u)(ν))(t). (20)

where F denotes the 1D Fourier transform.
Finally, the image reconstruction equation used for simula-

tion is

f(x, y) = R−1
Cir f(x, y) =

1

2π

∫ 2π

0

dφ
1

x cosφ+ y sinφ
·

F−1

(
−i · sign(ν)F

(
∂RCirf(ρ, φ)

∂ρ
ρ

)
(ν)

)
(

x2 + y2

x cosφ+ y sinφ

)
(21)
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Fig. 7: Original object : Shepp-Logan phantom

2) General reconstruction algorithm: Considering (21), the
general algorithm for image reconstruction is as follows:

1) Compute the discrete derivation of the projections and
multiply the result by ρ,

2) Apply the filter associated to Hilbert tranform (20) in
Fourier domain

3) For each φ, interpolate the data on the considered circles,
4) Weight the result with factor 1/(x cosφ+ y sinφ),
5) Sum the weighted interpolations on all directions φ,
6) Normalize by 1/2π.
To our knowledge, it is the first time that the reconstruction

equation (21) has been numerically implemented.
In order to evaluate the quality of the reconstructions, we

use the Normalized Mean Square Error (NMSE) defined by

NMSE =

∑
(i,j)∈[|1,N |]2

(Io(i, j)− Ir(i, j))2

max
(i,j)∈[|1,N |]2

Io(i, j)2
· 1

N2
(22)

where Io and Ir are respectively the original and the recon-
structed images.

3) Result of image reconstruction and remarks: Figure
10 shows the result of reconstruction for the Sheep-Logan
phantom.

It is noted that the image is well recovered in the whole. In
fact, the little nodules at the middle and at the bottom of the
reconstruction are well visible. This result shows the feasibility
of this modality for the requirements of biomedical imaging.

However, we observe some artifacts on the left and right
sides of the object which are less well reconstructed than the
up and bottom of the object. These artifacts will be explained
in the next section.

D. Artifact characterization

Reconstructions exhibit some artifacts that are due to miss-
ing data, see for example the lower left and right edges of the
phantom in Fig. 10. In CCST, the lack of data is an intrinsic
problem since projections are limited to circles with a finite

Fig. 8: Image formation RCirf(αDk,int
, φ) of the original

object in Fig.7 (in a logarithmic scale)

Fig. 9: Rearranged RCirf(ρ, φ) of acquired data in Fig.8

diameter, i.e. radius ρ labelling data is constrained to a range
(0, ρmax).

Such artifacts consist of singularities that can be explained
via microlocal analysis. In the case of the Radon transform
on straight lines studied by Nosmas [23], Quinto, Frikel and
Krishnan [24], [25], [26] microlocal analysis allowed arti-
fact characterization and image enhancement. These articles
considered cases where missing data was deliberately chosen
to mimic a real limitation in the scanning. Some properties
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Fig. 10: Image reconstruction - NMSE = 0.0063

established by Frikel and Quinto can be extrapolated to our
generalized Radon transform. It can be proven that the CirRT
is an Integral Fourier Operator (IFO), like the classical Radon
transform. In fact, considering the integral definition of Dirac
function,

δ(s) =
1

2π

∫ +∞

−∞
eiξsdξ, (23)

the CirRT can be rewritten as

RCirf(ρ, φ)

=

∫
R2×[0,2π]

ρ

2πr
f(r, θ)eiξ(ρ−r cos (θ−φ))r dξ dr dθ.

(24)

Thus, this formulation shows that the CirRT is an IFO with
phase function Φ(ξ) = ξ(r − ρ cos (θ − φ)) and amplitude
ρ

2πr . Then, provided that CirRT in an IFO, we can extend
the results established for IFO’s in literature in the form of a
principle predicting reconstruction quality:

The boundary of an object is visible if there exists a
scanning circle with is locally tangent to this boundary. If any
scanning curve is not tangent to a local part of the boundary,
this local part of the boundary is considered as invisible, and
will not be well reconstructed.

