
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS 1

Variable-Node-Shift Based Architecture for
Probabilistic Gradient Descent Bit

Flipping on QC-LDPC Codes
Khoa Le , David Declercq, Senior Member, IEEE, Fakhreddine Ghaffari, Member, IEEE,

Lounis Kessal, Member, IEEE, Oana Boncalo, Member, IEEE, and Valentin Savin, Member, IEEE

Abstract— Probabilistic gradient descent bit-flipping (PGDBF)
is a hard-decision decoder for low-density parity-check (LDPC)
codes, which offers a significant improvement in error correction,
approaching the performance of soft-information decoders on
the binary symmetric channel. However, this outstanding perfor-
mance is known to come with an augmentation of the decoder
complexity, compared to the non-probabilistic gradient descent
bit flipping (GDBF), becoming a drawback of this decoder.
This paper presents a new approach to implementing PGDBF
decoding for quasi-cyclic LDPC (QC-LDPC) codes, based on
the so-called variable-node-shift architecture (VNSA). In VNSA-
based PGDBF implementations, the regularity of QC-LDPC
connection networks is used to cyclically shift the memory of the
decoder, leading to the fact that, a variable node (VN) is processed
by different computing units during the decoding process. With
this modification, the probabilistic effects in VN operations can
be produced by implementing different types of processing units,
without requirement of a probabilistic signal generator. The
VNSA is shown to further improve the decoding performance
of the PGDBF, with respect to other hardware implementations
reported in the literature, while reducing the complexity below
that of the GDBF. The efficiency of the VNSA is proven by ASIC
synthesis results and by decoding simulations.

Index Terms— Low-density parity-check, quasi-cyclic,
probabilistic gradient descent bit flipping, random generation,
low complexity implementation, high throughput decoder.

I. INTRODUCTION

LOW-DENSITY Parity-Check (LDPC) codes have been
increased research interest over the last years, due to

their near-capacity error correction performance and their
manageable complexity implementations [1]. Hence, they

Manuscript received August 28, 2017; revised November 7, 2017; accepted
November 19, 2017. This work was supported in part by French ANR
through the NAND Project under Grant ANR-15-CE25-0006-01 and in
part by the Franco-Romanian (ANR-UEFISCDI) Joint Research Program
(DIAMOND Project). This paper was recommended by Associate Editor
I. Kale. (Corresponding author: Khoa Le.)

K. Le, D. Declercq, F. Ghaffari, and L. Kessal are with ETIS, UMR8051,
Université Paris Seine, Université de Cergy-Pontoise, ENSEA, CNRS, 95014
Cergy-Pontoise, France (e-mail: khoa.letrung@ensea.fr; declercq@ensea.fr;
fakhreddine.ghaffari@ensea.fr; kessal@ensea.fr).

O. Boncalo is with the Computer Engineering Department,
University Politehnica Timisoara, Timisoara 300006 Romania (e-mail:
oana.boncalo@cs.upt.ro).

V. Savin is with CEA-LETI, MINATEC, 38054 Grenoble, France (e-mail:
valentin.savin@cea.fr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2017.2777802

have been used in many practical applications, such as stor-
age (hard drives, flash memories, etc.) [2]–[4], or wireless
transmission standards such as IEEE 802.3an 10GBASE-T,
IEEE 802.11n, 802.16a [5]–[7]. LDPC codes can be effectively
decoded by either soft decision decoding algorithms, such as
Belief Propagation (BP) or Min Sum (MS), providing very
good error correction capability but the computation complex-
ity is very high, or the hard-decision decoding algorithms,
such as Bit Flipping (BF) or Gallager-A/B, which are very
low in complexity but a weak performance is observed [1].
LDPC decoding algorithms follow an iterative manner where
the messages are iteratively passed between two groups of
nodes: Variable Nodes (VNs) and Check Nodes (CNs). The
low complexity of hard-decision decoders comes from the fact
that, only binary messages are iteratively passed between the
VNs and CNs during the decoding process, which simplifies
the connection network of the decoders. In addition, the
computation units to process these binary messages, are very
simple. This paper is concerned with the Bit Flipping (BF)
hard decision decoder where, contrary to message passing hard
decision decoders, both extrinsic and intrinsic information are
passed between the computation nodes.

The conventional BF decoder, introduced by Gallager
in 1963 [8], is a very low complexity decoder but being
weak in performance, compared to soft-decision decoders.
Many modifications have been introduced to fill this per-
formance gap, such as Weighted BF (WBF) [9], Modi-
fied WBF (MWBF) [10], Improved MWBF (IMWBF) [11],
especially the class of the Gradient Descent Bit Flip-
ping (GDBF) [12] and its variants such as Probabilistic
Gradient Descent Bit Flipping (PGDBF) [13], Noisy Gradient
Descent Bit Flipping (NGDBF) [14]. The differences between
these BF decoders can be summarized by the difference from
the computation of the so-called inversion function (or energy
function) and from the mechanism of choosing the VNs to
flip at each iteration. In the conventional BF, at each iteration,
the energy value of every VN is given by the number of
unsatisfied neighboring CNs, and the VNs that have energy
lower than a pre-defined threshold will be flipped. By this
energy computation, the conventional BF considers the con-
tribution of neighbor CNs to VN energy value equally. Several
modifications such as Weighted BF (WBF) [9], Modified WBF
(MWBF) [10], Improved MWBF (IMWBF) [11] etc., have put

1549-8328 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1453-2537
https://orcid.org/0000-0003-1453-2537
https://orcid.org/0000-0003-1453-2537

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

weighting factors on these parity check values and made them-
selves differ from the weighting factor calculation. Many other
interesting BF proposals, with the same spirit of modifying
energy computation and/or flipping mechanism, can be found
in [15]–[17] and combinations of several BF decoding prin-
ciples into a single decoder were presented in [18], [19].
Although the above introduced decoders provide different
levels of error correction improvement, they are still not
comparable to the performance of the soft-decision decoders.

The Gradient Descent Bit Flipping decoder has been intro-
duced by Wadayama et al. in [12] in which the authors
considered the decoding process as an optimization process.
In GDBF, an objective function is defined and a strategy to
flip the VNs is derived to minimize this objective function.
The GDBF offers a better decoding performance to all prior-
introduced BF decoders while keeping the low-complexity
property. A variant of GDBF, called Probabilistic GDBF
(PGDBF), was introduced by Rasheed et al. in [13] by mod-
ifying GDBF to apply on Binary Symmetric Channel (BSC)
and by incorporating the probabilistic feature in flipping the
VNs. PGDBF follows precisely the decoding steps of GDBF
and the difference comes from the fact that, the flipped VNs
in GDBF are actually flipped with only probability p0 < 1
in PGDBF. PGDBF obtains a large performance gain com-
pared to GDBF, approaching the performance of soft-decision
decoders [13].

