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Abstract—We consider a problem of communication over
a physically-degraded additive white Gaussian noise wiretap
channel. A covertness constraint is imposed, which says that the
output at the wiretapper must statistically resemble pure noise.
Previous works have shown that the total amount of information
that can be transmitted over n uses of the channel is proportional
to

√
n, but the communication schemes in those works are

designed to transmit only one message of predetermined length.
We propose a feedback-aided scheme that, at the cost of less-
than-optimal message length, is easily extensible to transmitting
multiple messages and an unbounded amount of information.

I. INTRODUCTION

Recently, much progress has been made on the theory of
covert communication; see [1]–[12] and references therein.
The present paper concerns covert communication over the
additive white Gaussian noise (AWGN) channel. Specifically,
we consider a physically-degraded memoryless wiretap chan-
nel [13] with input-output relations

Y = X + V (1a)
Z = X + V +W, (1b)

where all random variables take values in R. Here, X denotes
the channel input, Y the output at the intended receiver, Z the
output at the wiretapper (sometimes called the “warden” in
the covert communication literature), V is the additive noise
at the intended receiver, and W the additive noise from the
intended receiver to the wiretapper. Both V and W are zero-
mean Gaussian random variables: V has variance 1 and W has
variance σ2 − 1, where σ2 > 1; V and W are independent.

To send a message to the intended receiver, the transmitter
sends a sequence of symbols xn = (x1, . . . , xn)T over n uses
of the above channel. The covertness constraint says that the
output at the warden must be statistically close to pure noise:
for some given constant δ > 0, the distribution of Zn, denoted
by PZn , must satisfy

D
(
PZn

∥∥∥N (0n, σ2In
))
≤ δ, (2)
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where D(·‖·) denotes the Kullback-Leibler (KL) divergence
between two distributions, and N

(
0n, σ2In

)
denotes n inde-

pendent and identical Gaussian distributions, each of mean 0
and variance σ2.

It is known that the maximum amount of information that
can be covertly communicated over the above AWGN channel
scales like the square-root of the total number of channel
uses [1], [4]. More precisely, to a first-order approximation,
for large n, the number of information nats that can be
communicated over n uses of the channel (1) subject to the
constraint (2) is √

nδ · σ2. (3)

To attain such a scaling behavior, the input power per channel
use is chosen as a function of n [4], [7]:

P ≈
√
δ

n
· 2σ2. (4)

The scheme described above is “one shot,” as it is designed
to be used to send one message of predetermined length,
and not to be used repeatedly. Indeed, if the transmitter sent
k messages of length (3) using input power (4), then the
total KL divergence over all kn channel uses would become
approximately kδ, hence the communication activity would be
more likely to be detected by the warden.

In order to maintain the possibility of sending additional
messages at a later time without violating (2), the transmitter
needs to reserve some of its “covertness budget.” For example,
it can choose to send a message of length (3) over 2n instead
of n channel uses, using an input power equaling half of (4),
and resulting in KL divergence δ

2 ; it can send the next message
of the same length over 4n channel uses, using one quarter of
the power (4), resulting in an additional KL divergence of δ

4 ;
and so on. In this approach, every message requires a different
input power and, consequently, a different codebook.1

In this work, we propose a different approach, where the
power of the ith input symbol, i ∈ Z+, is a decreasing function
of i alone. A proper choice of this decreasing function will
guarantee that, under independent Gaussian signaling (at the
chosen powers), (2) will be satisfied even when n → ∞,

1Additionally, the input power depends on the lengths of the messages.
This is true also for transmitting a single message.



hence the encoder no longer needs to adjust the input powers
depending on the number of messages and their lengths.

We then consider coding strategies using the chosen input
powers and with the help of feedback.2 Specifically, we
assume that there is noiseless feedback from the intended
receiver to the transmitter, and that the warden cannot observe
this feedback. The presence of feedback allows us to adapt the
ideas of Schalkwijk and Kailath [15] to design a simple coding
scheme. A short secret key shared between the transmitter and
the receiver is sufficient to guarantee covertness of the scheme,
where the length of the key does not depend on the length of
the message. Moreover, the coding scheme is easily extensible,
in the sense that, to account for additional messages to be
communicated, or to adjust the lengths of the messages, the
encoder and the decoder only need slight modification.

As we shall see, the number of nats that can be transmitted
using our scheme grows with n (total number of channel
uses) more slowly than (3), i.e., the scheme is suboptimal
for sending a fixed number of nats. This compromise is
unavoidable; we shall discuss this in more detail later.

