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Covert Communication Over the Poisson Channel
Ligong Wang, Member, IEEE

Abstract—We consider the problem of communication over
a continuous-time Poisson channel subject to a covertness con-
straint: The relative entropy between the output distributions
when a message is transmitted and when no input is provided
must be small. In the absence of both bandwidth and peak-power
constraints, we show the covert communication capacity of this
channel, in nats per second, to be infinity. When a peak-power
constraint is imposed on the input, the covert communication
capacity becomes zero, and the “square-root scaling law” applies.
When a bandwidth constraint but no peak-power constraint is
imposed, the covert communication capacity is again shown to
be zero, but we have not determined whether the square-root
law holds or not.

Index Terms—Covert communication, low probability of de-
tection, Poisson channel.

I. INTRODUCTION

COVERT communication, or communication with low
probability of detection [2]–[5], refers to applications

where the transmitter and the receiver must keep an eaves-
dropper from discovering the fact that they are using the
channel to communicate. Specifically, the signals observed by
the eavesdropper when the channel is used must be statistically
close to the signals observed when the channel is not used.
For additive white Gaussian noise (AWGN) channels, the
channel not being used is modeled by the transmitter always
sending zero; for a discrete memoryless channel (DMC), this
is modeled by the transmitter sending an “innocent” symbol—
a specific input symbol, the choice of which is given as part
of the channel model. For a DMC, if the output distribution
at the eavesdropper generated by the innocent symbol is a
convex combination of the output distributions generated by
the other, non-innocent input symbols, then a positive covert
communication rate is achievable; otherwise the maximum
amount of information that can be covertly communicated
grows proportionally to the square root of the total number of
channel uses [4]. For the AWGN channel, the latter, square-
root scaling law applies [2], [4].

As most practically relevant channel models appear to
follow the square-root scaling law and thus have zero capacity
(in nats per channel use)1 for covert communication, some
works have considered variations of the DMC and AWGN
channel models. For example, [6]–[8] consider channels with
parameters that are unknown to the eavesdropper, and [9]
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considers channels with channel-state information (CSI) avail-
able to the transmitter. These works show that, under such
additional assumptions, positive covert communication rates
are sometimes achievable.

The present paper is concerned with covert communication
over the Poisson channel [10]–[12]. The Poisson channel
is a standard model for optical communication employing
intensity modulation at the transmitter and photodetection at
the receiver, hence covert communication over such a channel
is of practical importance.

On a continuous-time Poisson channel, the input is a
nonnegative waveform, and the output is a doubly stochastic
Poisson process whose conditional intensity is given by the
input waveform plus the “dark current”—a constant describing
background noise. We assume that, when the transmitter is not
sending a message, it sends the all-zero waveform.

Like [4], we adopt a setup where the intended receiver
and the eavesdropper observe the same channel output, and
where the transmitter and the receiver share a sufficiently long
secret key. The key allows the transmitter and the receiver to
use a random codebook whose realization is unknown to the
eavesdropper. In all our achievability proofs, we shall generate
the random codebook by choosing all input symbols to be
independent and identically distributed (IID). This renders the
output also IID, so the covertness analysis can be performed
by computing relative entropies between distributions of a
single output random variable. Using IID inputs is obviously
inefficient in the usage of the secret key. For bounds on the
number of secret key nats that need to be used, or for covert
communication without using a secret key, see, e.g., [3], [5].
We note that, when one adopts a wiretap channel model [13]
with different channel coefficients (gain and dark current in the
Poisson case) for the intended receiver and the eavesdropper,
the scaling behavior (e.g., linear or square-root) that we derive
in this paper will remain unchanged, but the required number
of key nats will depend heavily on the difference between the
two channels.

The first interest of this work lies in the case where there
is neither a peak constraint nor a bandwidth constraint on the
input waveform. We show that, in this case, the Poisson chan-
nel has an infinite per-second covert communication capacity.
Thus, the continuous-time Poisson channel follows no square-
root scaling law that is analogous to the one for discrete-
time AWGN channels and many DMCs; instead, it allows the
number of covert information nats to grow super-linearly with
total communication time.

Compared to most previously studied channel models that
allow positive-rate covert communication, our model is of a
different nature. First, the Poisson channel is memoryless, but
is dissimilar to those DMCs that allow positive-rate covert
communication [4], in the sense that its output distribution
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conditional on the all-zero input is not a convex combination
of the output distributions conditional on any input waveforms
that are not almost everywhere zero. To see this, simply note
that any input waveform with a positive Lebesgue integral will
increase the expectation of the total number of output arrivals
compared to the all-zero input waveform. Second, our model is
dissimilar to the queueing channel considered in [14]. In [14]
it is assumed that, when no message is being communicated
via the queueing channel, packets arrive in a random, Poisson
process, making the problem similar to that of “stealth”
[15]. Third, we do not assume any unknown parameter or
channel state as in [6]–[9]. Such additional assumptions would
typically allow the transmitter to send a non-vanishing average
signal power or a non-vanishing percentage of non-innocent
symbols. As we shall see, our Poisson model requires that
the average input power tend to zero as total communication
time grows large, but even this vanishing input power provides
unbounded communication capacity.