The outstanding decoding performance of PGDBF comes
along with the additional complexity, compared to GDBF,
due to the additional probabilistic signal generator. Indeed,
a straightforward FPGA implementation of PGDBF would
multiply by 8 the number of registers and by 1.64 the number
of Look-Up-Tables (LUTs) required to implement GDBF, as
reported in [20]. Another optimized architecture of PGDBF
was introduced in [21] where the random generator was signif-
icantly optimized. It is shown that PGDBF can be efficiently
implemented with a moderate additional hardware resource
(5% − 14% hardware overhead on ASIC implementation).
It can be seen in these PGDBF implementations that, the
additional hardware cost is inevitable since a random generator
is implemented on top of the GDBF decoder and they could
be applied for any type of LDPC codes.

Quasi-Cyclic LDPC codes are a structural LDPC codes in
which, due to their construction, the connections between VNs
and CNs are highly regular [22]–[24], which enables the effi-
cient hardware implementations while providing a comparable
error correction performance to the random LDPC codes [25],
[26]. Hence, QC-LDPC codes are adopted in many systems
such as DVB-S2 and above-mentioned standards such as
WLAN (IEEE 802.11n), WiMAX (IEEE 802.16e), 10-Gigabit-
Ethernet (IEEE 802.3an) etc. Several interesting hardware
implementations of BF decoders can be found in the literature
such as the Adaptive Threshold Bit Flipping (ATBF) in [27],
the NGDBF [14], the combined BF and Stochastic decoders
in [28], etc. which are designed and tested on the additive
white Gaussian noise (AWGN) channel. The recent introduced
implementations of BF decoders on BSC can be found such
as the Multi-BF in [29], the GDBF and PGDBF in [20], [21].
However, all of above BF implementations did not consider

the structural property of QC-LDPC codes to reduce decoder
complexity nor improve decoding performance.

We introduce in this work a particular hardware archi-
tecture, called Variable-Node Shift Architecture (VNSA), to
implement PGDBF on QC-LDPC codes. VNSA could be also
applied for other decoding algorithms. The VNSA exploits the
regular structure of QC-LDPC codes to change the message
flow, improving the dynamics of the decoder and from that,
a VN is processed by different processing units in different
iterations. By implementing different types of variable node
processing units (VNU - to process the VN operations),
the probabilistic behaviors are produced without using a
probabilistic signal generator. The implemented processing
units are simpler than those of the implemented PGDBF in
the literature. The VNSA is shown to further improve the
decoding performance of the implemented PGDBF decoder in
the literature while reducing the complexity, being even lower
than the deterministic GDBF.

The paper is organized as following. Section II introduces
the notations related to LDPC codes and LDPC decoding
algorithms. This section presents also the PGDBF decoding
algorithm and reviews an optimized implementation previously
in the literature. Section III first presents the principle of
VNSA for QC-LDPC decoding. The advantages of VNSA are
then discussed when different types of VNUs are implemented.
In Section IV, the implementation of the PGDBF using VNSA
(called VNSA-PGDBF) is introduced in which two types of
VNU are implemented, preserving the probabilistic behav-
ior while being simpler than those of the optimized imple-
mentation in [21]. A simplified version of VNSA-PGDBF
is also introduced, called the imprecise VNSA-PGDBF
(VNSA-IM-PGDBF). Synthesis results and decoding per-
formance are presented in Section V. It is shown that
VNSA-PGDBF preserves the outstanding decoding perfor-
mance of PGDBF while the complexity is significantly
reduced, even lower than the deterministic GDBF. The
VNSA-IM-PGDBF is shown not only reduce the complexity,
but also improve the decoding performance on comparison to
the VNSA-PGDBF. Section VI concludes the paper.

II. PRELIMINARIES

A. Notations

An LDPC code is defined by a sparse parity-check matrix
H (M, N), N > M . Each row represents a parity check
equation, computed by a CN, on the VNs represented by
the columns. A QC-LDPC code is a specific construction
method of H in which each entry of a small base matrix HB

(nr × nc) is replaced by either a circulant shift of a Z × Z
diagonal matrix or an all-zero Z × Z matrix, (N = nc × Z ,
M = nr × Z). The columns of HB are called base columns
and the rows are called base rows. In QC-LDPC code,
N VNs can be split into nc groups of Z VNs corresponding
to nc base columns of HB and similarly, M CNs can also be
grouped into nr groups of Z CNs corresponding to nr base
rows of HB . We denote the j -th VN (1 ≤ j ≤ Z) belonging
to the i -th base column (1 ≤ i ≤ nc) of the base matrix HB

as vi, j , similarly, the b-th CN (1 ≤ b ≤ Z) belonging to the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: VARIABLE-NODE-SHIFT BASED ARCHITECTURE FOR PROBABILISTIC GRADIENT DESCENT BIT FLIPPING 3

a-th base row (1 ≤ a ≤ nr) as ca,b. The VN vi, j is checked by
the CN ca,b if the entry H (a Z + b, i Z + j) = 1 and they are
called neighbors. An QC-LDPC code can also be represented
by a bipartite graph, called Tanner graph, comprising two
groups of nodes, the CNs ca,b, 1 ≤ a ≤ nr , 1 ≤ b ≤ Z and
the VNs vi, j , 1 ≤ i ≤ nc, 1 ≤ j ≤ Z . In the Tanner graph, a
VN vi, j connects to a CN ca,b when H (a Z + b, i Z + j) = 1.
We denote the set of CNs connected to the VN vi, j as
N (vi, j), |N (vi, j)| is called VN degree and similarly,
N (ca,b) is the set of VNs connected to CN ca,b, |N (ca,b)|
is called CN degree. This work focuses on the regular
QC-LDPC codes, i.e.

∣
∣N (vi, j)

∣
∣ = dv and

∣
∣N (ca,b)

∣
∣ = dc

∀i, j, a, b. A vector x = (xi, j |1 ≤ i ≤ nc, 1 ≤ j ≤ Z) =
(x1,1, x1,2, . . . , x1,Z−1, x1,Z , x2,1, x2,2, . . . , xnc,Z−1, xnc,Z) ∈
{0, 1}N is called a codeword if and only if H xT = 0.
x is sent through a transmission channel and we
denote by y = (yi, j |1 ≤ i ≤ nc, 1 ≤ j ≤ Z) =
(y1,1, y1,2, . . . , y1,Z−1, y1,Z , y2,1, y2,2, . . . , ync,Z−1, ync,Z)
the output of this channel. The decoders in this paper are
restricted to work on the BSC where each bit xi, j is flipped
with a probability α, called channel crossover probability,
when being transmitted, i.e., Pr(yi, j = xi, j) = 1 − α and
Pr(yi, j = 1− xi, j) = α, 1 ≤ i ≤ nc, 1 ≤ j ≤ Z .