Our scheme relies heavily on the assumptions that the chan-
nel is physically degraded, and that feedback is noiseless and
not observable by the warden. This may limit the usefulness
of the scheme in its current form. We leave it as a potential
direction for future works to overcome this limitation.

The rest of this paper is organized as follows. Section II
presents our choice of input powers; Section III presents
and analyzes the coding scheme for a single message; and
Section IV discusses how to transmit a second message.

II. CHOICE OF INPUT POWERS

We choose a sequence of powers Pi, i ∈ Z+, and assume
(within this section) that the random variables X1, X2, . . . are
mutually independent, with Xi having the Gaussian distribu-
tion N (0, Pi). Our choice is guided by two considerations:
(2) should be satisfied for all n ∈ Z+, and I(Xn;Y n) should
tend to infinity as n→∞. We shall choose

Pi = α · i−β , i ≥ 2, (5)

where β can take any value in (0.5, 1] and α will be determined
later on as a function of β and P1. The choice of the powers is
obviously not unique, and we do not claim (5) to be optimal in
any sense. To verify (2) and to find an appropriate value for α,
we use the following bound (note that Zi has the distribution
N
(
0, Pi + σ2

)
):

D
(
PZn

∥∥∥N (0n, σ2In
))
≤
∞∑
i=1

D
(
N
(
0, Pi + σ2

)∥∥N (0, σ2
))
(6)

=

∞∑
i=1

1

2

(
Pi
σ2
− log

(
1 +

Pi
σ2

))
(7)

2In a rather different setting, using feedback in covert secret key generation
was studied in [14].

≤ P 2
1

4σ4
+

1

4

∞∑
i=2

( α

iβσ2

)2

(8)

≤ P 2
1

4σ4
+

1

4

∫ ∞
1

(
α

ζβσ2

)2

dζ (9)

=
P 2

1

4σ4
+

α2

4σ4(2β − 1)
. (10)

Therefore, (2) is satisfied even as n→∞ if we choose P1 <
2σ2
√
δ and α =

√
(2β − 1)(4σ4δ − P 2

1 ).
One can calculate I(Xn;Y n) for the above choice of Pis:

for large n,

I(Xn;Y n) ≈


α

2(1− β)
· n1−β , β < 1

α

2
log n, β = 1.

(11)

This gives us a first idea how much information can be
communicated over n channel uses, as we explain in more
detail below.

Remark 1: If we fix the input powers as in (5) for a specific
β, i.e., if we impose expected-power constraints E

[
X2
i

]
≤ Pi,

i ∈ Z+ (we can now ignore the covertness constraint (2)), then
the number of nats that can be reliably communicated over n
channel uses cannot asymptotically exceed the right-hand side
of (11). This is true both with and without feedback, as can be
proven along the lines of the converse proofs in [4]. We expect
that one can prove a direct coding theorem without feedback,
which says that (11) is asymptotically achievable using input
powers (5), again following the approach in [4]; the proof
might however be cumbersome due to the nonconstant power.
A direct result with feedback will be proven in the next section.

Remark 2: Recall that we must choose β > 0.5, which
implies that the right-hand side of (11) grows more slowly
than
√
n for all permissible choices of β. Thus, using the input

powers (5) cannot achieve the maximum possible message
length given by (3). This suboptimality is unavoidable if one
wishes to be able to send an unlimited number of messages.
Indeed, at any time n, if the transmitter wishes to maintain
the possibility of sending more messages in the future, then
(2) must hold with strict inequality, resulting in less-than-
maximum total information nats up to time n.

III. COMMUNICATION SCHEME WITH FEEDBACK

We describe a covert communication scheme aided by
noiseless feedback from the intended receiver to the transmitter
as well as a short secret key, neither of which is available to
the warden. The time-i input Xi is a function of the message
M , all past outputs Y i−1, and the key S, which is uniformly
distributed over a set S = {1, . . . , |S|}. The scheme is a
variation of Schalkwijk and Kailath [15] (see also [16]). Let
P2, P3, . . . be chosen as in (5). For brevity, we shall only
consider β ∈ (0.5, 1) (i.e., β 6= 1).