In some sense, this Poisson channel has infinite covert com-
munication capacity because it is a continuous-time channel
with no bandwidth limit. Indeed, as we show later on in this
paper, once we restrict the communication bandwidth to a
certain value to reduce the Poisson channel to discrete time, the
maximum covert communication rate will again vanish as total
communication time grows large. Also crucial to the infinite-
capacity result is the absence of a peak-power constraint. It is
well known that a peak-constrained infinite-bandwidth Poisson
channel has a finite per-second communication capacity [10]–
[12], whereas, without a peak constraint, its capacity for
standard, non-covert communication is infinity. We shall show
that the peak-constrained Poisson channel obeys the square-
root scaling law for covert communication, i.e., that the
maximum number of nats that can be communicated covertly
grows proportionally to the square root of total communication
time.

The rest of this paper is organized as follows. Section II
studies the Poisson channel with neither peak-power nor
bandwidth constraint, and shows its per-second covert com-
munication capacity to be infinity. Section III treats the peak-
limited case and derives the exact scaling law. Section IV treats
the band-limited case and derives an upper bound. Section V
then concludes the paper with some remarks.

II. THE NO-CONSTRAINT CASE

Consider a continuous-time Poisson channel with constant
dark current λ > 0. The input to the channel must be a
Lebesgue-measurable, nonnegative signal x(t) ≥ 0, t ∈ [0, T],
where T > 0 is the total communication time. Conditional
on this input signal, the channel output Y (t), t ∈ [0, T], is
a Poisson process whose time-t intensity is x(t) + λ. That
means Y (·) is a random counting function with Y (0) = 0
with probability one and, for t1, t2 ∈ [0, T], t1 < t2,

Pr[Y (t2)− Y (t1) = k|X(·) = x(·)] = e−s
sk

k!
, k ∈ Z+

0 ,

(1)

where

s =

∫ t2

t1

(
x(t) + λ

)
dt. (2)

A codebook on [0, T] at rate R nats per second for commu-
nication over this channel contains eTR input signals xm(t),
t ∈ [0, T], m ∈ {1, . . . , eTR}. An encoder maps a message
m ∈ {1, . . . , eTR} to the corresponding input signal xm(t),
t ∈ [0, T], and sends this signal into the channel. A corre-
sponding decoder maps the output signal y(t), t ∈ [0, T],
to the decoded message m̂ ∈ {1, . . . , eTR}. With the help
of a sufficiently long secret key, the transmitter and the
receiver use a random code to communicate their message. The
eavesdropper, which is colocated with the receiver, is assumed
to know the distribution according to which the random code
is chosen, but not the actual choice (because it does not know
the secret key).

In this section, we do not impose a peak constraint on the
input signal, hence the value of xm(t) at a specific time t may
be arbitrarily large. The peak-limited case is discussed in the
next section. As we shall see, our result does not depend on
whether there is an average-power constraint on the input or
not.

Let QT denote the distribution of Y (t), t ∈ [0, T], when
there is no input signal, i.e., when x(t) = 0 for all t ∈ [0, T].
Thus, QT describes the homogeneous Poisson process of
intensity λ on [0, T]. Further, let P T denote the distribution
of Y (t), t ∈ [0, T], induced by the random codebook and a
uniformly chosen message M . Thus, P T is the unconditional
output distribution when the channel is used to communicate
a message.

We say that a rate R is achievable covertly if, for every
T > 0, we can construct a random code on [0, T] of rate at
least R such that the probability of a decoding error, i.e., of
M̂ 6= M , tends to zero as T tends to infinity, and that

lim
T→∞

D(P T‖QT) = 0, (3)

where D(·‖·) denotes the relative entropy: For two probability
measures P and Q over the same set, if P is absolutely
continuous with respect to Q, then

D(P‖Q) = EP

[
log

dP

dQ

]
, (4)

where dP
dQ is the Radon-Nikodym derivative of P with respect

to Q. (Alternatively, one can define D(P‖Q) as the supremum
over all finite partitions of the sample space of the relative
entropy between the probability mass functions resulting from
P and Q by the partition; see [16].) Note that, by Pinsker’s
inequality [17], the condition (3) implies that the total variation
distance between P T and QT must also tend to zero as T→∞.

We define the covert communication capacity for this chan-
nel as the supremum of all rates that are achievable covertly.

Theorem 1: The covert communication capacity of the
continuous-time Poisson channel described above is infinity,
i.e., all positive rates are achievable covertly.