B. The PGDBF Decoding Algorithm and Its Implementation

PGDBF decoding process is an A Posteriori Probabil-
ity (APP) message passing decoder which iteratively updates
the VN values via the decoding iterations. We denote ca,b

(resp. vi, j) as CN (resp. VN) itself while c(k)
a,b (resp. v

(k)
i, j)

denotes the value of the CN (resp. VN) at iteration k. We also
denote the VN output vector v(k) = (v(k)

1 , v(k)
2 , . . . , v(k)

nc)

where v(k)
i = (v

(k)
i,1 , v

(k)
i,2 , . . . , v

(k)
i,Z), 1 ≤ i ≤ nc and CN

output vector c(k) = (c(k)
1 , c(k)

2 , . . . , c(k)
nr) where c(k)

a =
(c(k)

a,1, c(k)
a,2, . . . , c(k)

a,Z), 1 ≤ a ≤ nr .
The CN computation in PGDBF is a parity check on all

of its neighbor VNs and it is formulated as in Eq. (1) where
⊕ is the bit-wise Exclusive-OR (XOR) operation. The PGDBF
decoding process is stopped when all CNs equations are
satisfied, i.e. c(k)

a,b = 0,∀a, b, or when k reaches the maximum
number of iterations, denoted by I tmax .

c(k)
a,b = ⊕

vi, j∈N (ca,b)
v

(k)
i, j (1)

E (k)
i, j = v

(k)
i, j ⊕ yi, j +

∑

ca,b∈N (vi, j)

c(k)
a,b (2)

Each VN updates its value by the following steps.
First, the VN evaluates its energy function using Eq. (2).
An energy value is a sum of the neighbors CN values and
the similarity between the VN current value and its channel
output (computed by ⊕ function). Second, the VN vi, j is
flipped if and only if the two following conditions are satisfied
concurrently: its energy value is equal to the maximum energy

(E (k)
i, j = E (k)

max) and the value of R(k)
i, j = 1 where R(k)

i, j is

a random bit in a random sequence R of length N at the
k-th iteration (R(k)), R(k) = {R(k)

i, j |1 ≤ i ≤ nc, 1 ≤ j ≤ Z},
(Pr(R(k)

i, j = 1) = p0, Pr(R(k)
i, j = 0) = 1 − p0). The maximum

energy is computed by a module called Maximum Finder (MF)
among N energy values. The updated values of VNs are sent to
the next decoding iteration. The PGDBF algorithm is described
in Algorithm 1.

Algorithm 1 Probabilistic Gradient Descent Bit Flipping

Initialization k = 0, v
(0)
i, j ← yi, j , 1 ≤ i ≤ nc, 1 ≤ j ≤ Z .

s = H v(0)T
mod 2

while s �= 0 and k ≤ I tmax do
Compute c(k)

a,b, 1 ≤ a ≤ nr , 1 ≤ b ≤ Z , using Eq. (1).

Compute E (k)
i, j , 1 ≤ i ≤ nc, 1 ≤ j ≤ Z , using Eq. (2).

Search E (k)
max = maxi, j (E (k)

i, j),

Generate R(k)
i, j , 1 ≤ i ≤ nc, 1 ≤ j ≤ Z , from B(p0).

for 1 ≤ i ≤ nc, 1 ≤ j ≤ Z do
if E (k)

i, j = E (k)
max and R(k)

i, j = 1 then

v
(k+1)
i, j = v

(k)
i, j ⊕ 1

end if
end for
s = H v(k+1)T

mod 2
k = k + 1

end while
Output: v(k)

An optimized implementation of PGDBF is presented
in [21] and recalled in Fig. 1. To the best of our knowledge,
[21] is the only work in the literature presenting the ASIC
implementation of a PGDBF decoder. In this implementation,
two registers are used in each VNU, to store the channel output
value, yi, j and the value of the VN at the iteration k, v

(k)
i, j . The

summation block computes the energy value and the equality
comparison block indicates whether or not the energy value is
equal to the maximum. The AND gate incorporates the random
signal R(k)

i, j with the equality comparison result. The XOR2 is

used to flip the bit (v(k)
i, j) whenever the output of AND-gate

is 1, and this value is stored back to the register as the value
for the next iteration, v

(k+1)
i, j .

One important issue in the PGDBF implementation is the
probabilistic signal generator which is also optimized in [21],
called Cyclically Shift Truncated Sequence (CSTS) method
(Fig. 1). In CSTS probabilistic signal generator, a truncated
sequence of registers, Rt , with size of |Rt | = S < N is
allocated and stores the randomly generated bits. Rt is then
duplicated to produce R (of length N). This short register
sequence is cyclically shifted to make R different from one
iteration to another (Fig. 1). It can be seen that, Rt drives
the VNU to have 2 different behaviors corresponding to
2 possibilities of the probabilistic signals (R(k)

i, j = 0 and

R(k)
i, j = 1). In fact, during the decoding process, a VNU

may produce different output values even when its receives
the same inputs as another iteration, depending on the values
of R(k)

i, j .
It is noted that, the implementation of PGDBF requires an

inevitable additional hardware compared to GDBF due to the
fact that, on top of the GDBF, the random signal generating
module and the AND gates (the dashed red parts in Fig. 1)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 1. State of the art implementation of the PGDBF decoder.

are required. It should also be noted that, this implementation
does not exploit the QC-LDPC structure.

III. THE VARIABLE-NODE-SHIFT ARCHITECTURE

FOR QC-LDPC DECODING

In this section, we present first the generic architecture
for LDPC decoding. On top of this generic architecture, the
principle and advantages of VNSA are then introduced and
discussed. Although the VNSA can be applied to both flooding
and layered decoding scheduling [1], we limit the discussion
in this section only on the flooding implementation.

A. The Architecture of LDPC Decoding

LDPC decoders are generally implemented by the con-
nection network blocks connecting two groups of process-
ing units, the variable node units (VNUs - to process the
VN operations) and the check node units (CNUs - to process
the CN operations). The computed messages are iteratively
passed between the VNUs and CNUs through these connection
networks during the decoding process.

The generic architecture of LDPC decoders is presented in
Fig. 2(a) in which the circles represent the VNUs and squares
represent the CNUs. The memory elements are signified by

the clock signals (clk). The memory elements B and C
are allocated to store the intermediate messages during the
decoding process and the channel output values, respectively.
We index B and C to follow the indexing of VNs and
CNs in QC-LDPC codes above. Also, the superscript (k)
indicates the values at iteration k. The size of these memory
elements depends on the decoding algorithm as well as the
channel model. For example, in the hard decision decoding
algorithms such as GDBF, PGDBF on the BSC channel [20],
[21], B and C in each VNU are two 1-bit registers. For the
soft decision decoding algorithms such as MS on the AWGN
channel [30], [31], C is a register bank of size q where q is the
quantization length [31], to store the channel soft information
while B contains multiple register banks of size q to store
extrinsic messages.

The operations of LDPC decoding algorithms on this
generic architecture are briefly described as following. At the
decoding initialization phase, B and C are initialized by
the channel values. The decoder starts to decode and an
iteration can be divided into 2 steps. In the first step, the
messages stored in B are transmitted to the CNUs through
the connection network 1. The new messages are produced by
these CNUs. In the second step, the messages from CNUs
are propagated through the connection network 2 to the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: VARIABLE-NODE-SHIFT BASED ARCHITECTURE FOR PROBABILISTIC GRADIENT DESCENT BIT FLIPPING 5

Fig. 2. The QC-LDPC decoding architectures. (a) The generic architecture. (b) The proposed Variable-Node Shift Architecture (VNSA).

corresponding VNUs in which the new messages, denoted
by Bu, are produced, based on these CNU messages and the
channel value from C memory. These updated messages Bu
are stored into B memory when clock event occurs such that
B(k+1)

i, j = Bu(k)
i, j . The hard decision is made in each VNU and

it is sent to the syndrome check module (this module is not
shown in the figure). The decoder stops decoding when all the
parity checks are satisfied, otherwise, a new decoding iteration
will start.

