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Abstract—Consider a multiple-input single-output system,
where the nonnegative, peak-limited inputs X1,..., X, € [0, A]
are subject to first- and second-moment sum-constraints on all
antennas. The paper characterizes all probability distributions
that can be induced for the “channel image,” which is given by
the inner product of the input vector with a given channel vector.
Key to this result is the description of input vectors that achieve
a given deterministic channel image with the smallest energy,
where “energy” of an input vector refers to a weighted sum of
its one- and two-norms. Minimum-energy input vectors have an
interesting structure: depending on the desired channel image,
some of the weakest antennas are silenced, and the remaining
antennas are chosen according to a shifted and amplitude-
constrained beamforming rule.

I. INTRODUCTION

Consider a multiple-input single-output (MISO) antenna
system of the form:

X =h'X, (1)

where h = (hq,...,hy,)" is a constant channel state vector
and X a random nrp-dimensional channel input vector X =
(X1, X)) -

The channel image X in (1) is useful in describing the
input-output relation of MISO (optical or radio-frequency)
wireless channels, where the channel output is modeled as
Y = X + Z, with Z being additive noise [1]-[4]. In radio-
frequency communication, the inputs X1, ..., X, correspond
to the modulated electromagnetic field, and as such both
the inputs and the channel coefficients can take values over
the entire real line R. In this context, battery and power
limitations impose a second-moment constraint E [[|X[|3] < P,
and modulation schemes can be restricted without loss of
optimality to beamforming input-vectors [4], [5]

Xbeamformer(f) = ﬁ . h» T < Ra (2)
2

since Xpeamformer (%) has the smallest two-norm ||x||3 among all
input vectors x inducing the same channel image Z = h'x. In
particular, because X forms a sufficient statistic for X with
respect to the output Y = X + Z, the capacity-achieving input
distribution for such a channel can be restricted to taking value
only in the set of beamforming vectors like (2).

In intensity-modulated direct-detection (IM/DD) optical
communication systems, the inputs are directly proportional
to the intensity of the emitted light. They therefore cannot
be negative: X;,...,X,, > 0 with probability one. The
channel coefficients are also nonnegative in this case. To avoid
degeneracy, we henceforth assume that no two coefficients are
equal, and, without loss of generality, that they are ordered as

hy > hg > -+ > hy, > 0. 3)

Furthermore, optical-power limitations are captured by the
first-moment constraints E[||X]||;] < E. The input vector with
the smallest one-norm inducing a target channel image 7 is

T

T
Xstrongest(f) = <h17 07 EERE 0) ) WS [Oa OO) (4)

Therefore, modulation systems for first-moment constrained
MISO additive noise channels as well as the capacity-
achieving input distributions of these channels can be restricted
in such a way that only the first input antenna is used.

Safety considerations and technical limitations often impose
strict peak constraints A > 0 on the inputs:

X1,...,Xn; €[0,A] with probability one, )

in which case the random channel image X takes value in
the interval X £ [0, hgmA], for hgm = > L, hy. Under
such peak constraints, the input vector x that induces a target
channel image Z with the smallest one-norm is [6], [7]

_ i—1 T
T — S Ahyg
Xpeak(T) = (A,...,A,W,O,...,O) , (6)

where the single input that is neither O nor A is at position
; - 1 > 1 ;
ie{l,...,np}if e (AY b, A1 hi).

In this paper, we consider the peak constraint (5) together
with both first- and second-moment input constraints:

EllIX][1] < anA,
E[IX]3] < asA®.

(7a)
(7b)

Our main contribution is a characterization of the set of all
random channel images X that can be induced under con-
straints (5) and (7). A main step in our analysis is determining
the “minimum-energy” input vectors Xmin, x(Z) that, among



all input vectors inducing a (deterministic) channel image Z,
minimize the weighted sum-norm

1%l <113
A A2

for some A € [0,1]. For A = 1, Xmin,1(T) = Xpeak(T), as
determined in [6]. A key intermediate result of the present
paper is the minimizer to (8) for A € [0,1): it sets a number
of strongest antennas to the maximum value A, switches
off a number of the weakest antennas, and applies “shifted
beamforming” on the remaining antennas. The exact solution
is given in Lemma 9 ahead.