Clearly, only the achievability part of Theorem 1 needs
proof. Before proceeding with the proof, we describe a random
coding scheme and analyze its covertness. These will be used
in the proof of Theorem 1, and again in the next section.
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Scheme 1: Fix τ, η > 0 and q ∈ (0, 1). Divide the interval
[0, T] into slots of τ seconds: [0, τ), [τ, 2τ), . . .. Randomly
generate a codebook2 by choosing each codeword indepen-
dently according to the following distribution: Within the kth
slot, k ∈ {1, . . . , bTτ c}, X(t) = X ′k with probability one
for all t ∈ [(k − 1)τ, kτ), where the random variables X ′k,
k = 1, . . . , bTτ c, are IID with

X ′k =

{
η, with probability q,
0, with probability 1− q.

(5)

Proposition 1: Suppose the transmitter uses Scheme 1 to
transmit a message. If (λ+ qη)τ < 1, then

D(P T‖QT) ≤
(
q2η2

2λ
+
q3η3

3λ2
+
q4η4

3λ3
+ λητ + q2η2τ

+
qη2τ

2
+
qη

λ
(η + λ)2τ

)
· T. (6)

Proof: For the kth τ -second slot, let Y ′k denote the
total number of arrivals in Y (·) within this slot, that is
Y ′k = Y (kτ) − Y ((k − 1)τ), k ∈ {1, . . . , bTτ c}. Note that,
since with probability one X(t) is constant within the slot
(both when the transmitter is sending and when it is not
sending a message), Y ′1 , . . . , Y

′
b Tτ c

form a sufficient statistic
for the eavesdropper. Under both P T and QT, Y ′1 , . . . , Y

′
b Tτ c

are IID. When no message is being communicated (i.e., under
QT), each Y ′k has the Poisson distribution of mean λτ , which
we denote by Q′. When the transmitter is sending a message
(under P T), for each k, with probability 1 − q the random
variable Y ′k has the Poisson distribution of mean λτ , and with
probability q it has the Poisson distribution of mean (η+λ)τ ;
we denote this mixture of two Poisson distributions by P ′.
Then we have

D(P T‖QT) =

⌊
T

τ

⌋
D(P ′‖Q′). (7)

We next bound D(P ′‖Q′). For each i ∈ Z+
0 , we have

Q′(i) =
e−λτ (λτ)i

i!
(8a)

P ′(i) = (1− q)e
−λτ (λτ)i

i!
+ q

e−(η+λ)τ (ητ + λτ)i

i!
. (8b)

Hence

D(P ′‖Q′) =

∞∑
i=0

P ′(i) log
P ′(i)

Q′(i)
(9)

=

∞∑
i=0

P ′(i) log

(
1− q + qe−ητ

(
1 +

η

λ

)i)
(10)

=

∞∑
i=0

σi, (11)

where in the last line we defined

σi , P ′(i) log

(
1− q + qe−ητ

(
1 +

η

λ

)i)
, i ∈ Z+

0 . (12)

2We emphasize that this random code is what the transmitter and the
receiver will use, and not an intermediate step in proving the existence of
a good deterministic (or “less random”) code, as in, e.g., [17].

We separately bound σ0, σ1, and the remaining terms.
For σ0 we have

P ′(0) = (1− q)e−λτ + qe−(η+λ)τ (13)
≥ (1− q)(1− λτ) + q(1− (η + λ)τ) (14)
= 1− (λ+ qη)τ, (15)

where we used the fact that e−a ≥ 1 − a for all a ∈ R. We
also have

log(1− q + qe−ητ ) ≤ −q(1− e−ητ ) (16)

≤ −q
(
ητ − η2τ2

2

)
, (17)

where the first inequality follows because log(1 + a) ≤ a for
all a ∈ (−1,∞), and the second inequality because e−a ≤
1 − a + a2

2 for a ≥ 0. Note that the left-hand side of (16) is
negative, whereas, when (λ + qη)τ < 1, the right-hand side
of (15) is positive. We can hence combine (15) and (17) to
obtain, whenever (λ+ qη)τ < 1,

σ0 ≤ −(1− (λ+ qη)τ) · q
(
ητ − η2τ2

2

)
(18)

≤ −qητ
(

1−
(
λ+ qη +

η

2

)
τ
)
, (19)

where the last inequality follows by dropping a negative term.
For σ1 we have

P ′(1) = (1− q)λτ e−λτ︸︷︷︸
≤1

+q(η + λ)τ e−(η+λ)τ︸ ︷︷ ︸
≤1

(20)

≤ (λ+ qη)τ (21)

and

log

(
1− q + q e−ητ︸︷︷︸

≤1

(
1 +

η

λ

))
≤ log

(
1 +

qη

λ

)
(22)

≤ qη

λ
− q2η2

2λ2
+
q3η3

3λ3
. (23)

Combining (21) and (23) and dropping a negative term we
obtain

σ1 ≤ qητ
(

1 +
qη

2λ
+
q2η2

3λ2
+
q3η3

3λ3

)
. (24)

For the remaining {σi : i ≥ 2}, we have

log

(
1− q + q e−ητ︸︷︷︸

≤1

(
1 +

η

λ

)i)

≤ log

(
1 + q︸︷︷︸

≤1

((
1 +

η

λ

)i
− 1

))
(25)