The main difference between QC-LDPC and random LDPC
implementations is at the connection networks. Due to the
random constructing process, the connection networks of the
random LDPC decoders do not follow any specific structure.
On the contrary, those of the QC-LDPC decoders are very
constructive. We illustrate in Fig. 3 the connection networks
conveying the messages from VNUs to CNUs (connection
network 1) and CNUs to VNUs (connection network 2), when
implementing the first row of a QC-LDPC example base
matrix HB (in this base matrix example, the white elements
of HB are replaced by all-zero sub-matrices while the shaded
elements are replaced by the cyclic shift versions of the main
diagonal sub-matrix). It can be seen that, the message flow,
conveyed by connection network 1, follows 2 steps. First, the
messages are chosen at the level of group of Z , corresponding
to Z messages from the VNUs in the base columns, i.e., in
this example the message groups from base columns 2, 5
and 7 are chosen. Second, the messages in each group are
locally cyclic-shifted to form the inputs of CNUs. In the
connection network 2, the group of Z computed messages are
cyclic-shifted firstly and then propagated to the VNUs corre-
sponding to the base columns as at the input of connection
network 1.

It should be noted that, in the generic LDPC decoding
architecture, each VN (and also each CN) is processed
by a dedicated VNU (CNU) during the decoding process,

Fig. 3. The connection networks when implementing the first row of the
example base matrix HB . Note that, the circulant matrices aim to illustrate
the cyclic-shift of the messages and they are the hard-connection wires in the
implementation.

i.e. V Ni, j is always processed by the V NUi, j . It is due to the
fact that the updated messages, Bui, j , are stored in the same
(indexing) memory location Bi, j and for the next iterations,
Bi, j are conveyed to the implemented CNUs and VNUs by
the fixed, implemented connection networks. This property
of the generic architecture shows less flexibility when the
VNs (and/or CNs) require different behaviors over iterations,
e.g. VNs in PGDBF have 2 different behaviors depending

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

on the probabilistic signal values. In such a case, the VNUs
(and CNUs) of the generic LDPC decoding architecture
require unavoidably an additional hardware to perform the
additional behaviors.

B. The Variable-Node-Shift Architecture
for QC-LDPC Decoding

The VNSA approach is to change the message flow by
changing the message storing location from one iteration
to another. By doing that, a VN (CN) can be processed
by different VNUs (CNUs) during the decoding process.
As described in Fig. 2(b), the major change of VNSA com-
pared to the generic architecture, is that the updated messages
Bu of a VNU are stored in the memory element B of the
consecutive VNU (see definition 1) instead of its own memory.
The connection doing B(k+1)

i, j = Bu(k)
i, j , 1 ≤ i ≤ nc, 1 ≤ j ≤ Z

in the generic architecture, are replaced by another connection
doing B(k+1)

i,(j%Z+1) = Bu(k)
i, j , 1 ≤ i ≤ nc, 1 ≤ j ≤ Z , i.e.

after each iteration, all the messages of the VNs of each
base column are cyclically shifted by a factor of 1. The same
modification is applied on the channel value memory C , i.e.
the memory sequence C is also cyclically shifted after each

iteration, C(k+1)
i,(j%Z+1) = C(k)

i, j , 1 ≤ i ≤ nc, 1 ≤ j ≤ Z . In gen-
eral, one can apply by any value of �, 1 ≤ � < Z in cyclic
shifting the B and C , keeping the same property of VNSA,
such that B(k+1)

i,(j%Z+�) = Bu(k)
i, j and C(k+1)

i,(j%Z+�) = C(k)
i, j . Also, it

could be a left cyclic shift, such that B(k+1)
i,(j%Z−�) = Bu(k)

i, j and

C(k+1)
i,(j%Z−�) = C(k)

i, j . Without loss of generality, we limit � = 1
and right cyclic shift in this work.

Definition 1: Two VNUs vi1, j1 and vi2, j2 , 1 ≤ i1, i2 ≤
nc, 1 ≤ j1, j2 ≤ Z (or two CNUs ca1,b1 and ca2,b2 , 1 ≤
a1, a2 ≤ nr , 1 ≤ b1, b2 ≤ Z), are called to be consecutive
if they are in the same column (row) of the base matrix HB ,
i1 = i2 (a1 = a2), and are in the positions j1, j2 (b1, b2) such
that j2 = j1%Z+1 (b2 = b1%Z+1) where % is the modulus
operation.

In VNSA, the VNs and CNs are processed by different
VNUs and CNUs while providing the decoding results iden-
tically to those of the generic implementation. This can be
clarified by considering the case of two consecutive iterations.
In such a case, a VN (CN) of the generic architecture is
always operated in one (fixed) VNU (CNU) while in VNSA,
it is operated in 2 consecutive VNUs (CNUs). It is possible
thanks to the structure of VNSA. Indeed, at the end of the
first iteration, the messages are stored in such a way that
all messages from VNs belonging to a base column, are
cyclically shifted when being read at the beginning of the
second iteration. Because of that, the connection network 1
conveys a VN message to the input of the consecutive CNU,
instead of the input of the same CNU in the previous iteration.
Since the cyclic shift is applied for all VNUs messages of
all base columns, the consecutive CNU receives all messages
which are supposed to be received by the CNU of previous
iteration (in case there is no message cyclic shift). In general,
the CNUs (and VNUs) produce identical results given that
inputs are identical. The CNU computed results are, therefore,

identical to the results in the generic architecture. Note further
that, due to the cyclic shift of the input, the CNU output vector,
ca, 1 ≤ a ≤ nr , are cyclically shifted compared to the results
of generic architecture.

For VN computation, at the outputs of CNUs, the hard
wires in connection network 2 are gathered to form groups
of Z , conveying Z messages of Z CNUs in the base rows
to Z VNUs of the base columns (see Fig. 3). Since the
connection network 2 is the fixed hard wires while the CNUs
computed messages, ca, are cyclically shifted, the consecutive
VNU will receive all messages which are supposed to be
received by VNU of previous iteration (in case there is no
message cyclic shift). The consecutive VNU also receives the
channel values of the corresponding VN because the channel
memories, C , are also cyclically shifted at the end of the first
iteration. The VN computation results are therefore similar to
those of the generic implementation, and differ only from the
computing VNUs.