The motivation for this study is that many IM/DD systems
have limitations on both the optical power (first moment) and
the power consumed by the electronic circuit (second moment)
[8]-[12]. Our characterization of all possible channel images
X finds application in capacity calculations of additive-noise
MISO channels with first- and second-moment constraints:
it reduces the capacity problem to a simpler optimization
problem over all possible! X. To illustrate this application, we
look at a specific example of a MISO channel (Example 13
in Section V), and determine the set of constraint parameters
a1, ag for which the first- and and second-moment constraints
(7) do not affect the capacity in the high signal-to-noise ratio
(SNR) regime. We note that the capacity of additive Gaussian
noise MISO channels with peak or first-moment constraint, or
both (but without a second-moment constraint), has also been
studied using different techniques; see [7], [11], [13]-[24] and
references therein.

Our minimum-energy solutions are also useful in the design
of energy-efficient modulation and communication systems. To
illustrate this, we study another specific channel (Example 11
in Section III), and present the most energy-efficient way to
induce an 8-ary pulse-amplitude modulation (PAM) on X.

A +(1—=X) ®)

The remainder of this paper is arranged as follows. In
Section II, we recapitulate our problem formulation and our
notation. In Section III, we show that the problem of char-
acterizing all achievable X can be simplified to a class of
optimization problems for deterministic channel images 7 € X’
and some parameter A € [0,1]. In Section IV, we then
present the solution to these optimization problems. Section V
combines these findings to present an explicit characterization

of the set of channel images X that are achievable under
constraints (5) and (7).

II. NOTATION AND PROBLEM FORMULATION

A random variable is denoted by a capital Roman letter, e.g.,
X, while its realization is denoted by the corresponding small
Roman letter, e.g., x. Vectors are boldfaced, e.g., X denotes
a random vector and x its realization. Sets are denoted by
calligraphic letters like Z. We further use small Greek letters
like o and ), as well as capital Roman letters of a special font
like A, to denote certain constants.

'A similar technique was already applied in [6], [7] to channels without a
second-moment constraint.

We summarize our problem formulation, which has already
been introduced in Section I. We consider the MISO system
(1) under the peak constraint (5) and the first- and second-
moment constraints (7). Given any desired distribution for X
as in (1), our goal is to find out whether it is achievable under
these constraints or not.

III. PARETO-OPTIMAL INPUTS

Since we have two power constraints, it is convenient to
think of the first and second moments of a random vector
as two utility functions, and introduce the notion of Pareto
optimality.

Definition 1: A random vector X is said to be Pareto optimal
if there exists no other random vector X’ such that h"X’ has
the same distribution as h"X, while

E[IX'[l2] < E[IIX]]
E[IIX'2] < E[IX3]

(9a)
(9b)

with at least one of the two inequalities in (9) being strict.

Lemma 2 below says that we can restrict our attention
to Pareto-optimal input distributions. Lemma 3 characterizes
these Pareto-optimal distributions as solutions to a class of
optimization problems. The proofs of these two lemmas are
elementary and omitted.

Lemma 2: Consider a random channel image X with a de-
sired distribution. If there exists an input vectors X satisfying
(7) and inducing X, then there must exist a Pareto-optimal
input vector X* satisfying (7) and inducing X.

Lemma 3: If a random vector X* is Pareto optimal, then
there exists a A € [0, 1] such that X* minimizes
E[||IX E[IIX||3
v EUXIL (o EDXIE)
A A2
among all X for which h"X has the same distribution as
h™X*,

(10)

The following lemma characterizes the minimgm of (10).
Lemma 4: Fix any A € [0,1]. For any T € X, denote

2
BB

+(1

N [1x]1
g(m’ /\) N x:rl);l-rl)r(l—w{)\ . A A2

For any target distribution for X,

o BT . ELEEELL

X WX X A AZ

=E[g(X,N)]. (12)

Proof: For any X such that h"X ~ X, we have

E X4 E[IIX13]

_ [BSIF X3

—E [/\ S (1) (13)

_ [BSI IR 2.9 e —

_E[E{)\ =N B X =X (4



> E[g(X,N)].

Equality in the above is achieved by choosing, for every = €
X, a corresponding input vector x that achieves g(Z,)). M

Recall that our goal is to find out whether a desired
distribution for X is achievable under the constraints (7) or
not. Using Lemmas 2, 3, and 4, we see that this task can be
simplified as follows. We first determine, for every A € [0, 1]
and T € X, the input vectors that achieve the minimum in
(11). (This can be done without knowing the target distribution
for X.) We refer to such input vectors as minimum-energy
signaling (with respect to parameter \). If a target distribution
for X is achievable under (7), then there must exist some
A € [0,1] such that an X taking values only on minimum-
energy signaling input vectors with respect to parameter A
induces X and satisfies (7). In fact, as we shall later see,
such X is uniquely determined by X and \. Hence, instead
of considering distributions over [0, A]"T, we only need to
examine these specific distributions for each A.