≤ log

(
1 +

(
1 +

η

λ

)i
− 1

)
(26)

= i · log
(

1 +
η

λ

)
(27)

≤ i · η
λ
. (28)

Thus ∞∑
i=2

σi ≤
η

λ

∞∑
i=2

P ′(i) · i, (29)
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where
∞∑
i=2

P ′(i) · i

=

∞∑
i=1

P ′(i) · i− P ′(1) · 1 (30)

= EP ′ [Y ′]− P ′(1) (31)
=
(
(1− q)λτ + q(η + λ)τ

)
−
(
(1− q) e−λτ︸︷︷︸

≥1−λτ

λτ + q e−(η+λ)τ︸ ︷︷ ︸
≥1−(η+λ)τ

(η + λ)τ
)

(32)

≤ (1− q)λτ + q(η + λ)τ − (1− q)(1− λτ)λτ

− q(1− (η + λ)τ)(η + λ)τ (33)
= (1− q)λ2τ2 + q(η + λ)2τ2. (34)

Hence we obtain
∞∑
i=2

σi ≤
η

λ

(
(1− q)λ2τ2 + q(η + λ)2τ2

)
. (35)

Combining (7), (11), (19), (24), and (35), we conclude that
(6) holds whenever (λ+ qη)τ < 1.

Proof of Theorem 1: Let the transmitter use the random
code in Scheme 1, where τ , η, and q are chosen as (determin-
istic) functions of T:

τ = T−1e−T (36a)
η = eT/2 (36b)
q = T−3/4e−T/2. (36c)

Note that the average input power by the above choice equals
qη = T−3/4, which tends to zero as T tends to infinity. Hence
any nonzero average-power constraint on the input will be
satisfied when T grows sufficiently large.

Applying the choices (36) to Proposition 1 confirms that
(3) is satisfied, i.e., that the random code is covert. It remains
to derive a lower bound on the communication rates that are
achievable using the proposed scheme. To this end, let the
decoder map the output waveform to a sequence Ŷ1, . . . , Ŷb Tτ c
as follows:

Ŷk =

{
0, if Y (kτ) = Y ((k − 1)τ)

1, otherwise.
(37)

Then we have a discrete memoryless channel with

Pr(Ŷ = 1|X ′ = 0) = 1− e−λτ (38a)
Pr(Ŷ = 1|X ′ = η) = 1− e−(η+λ)τ . (38b)

We then use the information-spectrum method [18], [19] to
lower-bound the maximum achievable rate. Let the input
vector of length bTτ c be denoted by X′ and the corresponding
binary output vector be denoted by Ŷ, then the following rate
is achievable:

P - lim inf
T→∞

{
1

T
log

PŶ|X′
(
Ŷ
∣∣X′)

PŶ(Ŷ)

}
, (39)

where P -lim inf denotes the limit infimum in probability; see
[18], [19]. To bound (39), we bound the mean and the variance

of the random variable inside the P -lim inf . Henceforth we
ignore the b·c operator, whose effect vanishes as T→∞.

For any fixed T, (X′, Ŷ) is IID across different time slots,
hence

E

[
1

T
log

PŶ|X′
(
Ŷ
∣∣X′)

PŶ(Ŷ)

]
=

1

τ
I(X ′; Ŷ ). (40)

By (5) and (38), I(X ′; Ŷ ) can be written as

I(X ′; Ŷ ) = Hb

(
(1− q)(1− e−λτ ) + q(1− e−(λ+η)τ )

)
− (1− q)Hb(1− e−λτ )− qHb(1− e−(λ+η)τ ),

(41)

where Hb(·) denotes the binary entropy function:

Hb(p) = −p log p− (1− p) log(1− p), p ∈ [0, 1]. (42)

We bound the three terms on the right-hand side of (41)
separately.

For the first term on the right-hand side of (41), we drop a
nonnegative term to get

Hb

(
(1− q)(1− e−λτ ) + q(1− e−(λ+η)τ )

)
≥
(

(1− q)(1− e−λτ ) + q(1− e−(λ+η)τ )
)

· log
1

(1− q)(1− e−λτ ) + q(1− e−(λ+η)τ )
. (43)

Then we bound

(1− q) (1− e−λτ )︸ ︷︷ ︸
≥λτ−λ2τ22

+q (1− e−(λ+η)τ )︸ ︷︷ ︸
≥(λ+η)τ− (λ+η)2τ2

2

≥ (1− q)
(
λτ − λ2τ2

2

)
+ q

(
(λ+ η)τ − (λ+ η)2τ2

2

)
(44)

≥
(

(λ+ qη)− q(λ+ η)2τ

2
− λ2τ

2

)
τ, (45)

where the last inequality follows by dropping a term qλ2τ2

2 .
We also have

(1− q) (1− e−λτ )︸ ︷︷ ︸
≤λτ

+q (1− e−(λ+η)τ )︸ ︷︷ ︸
≤(λ+η)τ

≤ (1− q)λτ + q(λ+ η)τ = (λ+ qη)τ. (46)

Combining (43), (45), and (46) we have, for large enough T,

Hb

(
(1− q)(1− e−λτ ) + q(1− e−(λ+η)τ )

)
≥
(

(λ+ qη)− q(λ+ η)2τ

2
− λ2τ

2

)
τ log

1

(λ+ qη)τ
.