The advantages of the VNSA-based architecture become
apparent when the decoding algorithm may use different oper-
ations to process the same VN (or CN) at different decoding
iterations. PGDBF is an example of such a decoding algorithm.
Due to the probabilistic signal input, a VNU may behave
in 2 different ways, that is, it may have 2 different results
in 2 iterations, even if the it has the same input messages
in these 2 iterations. The advantage of applying VNSA in
term of decoding complexity comes from the fact that it helps
distribute the different behaviors to different VNUs instead
of implementing all of them in each and every VNU. In this
case, the complexity of the whole system can be significantly
reduced. The following example gives more clarifications on
the complexity reduction. We consider the case where each
VNU may have 2 different behaviors corresponding to the
fact that it performs one of 2 different functions (denoted by
f1 and f2) in each iteration. In the generic implementation,
2 functions are implemented in every VNU and a module is
implemented to be in charge of choosing the function to be
executed in each iteration (f1 is chosen with probability p0
and f2 is with probability 1− p0), e.g., in PGDBF, this module
is the probabilistic signal generator. In implementing this type
of decoder by VNSA, 2 types of VNUs are implemented, each
one performing only one function, either f1 or f2. A fraction
of p0 of the VNUs are of type-1 (implementing function f1),
while a fraction of (1 − p0) are of type-2 (implementing
function f2). We denote the complexity of generic VNU as
C12 while C1 (C2) is the complexity when only function f1
(f2) is implemented in each VNU. The complexity of VNUs
of the VNSA implementation (CV N S A) compared to those
of the generic implementation (CC O N V) is expressed by the
complexity efficiency ξ as following:

ξ = CV N S A

CC O N V
= p0C1 + (1− p0)C2

C12
(3)

Due to the hardware reusing when implementing 2 functions
in a VNU, C12 ≤ C1 + C2 then

ξ ≥ p0C1 + (1− p0)C2

C1 + C2
= p0 + 1− 2 p0

1+ C1C2

(4)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: VARIABLE-NODE-SHIFT BASED ARCHITECTURE FOR PROBABILISTIC GRADIENT DESCENT BIT FLIPPING 7

Fig. 4. The implementation of VNSA-PGDBF decoder.

It can be seen that the complexity efficiency ξ generally
depends on the complexity of the functions f1 and f2 and
could be controlled by p0. For example, when VNSA is
applied to implement the PGDBF in the next section, an
extreme case is shown where C1 	 C2 and p0 = 0.7 and
from that, ξ ≥ 0.7. In this case, applying VNSA helps
reduce up to 30% the hardware resources in implementing
the VNUs.

It should be noted further that in VNSA, the allocation of
the VNUs decides the functions and their executing order
with which a VN is processed during decoding process.
By allocating p0 Z VNUs type 1 and (1− p0)Z VNUs type 2
in Z VNUs of each base column, a VN is, by construction,
processed by f1 with ratio p0 and f2 with ratio 1 − p0
after Z iterations. The VNSA has, therefore, lower complexity
than the generic implementation since the latter requires an
additional module to choose the executing function in each
iteration. For example, this additional module in PGDBF is
the probabilistic signal generator and it requires a significant
hardware overhead as shown in [20], [21]. More interesting,
different functions f1 and f2 represent different decoding
algorithms. Therefore, VNSA could be easily applied for
different types of LDPC decoding algorithms.

IV. THE IMPLEMENTATION OF PROBABILISTIC GRADIENT

DESCENT BIT FLIPPING DECODER USING VARIABLE

NODE SHIFT ARCHITECTURE

A. Implementation of PGDBF With VNSA

In this section, we present the implementation of PGDBF
using the VNSA, denoted as the VNSA-PGDBF. In VNSA-
PGDBF, the message cyclically shift principle of VNSA are
applied and 2 types of VNU are introduced. The 2 VNU types
in VNSA-PGDBF operate similarly to the VNU in the PGDBF
implementation in Section II (called conventional VNU) in
which the random input is correspondingly 1 and 0. The
architecture of VNSA-PGDBF is presented in Fig. 4.

The type-1 VNU of the VNSA-PGDBF, illustrated by the
black solid circles in Fig. 4, mimics the operation of the
conventional VNU when the random signal is equal to 1.
In this case, the AND gate in the conventional VNU (Fig. 1)
passes the equality comparator output directly to the XOR2
input since X AND 1 = X and the VN value of the next
iteration, v

(k+1)
i, j , is computed by v

(k+1)
i, j = v

(k)
i, j XOR �(E (k)

i, j =
E (k)

max) where �(.) denotes the indicator function. The type-1
VNU is designed by simply removing the AND gate in the
conventional VNU, keeping the same computation behaviors.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

It can be seen that, this type-1 VNU is the VNU of GDBF
decoder since the flip of the VN (operated by the XOR2)
depends only on the equality between this VN energy and the
maximum energy value.

The type-2 VNU of the VNSA-PGDBF, illustrated by the
red dashed circles in Fig. 4, is designed by reproducing the
operation of the conventional VNU when the random signal
equals to 0. In the conventional VNU (Fig. 1), when the
random input is 0, the AND gate produces 0 at its output
regardless the equality comparison result. The VN value for
the next iteration, v

(k+1)
i, j , is the one of current iteration, v

(k)
i, j ,

since v
(k+1)
i, j = v

(k)
i, j XOR 0 = v

(k)
i, j . The type-2 VNU is

designed by simply propagating directly the current value
v

(k)
i, j to the output and removing the XOR2 gate in the

conventional VNU. More specially, the AND gate and equality
comparator can also be eliminated without affecting to the
VNU operation. It can be seen that, the type-2 VNU is much
simpler than the VNU of GDBF thanks to the elimination of
the computation logic.

Although several parts of the conventional VNU are elim-
inated, leading the VNUs of VNSA-PGDBF to be simpler,
the concept of PGDBF decoder is still fulfilled. It is highly
interesting since there is no random generator needed. Indeed,
it is noted that, the operation of VNSA-PGDBF is identi-
cal to the version of Cyclically Shift Truncated Sequence
PGDBF (CSTS-PGDBF) decoder in Section II with the trun-
cated sequence Rt , |Rt | = S = Z (Fig. 1). When the type-1
and type-2 VNUs are allocated in each base column similarly
and correspondingly to the 1 and 0 in the Rt (|Rt | = Z),
by cyclically shifting the VNs through this VNU sequence,
each VN will see the VNUs types (type-1 and type-2) with
the same order of having bit 1 and bit 0 at the random
input (in conventional VNU) when cyclically shifting Rt . The
VNSA-PGDBF could be more advantageous in decoding
performance since it has the possibility to distribute the type-1
and type-2 VNUs randomly in Z VNUs of each base column
and differently from other base columns. This is illustrated
by the decoding performance gain of VNSA-PGDBF over
CSTS-PGDBF, S = Z in Section V. For the PGDBF imple-
mented in this paper, we also restrict to have p0 Z VNUs type 1
and (1− p0)Z VNUs type 2 in each base column.

B. An Imprecise Implementation of PGDBF With VNSA

VNSA-PGDBF is shown to have lower complexity than the
conventional PGDBF implementation thanks to the simpler
VNUs and the elimination of the probabilistic signal generator.
We further simplify the VNSA-PGDBF by replacing the
type-2 VNU by other VNU type (type-3) as described in Fig. 6
and refer this PGDBF implementation as VNSA-IM-PGDBF.
The type-3 VNU behaves similarly to the VNU in conventional
PGDBF having 0 at the random input. The speciality comes
from the fact that, this VNU type does not compute the energy
value and all computing circuitry is eliminated. The behind
idea comes from the operation of this type of VNU where it
keeps the current value, v

(k)
i, j , for the next iteration regardless

the maximum energy value and from that, its energy value may
not need to join to the maximum energy finding. This helps

further simplify the hardware complexity of VNSA-PGDBF
decoder.