Encoding. To send a message m ∈M, the transmitter first
sends

X1 = θm ,
2m− |M| − 1

2|M|
· λ, (12)



where λ is a constant that we shall specify later. After receiv-
ing the feedback Y1, it recovers V1 = Y1−X1. The remaining
transmissions will be devoted to conveying V1 to the receiver
with high accuracy. However, for covertness considerations,
the transmitter first uses the secret key S to map V1 to a new
random variable:

U2 = Φ−1

(
Φ(V1) +

S

|S|
mod 1

)
, (13)

where Φ(·) denotes the cumulative distribution function of
the standard Gaussian, and where the operation “a mod 1”
removes the maximum integer from a (in the above case, it
outputs a if a < 1, and outputs a−1 if a ≥ 1). For the second
channel use, the transmitter sends

X2 =
√
P2 U2. (14)

At time i ≥ 3, it sends

Xi =

√
Pi
ρi
Ui, (15)

where

ρi =

i−1∏
j=2

(1 + Pj)

−1

(16)

Ui = Ui−1 −
√
ρi−1Pi−1 Yi−1

1 + Pi−1
(17)

= U2 −
i−1∑
j=2

√
ρjPj Yj

1 + Pj
(18)

=
1∏i−1

j=2(1 + Pj)
U2 −

i−1∑
k=2

√
ρkPk∏i−1

j=k(1 + Pj)
Vk. (19)

The purpose of the operation (13) is to use the secret key
to “randomize” V1 to obtain a new standard Gaussian random
variable U2. To see that U2 is indeed standard Gaussian, note
that Φ(V1) is uniformly distributed on (0, 1), therefore so is(

Φ(V1) + S
|S| mod 1

)
. For the “randomize” part, we have

the following lemma, which will be used in the covertness
analysis.

Lemma 3: Let V1 and U2 be as above, and let N be
independent of V1 and have the distribution N

(
0, τ2

)
for some

τ2 > 0. Then, for all |S| > 7,

I(U2;V1 +N) ≤ 1

|S|

(
4 log |S| − 2 log(2π)

τ2
+ 4

)
. (20)

Proof: Omitted.

Decoding. After n channel uses, the decoder computes

Û2 =

n∑
i=2

√
ρiPi Yi

1 + Pi
. (21)

Then, using the secret key S, it computes

V̂1 = Φ−1

(
Φ(Û2)− S

|S|
mod 1

)
, (22)

and
Θ̂ = Y1 − V̂1. (23)

It then outputs the message m̂ that minimizes |Θ̂− θm̂|.

Analysis of covertness. The warden outputs are given by

Z1 = θM + V1 +W1 (24)

Zi =

√
Pi
ρi

(
1∏i−1

j=2(1 + Pj)
U2 −

i−1∑
k=2

√
ρkPk∏i−1

j=k(1 + Pj)
Vk

)
+ Vi +Wi, i ≥ 2. (25)

Note that U2, V2, V3, . . . are IID standard Gaussian random
variables. It follows that Z2, Z3, . . . are jointly Gaussian.
Calculation shows that Zi, i ≥ 2, has the distribution
N
(
0, Pi + σ2

)
. Furthermore,

E[ZiZj ] = 0, i, j = 2, 3, . . . , i 6= j. (26)

Since Z2, Z3, . . . are jointly Gaussian, (26) implies they are
mutually independent. We then have

D
(
PZn

2

∥∥∥N (0n−1, σ2In−1
))

=

n∑
i=2

D
(
N
(
0, Pi + σ2

)∥∥N (0, σ2
))

(27)

≤ α2

4σ4(2β − 1)
, (28)

where the last step follows from our calculations in (10). By
the chain rule of the KL divergence,

D
(
PZn

∥∥∥N (0n, σ2In
))

= D
(
PZn

2

∥∥∥N (0n−1, σ2In−1
))

+D
(
PZ1|Zn

2

∥∥∥N (0, σ2
))
. (29)

Note that Z1 (−− U2 (−− Zn2 forms a Markov chain,
therefore

D
(
PZ1|Zn

2

∥∥∥N (0, σ2
))
≤ D

(
PZ1|U2

∥∥∥N (0, σ2
))

(30)

= I(U2;Z1) +D
(
PZ1

∥∥N (0, σ2
))
.

(31)

We can now apply Lemma 3 to obtain, for |S| > 7,

I(U2;Z1) = I(U2; θM + V1 +W1) (32)
≤ I(U2;V1 +W1) (33)

≤ 1

|S|

(
4 log |S| − 2 log(2π)

σ2 − 1
+ 4

)
. (34)

For the second term on the right-hand side of (31) we have

D
(
PZ1

∥∥N (0, σ2
))
≤ E

[
D
(
N
(
θM , σ

2
)∥∥N (0, σ2

))]
(35)

≤ λ2

24σ2
. (36)

Combining (28), (31), (34), and (36), we obtain

D
(
PZn

1

∥∥∥N (0n, σ2In
))
≤ 1

|S|

(
4 log |S| − 2 log(2π)