(47)

Now consider the other two terms on the right-hand side of
(41). By our choices (36), when T is sufficiently large, λτ < 1

2
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and (λ + η)τ < 1
2 . Since Hb(·) is monotonically increasing

on (0, 1
2 ), we can bound

Hb(1− e−λτ ) ≤ Hb(λτ) (48)

= λτ log
1

λτ
+ (1− λτ) log

1

1− λτ︸ ︷︷ ︸
≤ λτ

1−λτ

(49)

≤ λτ log
1

λτ
+ λτ. (50)

Similarly,

Hb(1− e−(η+λ)τ ) ≤ (η + λ)τ log
1

(η + λ)τ
+ (η + λ)τ. (51)

Combining (40), (41), (47), (50), and (51) yields, for large
enough T,

E

[
1

T
log

PŶ|X′
(
Ŷ
∣∣X′)

PŶ(Ŷ)

]

≥
(

(λ+ qη)− q(λ+ η)2τ

2
− λ2τ

2

)
log

1

(λ+ qη)τ

− (1− q)λ log
1

λτ
− (1− q)λ

− q(η + λ) log
1

(η + λ)τ
− q(η + λ) (52)

= (1− q)λ log
λ

λ+ qη
+ q(λ+ η) log

λ+ η

λ+ qη

− (λ+ qη)− q(λ+ η)2 + λ2

2
τ log

1

(λ+ qη)τ
. (53)

For our choices (36), for large enough T, the right-hand side
of (53) is dominated by its second term, which can be bounded
as

q(λ+ η) log
λ+ η

λ+ qη
≥ qη log

η

λ+ qη
(54)

= T−3/4 log
eT/2

λ+ T−3/4
(55)

=
T1/4

2
− T−3/4 log(λ+ T−3/4). (56)

One can verify that the sum of the remaining terms on the
right-hand side of (53) tends to −λ as T grows to infinity; we
omit the details. We thus have

lim inf
T→∞

E

[
1

T
log

PŶ|X′
(
Ŷ
∣∣X′)

PŶ(Ŷ)

]
T1/4

≥ 1

2
. (57)

We next bound the variance of the random variable inside
the P -lim inf in (39). Since (X′, Ŷ) is IID across different
slots, we have

Var

[
1

T
log

PŶ|X′
(
Ŷ
∣∣X′)

PŶ(Ŷ)

]

=
1

T2 ·
T

τ
Var

[
log

PŶ |X′(Ŷ |X ′)

PŶ (Ŷ )

]
(58)

≤ 1

Tτ
E

(log
PŶ |X′(Ŷ |X ′)

PŶ (Ŷ )

)2
 (59)

=
1

Tτ

∑
x′∈{0,η}
ŷ∈{0,1}

PX′Ŷ (x′, ŷ)

(
log

PŶ |X′(ŷ|x′)
PŶ (ŷ)

)2

. (60)

We simplify each summand on the right-hand side of (60) and
provide an upper bound on it. For the summand with x′ = 0
and ŷ = 0 we have

PX′Ŷ (0, 0)

(
log

PŶ |X′(0|0)

PŶ (0)

)2

≤ 1 ·
(

log
e−λτ

(1− q)e−λτ + qe−(λ+η)τ

)2

(61)

=
(

log(1− q(1− e−ητ ))
)2
. (62)

For the summand with x′ = 0 and ŷ = 1 we have

PX′Ŷ (0, 1)

(
log

PŶ |X′(1|0)

PŶ (1)

)2

= (1− q)(1− e−λτ )

·
(

log
1− e−λτ

(1− q)(1− e−λτ ) + q(1− e−(λ+η)τ )

)2

(63)

≤ λτ
(

log
λτ + qητ

1− e−λτ

)2

. (64)

For the summand with x′ = η and ŷ = 0 we have

PX′Ŷ (η, 0)

(
log

PŶ |X′(0|η)

PŶ (0)

)2

= qe−(λ+η)τ

(
log

e−(λ+η)τ

(1− q)e−λτ + qe−(λ+η)τ

)2

(65)

≤ q(ητ)2. (66)

For the summand with x′ = η and ŷ = 1 we have

PX′Ŷ (η, 1)

(
log

PŶ |X′(1|η)

PŶ (1)

)2

= q(1− e−(λ+η)τ )

·
(

log
1− e−(λ+η)τ

(1− q)(1− e−λτ ) + q(1− e−(λ+η)τ )

)2

(67)

≤ q(λ+ η)τ

(
log

(λ+ η)τ

1− e−λτ

)2

. (68)