The low complexity of VNSA-IM-PGDBF is obtained due
to the simplified type-3 VNU and the simpler MF. Indeed, it
can be seen that, the type-3 VNU does not cost any hardware
resources except the memory elements, (Ctype−3
 Ctype−1).
The hardware saving, therefore, depends on the number of
type-3 VNU in N implemented VNUs, which is controlled by
the value of p0. The MF in VNSA-IM-PGDBF needs to find
the maximum energy in the list of p0 N input values instead
of N . It is obvious that, the hardware cost of this sorting
module is reduced when decreasing the number of inputs [32].
We apply the same technique in [21] to implement the MF for
VNSA-based decoders in this paper.

A provable issue of VNSA-IM-PGDBF is that, the maxi-
mum energy value found in some iterations may not be the true
maximum as in the precise PGDBF decoder. This comes from
the fact that, this maximum is found in a shorter list of candi-
dates (p0 N instead of N) and the impreciseness appears when
only the VNs, which are being processed on type-3 VNU,
have the maximum energy. In order to evaluate the effect
of this impreciseness on the decoding performance, we have
conducted a statistical analysis on the error correction per-
formance (the Frame Error Rate - FER) as a function of p0
and show the results in Fig. 5. The test codes used in this
papers are with the parameters (dv , dc) = (3, 6), Z = 54,
M = 648, N = 1296, code rate R = 0.5, denoted as
dv3R050N1296 and (dv , dc) = (4, 8), Z = 54, M = 648,
N = 1296, code rate R = 0.5, denoted as dv4R050N1296.
It is very interesting that, VNSA-IM-PGDBF outperforms the
VNSA-PGDBF despite the impreciseness introduced by
the MF. It can be seen that, although the range of p0
maintaining the good decoding performance of VNSA-IM-
PGDBF is more selective than the one of VNSA-PGDBF,
the decoding performance of VNSA-IM-PGDBF on the range
of p0 ≥ 0.6 is always better than VNSA-PGDBF on the
dv3R050N1296 code (Fig. 5(a)). For the dv4R050N1296 code
(Fig. 5(b)), this performance gain of VNSA-IM-PGDBF over
VNSA-PGDBF is even more significant (at p0 = 0.7, around
1dB FER gain) and it is true on the wider range of p0. Basing
on the statistics, p0 ≈ 0.7 for the dv3R050N1296 code is used
in the next section to maximize the decoding performance gain
and hardware reduction.

Although the theoretical explanation of the VNSA-IM-
PGDBF superiority over VNSA-PGDBF requires further study
and it is an interesting topic for future work, the fact that
using “untrue” maximum value to improve the decoding per-
formance is inline with the approach of the decoder-dynamic
shift PGDBF (DDS-PGDBF) [33] in literature. The authors
in [33] proposed to use the threshold to flip the VNs which
is the maximum energy of the previous iteration instead of
the current one. Despite the untrue maximum value threshold
used, DDS-PGDBF surpasses the soft decision decoders in
performance and approaches the Maximum Likelihood Decod-
ing at the cost of a large number of iterations. The VNSA-
IM-PGDBF, with the same spirit, uses the imprecise threshold
to flip the VNs and coherently provides an improvement in
decoding performance even at acceptable number of iterations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: VARIABLE-NODE-SHIFT BASED ARCHITECTURE FOR PROBABILISTIC GRADIENT DESCENT BIT FLIPPING 9

Fig. 5. The statistics on the decoding performance of VNSA-based PGDBF decoders as the function of p0. (a) dv3R050N1296 QC-LDPC code.
(b) dv4R050N1296 QC-LDPC code.

V. SYNTHESIS RESULTS AND DECODING PERFORMANCE

A. Synthesis Results

In this section, we report the ASIC synthesis results
of our decoder implementations. The proposed decoders
are implemented using the Digital Standard Cell Library
SAED-EDK90-CORE, Process 1P9M 1.2v/2.5v. The hierar-
chical design flow is followed with the Synopsys Design Plat-
form: Synopsys Design Compiler is used for VHDL synthesis,
Synopsys VCS tool for simulation and DVE, a graphical user
interface for debugging and viewing waveforms. Synopsys
Prime Time tool is used for timing analysis, power and energy
estimation, and Synopsys IC Compiler (ICC) is used for floor
planning, place and route.

We demonstrate in the first synthesis comparison the achiev-
able area gains when using the VNSA approach. In this
comparison, we have set the timing constraint identical for all
decoders, fixed to 10 ns, assuming that the decoders operate
at the same clock frequency (100Mhz). By doing that, we
measure precisely the impact of VNSA on the hardware cost,
even if the working frequency is not maximized. The results
are reported in Table I for the dv3R050N1296 QC-LDPC
code and the values in brackets indicate the percentage of
additional (+) or saving (−) cost, compared to the deter-
ministic GDBF implementation. The implementations of
GDBF and CSTC-PGDBF in all tables are the ones in [21]
(CSTS-PGDBF and all VNSA-based PGDBF decoders are
with p0 = 0.7). Since the post place-and-route results
are not available in that paper, we have re-synthesized
them and obtained those values. As the first remark, it
is clear that, the VNSA is an alternative implementation
solution since no extra complexity required to implement
VNSA-based GDBF decoder compared to the conventional
GDBF implementation. The second remark is that, VNSA
allows reducing the decoder complexity as expected. The
VNSA-PGDBF requires less than the conventional GDBF
implementation, around 6.68% while the conventional PGDBF

TABLE I

COMPARISON ON HARDWARE RESOURCES TO IMPLEMENT THE
GDBF AND PGDBF DECODERS BY USING THE CONVENTIONAL

AND THE VNSA ARCHITECTURES

implementation needs 3.77% extra cost. As also expected, the
VNSA-IM-PGDBF largely reduces the complexity with 15.1%
lower than the GDBF decoder. This complexity gain is
significant since VNSA-IM-PGDBF provides an equivalent
decoding performance to CSTS-PGDBF, |Rt | = 4Z (shown
in Fig. 7(a)) while being lower complexity than GDBF. The
similar conclusions have been verified for LDPC codes with
different lengths, rates and values of dv . Indeed, it can be
seen in the Table II that, while the CSTS-PGDBF decoder
always requires an amount of extra resource (from 2% to 14%
compared to GDBF), the VNSA-PGDBF decoder reduces
2.5% to 5% and the VNSA-IM-PGDBF decoder reduces
13% to 17% the complexity with respect to GDBF decoder.

In the second comparison, the synthesis strategy for each
decoder is to look for the smallest timing constraint that
the synthesizer can pass. The maximum frequency, fmax ,
that the decoders can operate on, is then determined from
that smallest timing constraint. We report the frequency and
average throughput in Table III. The average throughput (θ)
of the decoders is computed as θ = fmax∗N

I tave∗Nc
where Nc denotes

the number of clock cycles needed for one decoding iteration
and I tave is the average number of iterations. We take also
2 examples of decoder implementations in literature for the
comparisons. The first implementation is the Adaptive Thresh-
old Bit Flipping from [27]. Although ATBF was designed
and tested on the AWGN channel, it is worth to make the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 6. The imprecise implementation of VNSA-PGDBF decoder, VNSA-IM-PGDBF.