According to this, the lower reconstruction quality in the
lower edges of the object in Fig. 10 is a consequence of
the lack of scanning circles locally tangent to these parts. In
order to illustrate that, we show the effect of a second data
acquisition with the new source position shifted π/2 from the
first one. The result is an improved image quality because the
second scanning compensates the lack of information in the
first one. Figure 11 shows the result obtained after the com-
bination of the two data acquisitions. Although NMSE does
not changes significantly, image quality is clearly improved
since left and right edges are better reconstructed and artifacts
inside the object are also reduced.

Fig. 11: Image reconstruction with two data acquisitions -
NMSE = 0.0068

V. OPEN ISSUES AND PERSPECTIVES

This first work on this new modality opens some new
perspectives of different kind which will be explored in future
works.

A. Taking into account scattering and attenuation

Taking into account attenuation either for CCST or for other
CST modalities is a major challenge that so far has not exact
solution.

In transmission CST, the attenuation affects both scattered
and primary photons but in a different way. Mathematically,
the attenuation is modelled by two factors a1 for emitted ray
and a2 for scattered ray:

a1(E0, SM) = exp

(
−
∫
SM

µ(E0,M) dl(M)

)
(25)

a2(E(ω),MD) = exp

(
−
∫
MD

µ(E(ω),M) dl(M)

)
(26)

where µ is the attenuation coefficient which depends on the
energy (E0 for primary photons or E(ω) for the energy of
scattered photons) and on the propagation distance (SM or
MD). This fact leads to an attenuated Radon transform on
circular arcs including a1 and a2 as follows:

g(SD,ω) = K(ω) ·∫
M∈Arc SD

a1(E0, SM) f(M) a2(E(ω),MD) dl(M), (27)

where K(ω) is the kinematic factor of Compton effect [15].
For the kind of (27) no exact solution is known until now.
However, iterative algorithms for correcting attenuation

have been proposed which either correct the reconstructed
function [27] with the generalized Chang Correction (GCC) or
correct data acquisition [28] with the iterative pre correction
(IPC). For the previous Nguyen and Truong’s modality, the
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problem has been addressed using an extended version of IPC
algorithm [29]. This method requires having the operator T−1,
i.e. the inverse operator for the corresponding non attenuated
Radon transform. This approach is also feasible for CCST,
where the operator T−1 is the inverse Radon transform on
circles R−1

Cir f . This is why establishing the inverse Radon
transform for CST modalities is the first important step in
order to have a complete modelling accounting for attenuation.
A method similar to [29] will be studied for the CCST in a
future work.

B. Technological challenges raised by CST modalities

CCST and more generally CST need multi-energy detectors
with a sufficient resolution. The performance of detector has
a great influence on the quality of reconstructed images. A
study on the influence of energy resolution on image recon-
struction quality were proposed in [30]. Another interesting
extension of this work is to extend this study for the CCST
modality using Monte-Carlo simulations in combination with
anthropomorphic phantoms [31].

VI. CONCLUDING REMARKS

Using wisely the information given by Compton scattered
rays continues to be a relevant challenge today.

The new modality of Compton scattering tomography
(CCST) presented here falls within this context with additional
advantages comparative to the previous proposed modalities.

In fact, the CCST gathers the advantage to be a fixed
system while collecting a complete dataset for image recon-
struction and able to scan small objects. Moreover, thanks
to the similarity between the CCST and the fan-beam CT
configurations we can propose a bi-imaging system combining
them to obtain two physical properties of matter : attenuation
map and electronic density.

From a practical point of view, the multiple (ring) detectors
allows to reduce the acquisition time and thus the radiation
dose. In addition, the circular distribution of detectors reduces
the size of the system.

From a mathematical point of view, the modelling of this
new system leads to a generalized Radon transform on a
family of circles passing through a fixed point. The equations
of image formation and reconstruction have been explicitly
formulated and the numerical algorithms were implemented
for the first time. This work is the first important step before
taking into account the practical aspects (attenuation, spatial
and energy resolution, noise, ...).

Moreover, the quality of reconstruction is suitable for
the requirements of biomedical imaging. This confirms the
feasibility of this new CCST modality in the sense that
the information contained in the measurements of scattered
radiation is sufficient to recover the electronic density of an
object.
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