Plugging our choices (36) into (62), (64), (66), and (68), one
can verify that, as T grows large, the right-hand side of (68)
satisfies

lim
T→∞

q(λ+ η)τ

(
log

(λ+ η)τ

1− e−λτ

)2

T5/4τ
=

1

4
, (69)

and dominates all the other summands. We then have

lim sup
T→∞

Var

[
1

T
log

PŶ|X′
(
Ŷ
∣∣X′)

PŶ(Ŷ)

]
T1/4

≤ 1

4
. (70)
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Combining (57) and (70) and applying Chebyshev’s inequal-
ity we have, for any finite a,

lim
T→∞

Pr

(
1

T
log

PŶ|X′
(
Ŷ
∣∣X′)

PŶ(Ŷ)
≤ a

)

≤ lim
T→∞

Var

[
1

T
log

PŶ|X′
(
Ŷ
∣∣X′)

PŶ(Ŷ)

]
(

E

[
1

T
log

PŶ|X′
(
Ŷ
∣∣X′)

PŶ(Ŷ)

]
− a

)2 (71)

≤ lim
T→∞

T
1
4

4(
T

1
4

2
− a

)2 = 0. (72)

Hence (39) is infinity and, consequently, the proposed random
coding scheme can achieve an arbitrarily large per-second rate.

III. THE PEAK-LIMITED CASE

Now consider the same continuous-time Poisson channel
with dark current λ as in the previous section, but now we
impose a peak-power constraint on the input: At every time t,
the channel input must satisfy, with probability one,

X(t) ≤ A, (73)

where A > 0 is a given constant.
We modify the covertness constraint. Instead of (3), we now

require, for all T > 0,

D(P T‖QT) ≤ δ (74)

for some given constant δ > 0. This is because, as we shall
see, we are now in the square-root-scaling scenario, and the
exact scaling law depends on δ; adopting the constraint (3)
will not allow us to demonstrate this dependence.

As in the previous section, we allow the transmitter and
the receiver to use a random codebook by exploiting a shared
secret key. Denote by M(T, δ, ε) the largest possible cardinality
of the message set that can be communicated over the channel
in T seconds such that (74) is satisfied, and that the average
probability of a decoding error is no larger than ε.

Theorem 2: Over the above peak-limited Poisson channel,

lim
ε↓0

lim
T→∞

logM(T, δ, ε)√
T

=
√

2λδ

(
A + λ

A
log

A + λ

λ
− 1

)
.

(75)

Proof: We first prove the converse part. The capacity of
a peak- and average-power-limited Poisson channel is known.
To use this capacity result to derive an upper bound on the left-
hand side of (75), we derive an upper bound on the average
input power from the covertness constraint.

Given a random code over [0, T] for a message set of
cardinality M, let ρ denote its average input power:

ρ ,
1

T
E

[∫ T

0

X(t) dt

]
. (76)

By Fano’s Inequality and the Data-Processing Inequality [17]
we have

(1− ε′) logM ≤ I(XT
0 ;Y T

0 ), (77)

where ε′ tends to zero when ε tends to zero. In the above,
XT

0 denotes the waveform X(t), t ∈ [0, T], and similarly for
Y T

0 . The maximum possible value for I(XT
0 ;Y T

0 ) under peak-
power constraint A and average-power constraint ρ is a classic
result [11], [12]:

I(XT
0 ;Y T

0 )

≤ T · max
p∈[0, ρ

A
]

{
p(A + λ) log(A + λ) + (1− p)λ log λ

− (pA + λ) log(pA + λ)
}
, (78)

which can be weakened to

I(XT
0 ;Y T

0 ) ≤ Tρ ·
(
A + λ

A
log

A + λ

λ
− 1

)
. (79)

We next derive a bound on ρ from the covertness criterion
(74). The relative entropy D(P T‖QT) can be computed as
follows. For the distribution P T, one can define the conditional
intensity function at time t ∈ [0, T] as

αt(y
t
0) , lim

∆↓0

Pr(Yt+∆ − Yt ≥ 1|Y t0 = yt0)

∆
. (80)

At any yT0 , the Radon-Nikodym derivative between P T and
QT is given by [20, Eq. (19.125)]

dP T

dQT

(
yT0
)

= exp

{∫ T

0

log
αt(y

t
0)

λ
dyt0 −

∫ T

0

(αt(y
t
0)− λ) dt

}
, (81)

so

D
(
P T
∥∥QT

)
= EPT

[∫ T

0

(
αt(Y

t
0 ) log

αt(Y
t
0 )

λ
− αt(Y t0 ) + λ

)
dt

]
. (82)

Using Jensen’s Inequality [17] and noting that

1

T
E

[∫ T

0

αt(Y
t
0 ) dt

]
=

1

T
E

[∫ T

0

(
X(t) + λ

)
dt

]
= ρ+ λ,

(83)
we obtain from (74) and (82):

(λ+ ρ) log
λ+ ρ

λ
− ρ ≤ δ

T
. (84)