TABLE II

HARDWARE RESOURCE USED TO IMPLEMENT GDBF AND PGDBF DECODERS FOR LDPC CODES WITH DIFFERENT CODEWORD LENGTHS AND

CODE RATES. THE VALUES IN BRACKETS ARE THE ADDITIONAL (+) OR SAVING (−) HARDWARE RESOURCES WITH RESPECT TO THE GDBF

comparison since ATBF is a GDBF-based BF decoder and
the difference is only from the quantized channel value in
energy equation. The reported results were also on the regular
dv = 3, dc = 6 with codeword length, N = 1008, being close
to our test code. We want to further compare our BF decoders
to a soft-decision decoder by using the MS in [34] as the
second reference. The MS in [34] is a quantized decoder with
4 bits for messages, 6 bits for APP information and on the
same dv3R050N1296 LDPC code. Note that, the hardware
results of the MS are extracted from that paper while the

average iterations and the error correction performance is
based on our simulations on BSC channel.

The conclusions drawn from the first comparison that the
VNSA helps reduce significantly the complexity of PGDBF
implementations, are maintained in this second comparision.
Indeed, VNSA-PGDBF requires only 89% of GDBF complex-
ity to be efficiently implemented. The reduction is more sig-
nificant in the case of VNSA-IM-PGDBF with around 18.3%
complexity reduced with respect to that of the GDBF.
Interestingly, the maximum frequency of VNSA-IM-PGDBF

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: VARIABLE-NODE-SHIFT BASED ARCHITECTURE FOR PROBABILISTIC GRADIENT DESCENT BIT FLIPPING 11

Fig. 7. The decoding performance implemented decoders on the QC-LDPC codes. (a) dv3R050N1296 QC-LDPC code. (b) dv4R050N1296 QC-LDPC code.

TABLE III

THE AREA, POWER AND THROUGHPUT COMPARISON BETWEEN GDBF, PGDBF AND THE DECODERS ON THE LITERATURE

is the highest, 400Mhz compared to 357Mhz of CSTS-PGDBF
and 385Mhz of GDBF. Although the code considered in this
work is longer than in [27], 1296 compared to 1008, our BF
decoders are, however, less than a half of the ATBF complexity
while being higher in operating frequency, 370 − 400Mhz
compared to 250Mhz. The VNSA-based PGDBF decoders are
much lower complexity in comparison to MS with the same
codeword length. Indeed, MS decoder is around 0.72mm2 on
65nm technology or 1.38mm2 when being scaled to 90nm
technology, which is 4.7 times higher than VNSA-IM-PGDBF.
This MS implementation has a reported maximum frequency
of 250Mhz.

The synthesis results show that, VNSA-based PGDBF
decoders consume more energy than GDBF and CSTS-
PGDBF, with 76mW of VNSA-IM-PGDBF, 82.4mW of
VNSA-PGDBF compared to 51.8mw and 61mW of GDBF
and CSTS-PGDBF, respectively. This comes from the fact
that, due to the cyclic shift of the tentative codeword and
the channel value for each and every iteration, VNSA-based
PGDBF decoders result more switching activities than the
decoders on conventional architecture. Also, it is because
VNSA-based PGDBF decoders operate at higher frequency.

For decoding throughput comparisons, we compare the
decodes in the 2 scenarios in which the throughput values
are computed at a target Frame Error Rate, i.e. F E R = 1e−5,
and at a certain level of channel noise, i.e. α = 0.01. Our
implementation of BF decoders allow to perform one iteration
in Nc = 1 clock cycle, which results in a very high decoding

throughput and much higher than ATBF and MS. At the same
channel noise level, α = 0.01, the VNSA-PGDBF is faster
2.4 times than MS decoder and 3.9 times than ATBF, but in
1.9 times slower than the GDBF. GDBF offers the
best throughput but with limitation in error correction,
F E R = 3e−4 compared to 2.6e−6 of VNSA-IM-PGDBF
and 1e−7 of MS. In order to maintain a target performance,
i.e. F E R = 1e−5, the VNSA-based PGDBF decoders are
3.5−4.3 times faster than the MS decoder and 2.7 times slower
than GDBF.

B. Decoding Performance

In this section, we illustrate the decoding performance of
VNSA-based PGDBF decoders in comparison with GDBF
and MS decoders. The MS decoder is set with I tmax = 20
while the GDBF and the PGDBF decoders are set with
I tmax = 300. We use the two regular LDPC codes intro-
duced above for the simulations (the dv3R050N1296 and
the dv4R050N1296 codes). It can be firstly seen in Fig. 7
that, the VNSA-based PGDBF decoders are much better than
GDBF and approaching to the MS performance, especially on
the dv4R050N1296 code. VNSA-IM-PGDBF is considerable
better than the VNSA-PGDBF for both LDPC codes. Inter-
estingly, VNSA-IM-PGDBF is almost equal to the theoretical
PGDBF performance (the CSTS-PGDBF with S = 4Z for
dv3R050N1296 and S = 12Z for dv4R050N1296 as pre-
sented in [21]). For the dv3R050N1296 code, the FER of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 8. Decoding performance of VNSA-based PGDBF decoders on the
(dv , dc) = (4, 34), Z = 140, M = 1120, N = 9520, code rate R = 0.88
QC-LDPC code.

VNSA-IM-PGDBF maintains closely to theoretical PGDBF
decoder at a very low error rate (1e−8) while for
the dv4R050N1296, the error floor appears from the
F E R = 1e−6. The MS decoder is the best in error correction
at the cost of the increased decoding complexity and reduced
throughput as shown in previous section.

Fig. 8 shows another decoding performance comparison
between VNSA-based PGDBF decoders with other decoders
on a long and high rate code, the (dv , dc) = (4, 34),
Z = 140, M = 1120, N = 9520, code rate R = 0.88
QC-LDPC code. All PGDBF decoders are with p0 = 0.9.
These performance curves re-confirm the advantage of VNSA
in providing the good decoding performance mentioned above.
However, VNSA-IM-PGDBF tends to show a high error floor
on this code, leading an inferior decoding performance to other
implementations.

VI. CONCLUSION

In this paper, we introduce a new hardware architecture
for QC-LDPC decoding, called Variable Node Shift Archi-
tecture (VNSA). The VNSA is used to efficiently implement
the Probabilistic Gradient Descent Bit Flipping decoder. The
VNSA is shown to be an alternative solution for QC-LDPC
decoding implementation and its advantages, in terms of
decoding performance and decoder complexity, come when
different types of variable node processing units (VNUs)
and/or check node processing units (CNUs) are imple-
mented. The first implementation of Probabilistic Gradient
Descent Bit Flipping using VNSA is called VNSA-PGDBF.
In VNSA-PGDBF, 2 types of VNUs are designed which are
simpler than those of the conventional PGDBF implementa-
tion. VNSA-PGDBF offers the error correction as good as
the optimized PGDBF implementation in the literature, while
reducing the decoder complexity up to 11% less than the one
of the deterministic Gradient Descent Bit Flipping (GDBF)
decoder. We further propose another simplified and impre-
cise version of VNSA-PGDBF, called VNSA-IM-PGDBF.
In VNSA-IM-PGDBF, a new and trivial VNU is introduced in

which all computing circuits are eliminated. The impreciseness
appears at the level of the maximum finder where the max-
imum energy is found in a smaller list of candidates. Inter-
estingly, VNSA-IM-PGDBF offers a better error correction
performance than the VNSA-PGDBF while further reducing
the hardware cost to 18% lower than that of the GDBF.
VNSA-based PGDBF decoders, with outstanding decoding
capability, low complexity and ultra high decoding throughput,
are the competitive solutions for the next communication and
storage standards.