15)

IV. CHARACTERIZATION OF MINIMUM-ENERGY
SIGNALING

In this section we characterize, for every A € [0,1) and
T € X, the solution to the following minimization problem:?

2
A)~”;‘\!2}. (16)

%11
_m{A A

Recall that for A = 1, the optimization problem in (16) was
solved in [6].
Fix a A € [0,1) and denote

min

+(1-
x€[0,A]"T: hTx (

A
£ _- 17
V=13 (17)
We introduce some indices and threshold values.
Definition 5: Set ko = 0. For each index ¢ € {1,...,nt},
define the integer
s ; he .
ke = max< j € {¢,.. nT} h——l <13; (18)
j
define the point
h2
tg_AZh +AZ ( <hz h,»)); (19)
i=0+1
and finally, for every k € {k¢_1 + 1,..., K¢}, define
-1 k=1, 2
EAY hi+AY -+ —hil 20
Sk ; - ; > (20)

Remark 6: Notice that kg, t, and s are all nondecreasing
in k€ {1,...,nr}. Moreover, if k¢ < k¢41, then

Sk < t@ < Skp+15 (21)

2t is easily verified that A simply acts as a multiplicative factor for the
optimal input. That means, if for fixed A the input x, is a minimizer when

A = Aj, then xa, = 2—’;’XA1 is a minimizer for A = Aa.

because
hf h2 v hf
—= + - = —h; —=|l— N
hy hy 2\ hy
h% v h@
=i (sl ) @

where T is positive for any k < x; and i € {1,...,k} and is
negative for k = xy+ 1 and ¢ € {1,...,k}. Thus we have an
ordering of the form:

nr — hsumA~ (23)

As will be shown later, for each k € {1,...,nr}, s; is the
threshold on Z at which the kth antenna should be switched on
(i.e., the optimal choice should have z = 0 for ¥ < s, and
xr > 0 for T > si); and t; is the threshold on Z at which the
kth antenna should be set to the maximum value A (i.e., the
optimal choice should have z;, = A for > t). The integer
Ky, indicates the number of antennas that should be switched
on before the kth antenna is fixed to its maximum value A.
Definition 7: For any £ € {1,...,nt} for which k¢ > K¢_1,
and for any k& € {k¢_1,...,K¢} (and & > 0), define the

subintervals
[te—1,864+1] if k= ko1,
Ig’k £ [Ska3k+1] if ky_1 < k< Ky, 24)
[Sk,tg] if k= Ry.

For any ¢ € {2,...,nr} for which k; = ky_1, define the

subinterval
Top = [te—1,ta). (25)
The next lemma follows immediately from Remark 6.
Lemma 8: The set of intervals
P = {If,ng_1+17 v 7IZ,Ne}{E: Ko—1<Ke}
U {Il,(l)}{E: Ke—1=Kg} (26)

overlap on a set of Lebesgue measure zero, and their union is
X.
We can now present the solution to (16).

Lemma 9: Fix A € [0,1). For any T € X, the opti-
mization problem (16) has the following unique’® solution
Xmin A(Z) = (Tmin,A15 - - - » Tmin,\,ng) - If T lies in an interval
2y 1, as defined in (24), then the solution is given by

xmin,),i(i) = A, ) < f— ]_,

xmin,)\,i( = (l’ —A Z h > Z h2

j=L""]
k
VA Zj:[hj 1
2 |« r2 )

2 2
2=t By

3Uniqueness relies on the strictness of the inequalities in (3).

(27a)

i=1,....k (27b)



Tmin,,i(T) =0, i>k+1, (27c)

where v is defined in (17). Furthermore, the one- and two-
norms of Xmin A(T) are given respectively by

||Xmin,)\(f) Hl = m(Aa ‘f)

A
é(éfl)Af(kuJrl)u;
—_ -1 A k k
T—A) . Th;+vs > h;
+< Zj—lzzi h22 Z]—é J> ) (Z hi>, (28)
ALY i=0
and
”Xmin,)\(f)Hg =v(\7)
A 2 2A2
L (L-DA*+ (k- C+ 1" —
2
+(f*AZiiM+V%'ZiJM)
k
T—AY T hj 402k k
_( 2]71 i 22 2]75 J . hq, VAL
Zj:[ h] =L

(29)

If Z lies in an interval Z; y as defined in (25), then Xmin, 1 (Z)
is given as in (27) with k replaced by ky; its one- and two-
norms are given by m(\, Z) and v(\,Z) as in (28) and (29),
again with the parameter k£ replaced by ry.