This requires that, as T → ∞, ρ must approach zero; more
specifically, since the left-hand side of (84) behaves like ρ2

2λ
for small ρ, we need

lim sup
T→∞

Tρ2

2λ
≤ δ. (85)

Combining (77), (79), and (85) proves the converse part of the
theorem.
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We next prove the achievability part. To this end, we use
Scheme 1 with the parameters

τ = T−2 (86a)
η = A (86b)

q =
1− γ
A

√
2λδ

T
, (86c)

where γ > 0 will be chosen to approach zero later on.
To show that this random code is covert, we apply Propo-

sition 1 with the parameters (86) to obtain

lim sup
T→∞

D(P T‖QT) ≤ (1− γ)2δ. (87)

Therefore, for any γ > 0, (74) is satisfied for large enough T.
To characterize the rates achievable using the above scheme,

we again map the output within each slot to a binary random
variable as in (37), yielding the transition probabilities

Pr(Ŷ = 1|X ′ = 0) = 1− e−λτ (88a)
Pr(Ŷ = 1|X ′ = A) = 1− e−(A+λ)τ . (88b)

Again using the information-spectrum method [18], [19] we
can lower-bound the left-hand side of (75) by

P - lim inf
T→∞

{
1√
T

log
PŶ|X′

(
Ŷ
∣∣X′)

PŶ(Ŷ)

}
. (89)

For the random variable inside the P -lim inf we have

E

[
1√
T

log
PŶ|X′

(
Ŷ
∣∣X′)

PŶ(Ŷ)

]
=

√
T

τ
I(X ′; Ŷ ). (90)

We omit some details to claim

lim
T→∞

√
T

τ
I(X ′; Ŷ ) = (1− γ)

√
2λδ

(
A + λ

A
log

A + λ

λ
− 1

)
.

(91)
By bounding the variance of the random variable inside the
P -lim inf in (89), where we again omit the details, we can
then show

P - lim inf
T→∞

{
1√
T

log
PŶ|X′

(
Ŷ
∣∣X′)

PŶ(Ŷ)

}

= (1− γ)
√

2λδ

(
A + λ

A
log

A + λ

λ
− 1

)
. (92)

The proof is completed by letting γ approach zero.

Remark 1: The term
(
A+λ
A

log A+λ
λ − 1

)
on the right-hand

side of (75) approaches zero as A ↓ 0, and behaves like
logA when A is large. Further note that the converse proof
of Theorem 2 continues to hold when A is a function of T.
Therefore, if we allow A to grow large with T (while keeping
λ and δ constant), then, for large T,

logM(T, δ, ε) .
√

2λδ
√
T logA. (93)

This implies that, in order to achieve a positive per-second
rate, the peak input power must at least grow exponentially
with

√
T. Recall that, in our achievability scheme for the

no-constraint case, we chose the peak input power to grow
exponentially with T; see (36).

IV. THE BAND-LIMITED CASE

In intensity-modulated optical communication, the input
usually consists of rectangular pulses, and the “bandwidth”
refers to the reciprocal of the smallest possible duration of
an input rectangular pulse. Thus, to model a band-limited
scenario, we require that the transmitter must send a sequence
of rectangular pulses each of τ seconds, where τ is now a
given constant and cannot be chosen to be arbitrarily small as
in previous sections. We hence have a discrete-time Poisson
channel with input alphabet R+

0 , output alphabet Z+
0 , and

transition law

W (y|x) = e−(µ+x) (µ+ x)y

y!
, x ∈ R+

0 , y ∈ Z+
0 . (94)

Here µ > 0 is the discrete-time dark current, which equals
λτ , with λ being the continuous-time dark current. We do not
impose a peak constraint on the input X . The standard (non-
covert) communication capacity of the discrete-time Poisson
channel under a peak- or average-power constraint, or both,
does not have a known closed-form expression; some bounds
and asymptotic results can be found in [21]–[24].

Suppose the channel (94) is used n times (so the total
communication time is nτ seconds). Let Qn denote the output
distribution when there is no input, i.e., Qn describes n ran-
dom variables that are IID according to the Poisson distribution
of mean µ. Let Pn denote the output distribution when the
transmitter is active: Pn is averaged over the message and the
randomly generated codebook. The covertness criterion is

D(Pn‖Qn) ≤ δ, (95)

where δ > 0 is a given constant. Let M(n, δ, ε) denote the
largest possible cardinality of the message set for a (random)
codebook over n channel uses such that (95) is satisfied, and
that the average probability of a decoding error is no larger
than ε. The following asymptotic upper bound shows that the
number of nats that can be communicated covertly grows at
most proportionally to

√
n log log n. Thus, in particular, the

covert communication capacity of this channel is zero nats per
channel use or, equivalently, zero nats per second in continuous
time.