σ2 − 1
+ 4

)
+

λ2

24σ2
+

α2

4σ4(2β − 1)
. (37)



By choosing |S| to be large (the choice does not depend on
|M|), we can make the first term on the right-hand side of (37)
close to zero. As we shall see later on, the value of λ does
not affect the decoding error probability in the limit where
n → ∞, thus we can choose λ to be close to zero, thereby
making the second term on the right-hand side of (37) also
small. Therefore, there exist choices of |S| and λ to satisfy
(2) as long as

α <
√

(2β − 1)δ · 2σ2. (38)

Analysis of error probability. By (12), the values
θ1, . . . , θ|M| have a minimum distance of λ

|M| , so the decoder
makes an error only if |Θ̂− θm| ≥ λ

2|M| , which is equivalent
to

|V1 − V̂1| ≥
λ

2|M|
. (39)

To bound the probability of (39), we consider three (not
mutually exclusive) cases. The first case is where |V1| is large.
Specifically, for some small positive ω, consider the event3

E1 : Φ(V1) ∈ [0, ω] ∪ [1− ω, 1]. (40)

Since Φ(V1) is a uniform random variable over [0, 1] and is
independent of S, we have

Pr(E1) = 2ω. (41)

The second case is

E2 : |Φ(U2)− Φ(Û2)| ≥ ω

2
. (42)

We have the following bound:

|Φ(U2)− Φ(Û2)| ≤ |U2 − Û2| ·max
u∈R

φ(u) (43)

=
|U2 − Û2|√

2π
, (44)

where φ(·) denotes the probability density function of the
standard Gaussian distribution. It then follows that

Pr(E2) ≤ Pr

(
|U2 − Û2| ≥

√
π

2
ω

)
. (45)

The third case E3 is where E1 and E2 are both false and (39) is
true. When E1 and E2 are both false, we have Φ(V1)−Φ(V̂1) =
Φ(U2)− Φ(Û2), so

|V1 − V̂1| ≤
|Φ(V1)− Φ(V̂1)|

minu : Φ(u)∈[ω/2,1−ω/2] φ(u)
(46)

= |Φ(V1)− Φ(V̂1)| ·
√

2π · e a2

2 (47)

= |Φ(U2)− Φ(Û2)| ·
√

2π · e a2

2 (48)

≤ |U2 − Û2| · e
a2

2 , (49)

where a , Q−1(ω2 ), with Q(·) denoting the Q-function
associated with the standard Gaussian distribution. We thus
have

Pr(E3) ≤ Pr

(
|U2 − Û2| ≥

λe−
a2

2

2|M|

)
. (50)

3This event does not necessarily lead to a decoding error, but we shall treat
it as an error event to obtain an upper bound on the error probability.

We can write U2 − Û2 as

U2 − Û2 =
1∏n

j=2(1 + Pj)
U2 −

n∑
i=2

√
ρiPi∏n

j=i(1 + Pj)
Vi. (51)

It has a zero-mean Gaussian distribution, with

Var
(
U2 − Û2

)
=

1∏n
i=2(1 + Pi)

. (52)

We thus have

Pr(E3) ≤ 2Q

(√∏n
i=2(1 + Pi)

2|M|
· λe− a2

2

)
. (53)

Hence, for any ω > 0 (recall that a is a function of ω),
Pr(E3) → 0 as n → ∞ provided we choose |M| to be any
function of n that satisfies

lim
n→∞

√∏n
i=2(1 + Pi)

|M|
=∞. (54)

By such a choice, Pr(E2) will also approach zero as n→∞;
recall (45). Since ω can be chosen to be arbitrarily close to
zero, which in turn makes Pr(E1) close to zero, we conclude
that the overall error probability can be made arbitrarily small
provided that |M| satisfies (54). Consider the logarithm of the
numerator in (54), with the choice (5) for some β ∈ (0.5, 1):

log

√√√√ n∏
i=2

(1 + Pi) =
1

2

n∑
i=2

log
(

1 +
α

iβ

)
(55)

≥ 1

2

∫ n

2

log

(
1 +

α

ζβ

)
dζ (56)

≥ 1

2

∫ n

2

(
α

ζβ
− α2

2ζ2β

)
dζ (57)

=
1

2

(
α

1− β
(n1−β − 21−β)

− α2

2− 4β
(n1−2β − 21−2β)

)
. (58)

If we choose, for any ε > 0,

log |M| = (1− ε) · α

2(1− β)
n1−β , (59)

then (54) can be satisfied, and the error probability can indeed
be made arbitrarily small.

Summarizing the above analyses and recalling our choice
of α in (38), we have the following result.