Proof: Omitted. ]

Remark 10: Lemma 9 shows that Xuyin x(Z) sets the
strongest /— 1 antennas at the maximum value A and switches
off the weakest nt — k antennas; the remaining k — ¢ + 1
antennas are used in a shifted beamforming fashion, in the
sense that the first term on the right-hand side of (27b) is
the same as in standard beamforming subject to a second-
moment constraint [4], while the second term there is a shifting
constant that depends on the antenna index 3.

To illustrate our minimum-energy solution, we present the
following example.

Example 11: Consider a MISO channel with ny = 3 input
antennas and channel vector

h=(4,21)". (30)

The goal is to induce an 8-ary PAM on X, where the eight
points are 0, A, 2A, ..., 7TA, with smallest weighted sum

Il l1x13
2A 2A2°

To determine the minimum-energy input vectors, we first
compute the x-values as defined in (18):

€29

K1 =2, Kg = 3, K3 =3, (32)
and the s- and t-values as defined in (20) and (19):
ty = 4.5A, to = 6.25A, t3 =TA, (33)

and

s1=0, s3=2A,  s3=D5A. (34)

We thus have

81 < 89 <t < 83 <1y < 3. 35)

Thus, when the weakest antenna is used for signaling, the
strongest antenna is fixed to its maximum value A.
The corresponding intervals from Definition 7 are

1171 = [51, 82] = [0,2A], 1172 = [Sg,tl] = [2A,45A],
2-272 = [t1,83] = [45A,5/A}7 1273 = [83,t2} = [5A,6.25A],
Tsp = [ta, t3] = [6.25A, TA]. (36)

For the desired 8-ary PAM, the minimum-energy input
vector X, that induces the 7n-th modulation point

T, = (n—1)A, n=1,...,8, 37)
is now given according to Lemma 9 as follows:
0 1/4 1/2
X1 = 0 5 X9 = 0 A, X3 = 0 A,
0 0 0
7/10 9/10 1
x4=[1/10|A, x5=1| 1/5 |A, x¢=|[1/2]A,
0 0 0
1 1
x7=[9/10 |A, xs=|[1]A. (38)
1/5 1

The average one- and two-norms of the above solution are,
respectively,

E[IX]l] = 1.1562 A,
E[|IX|3] = 0.9703 A”.

(39a)
(39b)

We can compare these to the one- and two-norms of the
solution that minimizes the one-norm, which is given by
(6), and the solution that minimizes the two-norm, which is
beamforming with a peak constraint:

Ell Xpeak|l1] = 1.125 A, (40a)
E [ Xpeak]3] = 1.0156 AZ; (40b)
E [l Xbeamforming||1] = 1.275 A, (41a)
E [|| Xbeamforming||3] = 0.9274 A2 (41b)

V. CHARACTERIZATION OF ALL ACHIEVABLE X

Theorem 12: The target random variable X can be generated
with a random input vector X satisfying (7) if, and only if,
there exists a value A € [0,1] such that the following two
inequalities are satisfied:

Ey[m()\,y)] < oA,
Ex[o(\ X)] < asA?,

(42a)
(42b)
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Fig. 1. The figure illustrates the set of all (a1, a2)-pairs that allow to induce
a uniform distribution over X under a MISO channel vector h = (4, 3,2, 1)".

where for A € [0, 1) the functions m(-, -) and v(-, -) are defined
in Lemma 9 and where for ¢ € {1,...,nr} and

1—1 i
e (A he,AD hil, (43)
k=1 k=1
we define
i—1 _ i—1
—A h
m(1,7) 23 A+ % (44)
k=1 i
A =1 T — Azi_l hy,
v(1,T) = ZA2 + % (45)
k=1 i

Proof: The theorem follows immediately from Lemmas 2,
3,4, and 9. [ |

Example 13: Consider a MISO channel with ny = 4 input
antennas and channel vector
h=(4,3,2,1)". (46)
Figure 1 illustrates the set of (aq, «g)-pairs that permit the
uniform distribution for X € X. The uniform distribution
is optimal in the high-signal-to-noise-ratio (high-SNR) limit
among all X taking values on X without other constraints; see,
e.g., [6]. Thus, we have identified the set of (a, oo )-pairs for
which the constraints (7) do not limit the capacity in the high-
SNR limit. This set depends on the channel vector h and has a
fundamentally different shape from the corresponding set for
the single-input single-output channels, which is characterized
by a3 > 1/2 and ap > 1/3 and is rectangular [11].
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