Theorem 3: For the above discrete-time Poisson channel,

lim
ε↓0

lim sup
n→∞

logM(n, δ, ε)√
n log log n

≤
√

8µδ. (96)

Proof: As in the proof of the converse for Theorem 2, we
use the covertness criterion to derive an upper bound on the
average input power. We then apply this average-power bound
to a previously obtained capacity upper bound for the discrete-
time Poisson channel with an average-power constraint.

Consider any random code over n channel uses and for a
message set of cardinality M. Following the same steps as [4,
Eq. (13)], we have

D(Pn‖Qn) ≥ nD(P̄‖Q̄), (97)

where P̄ denotes the average per-letter output distribution
when the transmitter is sending a message, and Q̄ that when
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the transmitter is sending only zeros, i.e., Q̄ is the Poisson
distribution of mean µ. Let

ρ , EP̄ [Y ]− µ. (98)

(Note that ρ is nonnegative.) For a fixed EP̄ [Y ], D(P̄‖Q̄) is
minimized by P̄ also being a Poisson distribution; see [17,
Problem 12.2]. Hence we have

D(P̄‖Q̄) ≥
∞∑
y=0

e−(µ+ρ) (µ+ ρ)y

y!
log

e−(µ+ρ) (µ+ρ)y

y!

e−µ µ
y

y!

(99)

=

∞∑
y=0

e−(µ+ρ) (µ+ ρ)y

y!

(
y log

µ+ ρ

µ
− ρ
)

(100)

= (µ+ ρ) log
µ+ ρ

µ
− ρ. (101)

Recalling (97), the right-hand side of (101) must be less than
or equal to δ

n . This implies that ρ must tend to zero as n→∞.
Further note that the right-hand side of (101) behaves like ρ2

2µ
for small ρ, so ρ must satisfy

lim sup
n→∞

nρ2

2µ
≤ δ. (102)

By a standard argument using Fano’s Inequality, the Data-
Processing Inequality, and the chain rule, we have, for some
ε′ that tends to zero when ε ↓ 0,

(1− ε′) logM ≤ I(Xn;Y n) ≤ n I(X̄; Ȳ ), (103)

where, by slightly abusing notation, X̄ denotes a random
variable that has the average per-letter input distribution com-
puted from the given random codebook, and Ȳ denotes the
corresponding output. Note that Ȳ has distribution P̄ and, by
(94) and (98), E

[
X̄
]

= ρ. In the limit where ρ tends to zero,
we have the following upper bound [23, Proposition 2]:

lim sup
ρ↓0

supE[X̄]≤ρ I(X̄; Ȳ )

ρ log log 1
ρ

≤ 2. (104)

Combining (102), (103), and (104) and letting n → ∞ and
ε ↓ 0 yield the desired bound.

Remark 2: We have not fully determined the scaling be-
havior of logM(n, δ, ε), but it must lie between

√
n and√

n log log n. To see that it should grow at least proportionally
to
√
n, we observe the following: If one imposes a peak

constraint on X , then using the methods in [4] one can show
that logM(n, δ, ε) grows proportionally to

√
n, i.e., the square-

root scaling law holds in the band- and peak-limited case.
We have not been able to find a scheme that allows logM

to grow faster than
√
n, let alone like

√
n log log n. Although

the bound (104) is order-tight, to achieve it, [23] uses flash-
signaling, where the transmitter sends large signals sparsely.
These large signals are easy to detect, hence not suitable for
covert communication. (Note that (102) is a necessary but not
sufficient condition for covertness.)

V. CONCLUDING REMARKS

We have shown that the continuous-time Poisson channel
with neither peak nor bandwidth constraint allows unbounded
data rates for covert communication. The proposed scheme is
however not very practical. Notably, the peak input power that
we use grows exponentially with total communication time T.
As we pointed out in Remark 1, in order to achieve a positive
(not necessarily infinite) rate, the peak input power must at
least grow exponentially with

√
T.

The Poisson channel, being a model for optical communi-
cation, is related to the bosonic channel, a quantum model
for optical communication. Covert communication over the
bosonic channel was studied in [25]. Results on these two
channels are however not directly comparable. First, when
studying the bosonic channel, one usually considers a finite
number of optical modes, so the channel is effectively in
discrete time and hence not comparable to the continuous-
time Poisson channel models. Second, in discrete time, the
background noise on the bosonic channel is usually assumed to
be in a thermal state, in which the number of photons follows
a geometric distribution, whereas for the discrete-time Poisson
channel, the background noise is modeled as having a Poisson
distribution.

Some recent works [26], [27] have studied the Gaussian
channel in continuous time. In [26] we have shown that, like
the Poisson channel, the continuous-time Gaussian channel
without bandwidth constraint also permits positive-rate covert
communication. The mathematical models of the Gaussian
channel and the Poisson channel are however fundamentally
different, as are the optimal covert communication schemes for
them. In the Poisson case, our chosen input signal consists of
sparse narrow pulses; in the Gaussian case, we have shown it
to be optimal to spread the input power evenly over both time
and frequency. It is also interesting to note that an average-
power constraint on the input would be inactive in the Poisson
case, but active in the Gaussian case.
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