Theorem 4: Fix β ∈ (0.5, 1). For any ε > 0, there exists
a sequence of feedback- and secret-key-aided communication
schemes, all of which satisfy the covertness condition (2),
whose error probability approaches zero as n→∞, and which
over n channel uses can transmit a message drawn from a set
M(n) with

log |M(n)| ≥ (1− ε)σ2 ·
√
δ ·
√

2β − 1

1− β
· n1−β . (60)

The part in (60) that depends on β is
√

2β−1
1−β ·n

1−β . We plot
it for different values of β in Fig. 1. As can be seen, choosing



Fig. 1. Maximum possible throughput divided by
√
δ · σ2 as a function of

n, the number of channel uses, for different values of β.

β closer to 0.5 yields better asymptotic growth, but smaller
throughput for small n due to the multiplicative factor.

IV. ADDING A SECOND MESSAGE

Suppose now that the transmitter must send two messages
to the intended receiver, but that it cannot combine the two
messages into one long message. (The latter may be because
that, at the time when transmission of the first message started,
the transmitter was not aware of the content or even the
existence of the second message.) We discuss two approaches,
both of which can be extended to sending multiple (i.e.,
more than two) messages. For brevity, we shall skip some
mathematical details to focus on presenting the main ideas.

Let the first message be M drawn from the setM as in the
previous section, and let the second message be M ′ drawn
from the set M′.

A. Second message after completion of the first message

In this approach, the transmitter sends the second message
using the same procedure as for sending the first message,
except with different input powers. Suppose that transmission
of the first message is completed at time `. To send the second
message, the transmitter first sends

X`+1 =
2m′ − |M′| − 1

2|M′|
· λ′, (61)

where λ′ is an appropriately chosen function of `. The encoder
then computes V`+1 = Y`+1 −X`+1 using the feedback, uses
a secret key (which it shares with the receiver) to randomize
V`+1 in a similar way to (13) to obtain U`+2, and sends
X`+2 =

√
P`+2 U`+2. The scheme proceeds in the same

way as when sending the first message, using input powers
P`+2, P`+3, . . .. One can show that, with an appropriately
chosen λ′, the total KL divergence (over the transmission of
both messages) is smaller than δ. Furthermore, the maximum

possible value for log |M| + log |M′| is again given by the
right-hand side of (60), where n is now the total number of
channel uses for both messages.

B. Superimposing the second message onto the first message

Suppose that, at time j during the transmission of the first
message M (using the procedure described in Section III),
the transmitter learns that it must send another message M ′

to the receiver. Instead of waiting for the transmission of M
to complete, it can immediately superimpose M ′ onto M . To
do so, it computes

θ̃m,m′ = θm +
2m′ − |M′| − 1

2|M||M′|
· λ. (62)

It then continues transmission as if it had been sending θ̃m,m′

instead of θm from the beginning. To this end, it computes

Ṽ1 = Y1 − θ̃m,m′ (63)

Ũ2 = Φ−1

(
Φ(Ṽ1) +

S

|S|
mod 1

)
, (64)

where S is the same secret key as used in (13). To start
superimposing m′ onto m at time j, the transmitter does the
following. Instead of computing (17) with i = j, it computes

Ũj = (Ũ2 − U2) + Uj−1 −
√
ρj−1Pj−1 Yj−1

1 + Pj−1
, (65)

and sends X̃j =
√

Pj

ρj
Ũj . For all i ≥ j + 1, it computes

Ũi according to (17) with Ui−1 replaced by Ũi−1, and sends
X̃i =

√
Pi

ρi
Ũi. Note that, for all i ≥ j, (18) now becomes

Ũi = Ũ2 −
i−1∑
j=2

√
ρjPj Yj

1 + Pj
. (66)

The decoder again computes Θ̂ using (21)–(23). It then outputs
the pair (m̂, m̂′) that minimizes |Θ̂− θ̃m̂,m̂′ |.

The decoding error probability can be bounded in a sim-
ilar way as in Section III, and is relatively straightforward.
Rigorous analysis of covertness is more involved; the main
difference from the one-message case comes from the jth
channel use:

Ũj = (Ũ2 − U2) + Uj , (67)

where the additional term (Ũ2−U2) adds to the total KL diver-
gence. The difference is significant if the decoder’s estimation
error of U2 at time j—which in fact equals Uj—is small, i.e.,
if the decoder is “almost ready” to declare the outcome; it is
negligible if Uj is large. Hence the superimposing approach
is feasible if transmission of the first message is “far from
finished.” We shall elaborate on this fact in a full-length paper,
which is under preparation.
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