REFERENCES

[1] D. Declercq, M. Fossorier, and E. Biglieri, Eds., Channel Coding: The-
ory, Algorithms, and Applications: Academic Press Library in Mobile
and Wireless Communications. Amsterdam, The Netherlands: Elsevier,
2014.

[2] S. Jeon and B. V. K. Vijaya Kumar, “Performance and complexity of
32 k-bit binary LDPC codes for magnetic recording channels,” IEEE
Trans. Magn., vol. 46, no. 6, pp. 2244–2247, Jun. 2010.

[3] K.-C. Ho, C.-L. Chen, Y.-C. Liao, H.-C. Chang, and C.-Y. Lee,
“A 3.46 Gb/s (9141,8224) LDPC-based ECC scheme and on-line channel
estimation for solid-state drive applications,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2015, pp. 1450–1453.

[4] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in NAND flash memory,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 58, no. 2, pp. 429–439, Feb. 2011.

[5] IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems—Local and Metropolitan Area
Networks—Specific Requirements Part 3: Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications—Corrigendum 2, IEEE Standard 802.3-2005 (Corrigen-
dum to IEEE Std 802.3-2005), Aug. 2007.

[6] IEEE Standard for Information Technology– Local and Metropoli-
tan Area Networks– Specific Requirements– Part 11: Wireless LAN
Medium Access Control (MAC)and Physical Layer (PHY) Spec-
ifications Amendment 5: Enhancements for Higher Throughput,
IEEE Standard 802.11n-2009, Mar. 2008.

[7] IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air
Interface for Fixed Broadband Wireless Access Systems—Amendment 2:
Medium Access Control Modifications and Additional Physical Layer
Specifications for 2-11 GHz, IEEE Standard 802.16a-2003, 2003.

[8] R. G. Gallagher, Low–Density Parity–Check Codes (Research Mono-
graph). Cambridge, MA, USA: MIT Press, 1963.

[9] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes
based on finite geometries: A rediscovery and new results,” IEEE Trans.
Inf. Theory, vol. 47, no. 7, pp. 2711–2736, Nov. 2001.

[10] J. Zhang and M. P. C. Fossorier, “A modified weighted bit-flipping
decoding of low-density parity-check codes,” IEEE Commun. Lett.,
vol. 8, no. 3, pp. 165–167, Mar. 2004.

[11] M. Jiang, C. Zhao, Z. Shi, and Y. Chen, “An improvement on the
modified weighted bit flipping decoding algorithm for LDPC codes,”
IEEE Commun. Lett., vol. 9, no. 9, pp. 814–816, Sep. 2005.

[12] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, “Gradient descent bit flipping algorithms for decoding LDPC
codes,” IEEE Trans. Commun., vol. 58, no. 6, pp. 1610–1614, Jun. 2010.

[13] O. Al Rasheed, P. Ivaniš, and B. Vasić, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder,” IEEE Commun. Lett., vol. 18,
no. 9, pp. 1487–1490, Sep. 2014.

[14] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent
bit-flip decoding for LDPC codes,” IEEE Trans. Commun., vol. 62,
no. 10, pp. 3385–3400, Oct. 2014.

[15] Y. H. Liu, X. L. Niu, and M. L. Zhang, “Multi-threshold bit flipping
algorithm for decoding structured LDPC codes,” IEEE Commun. Lett.,
vol. 19, no. 2, pp. 127–130, Feb. 2015.

[16] T. C.-Y. Chang and Y. T. Su, “Dynamic weighted bit-flipping decoding
algorithms for LDPC codes,” IEEE Trans. Commun., vol. 63, no. 11,
pp. 3950–3963, Nov. 2015.

[17] S. Imani, R. Shahbazian, and S. A. Ghorashi, “An iterative bit flipping
based decoding algorithm for LDPC codes,” in Proc. Iran Workshop
Commun. Inf. Theory (IWCIT), May 2015, pp. 1–3.

[18] H. Huang, Y. Wang, and G. Wei, “Mixed modified weighted bit-flipping
decoding of low-density parity-check codes,” IET Commun., vol. 9,
no. 2, pp. 283–290, 2015.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: VARIABLE-NODE-SHIFT BASED ARCHITECTURE FOR PROBABILISTIC GRADIENT DESCENT BIT FLIPPING 13

[19] K. Ma, J. Jin, W. Li, and P. Zhang, “Two-staged weighted bit flip-
ping (WBF) decoding algorithm for LDPC codes,” in Proc. IEEE 9th
Int. Conf. Anti-Counterfeiting, Secur., Identificat. (ASID), Sep. 2015,
pp. 141–144.

[20] K. Le et al., “Efficient realization of probabilistic gradient descent bit
flipping decoders,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Lisbon, Portugal, May 2015, pp. 1494–1497.

[21] K. Le, F. Ghaffari, D. Declercq, and B. Vasić, “Efficient hardware
implementation of probabilistic gradient descent bit-flipping,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 4, pp. 906–917,
Apr. 2017.

[22] J. Li, S. Lin, K. Abdel-Ghaffar, W. E. Ryan, and D. J. Costello, Jr.,
LDPC Code Designs, Constructions, and Unification. Cambridge, U.K.:
Cambridge Univ. Press, 2016.

[23] S. Kim, J. S. No, H. Chung, and D. J. Shin, “Quasi-cyclic low-density
parity-check codes with girth larger than 12,” IEEE Trans. Inf. Theory,
vol. 53, no. 8, pp. 2885–2891, Aug. 2007.

[24] N. Bonello, S. Chen, and L. Hanzo, “Construction of regular quasi-cyclic
protograph LDPC codes based on vandermonde matrices,” IEEE Trans.
Veh. Technol., vol. 57, no. 4, pp. 2583–2588, Jul. 2008.

[25] K. Zhang, X. Huang, and Z. Wang, “High-throughput layered decoder
implementation for quasi-cyclic LDPC codes,” IEEE J. Sel. Areas
Commun., vol. 27, no. 6, pp. 985–994, Aug. 2009.

[26] B. Xiang, D. Bao, S. Huang, and X. Zeng, “An 847–955 Mb/s
342–397 mW dual-path fully-overlapped QC-LDPC Decoder for
WiMAX system in 0.13 μm CMOS,” IEEE J. Solid-State Circuits,
vol. 46, no. 6, pp. 1416–1432, Jun. 2011.

[27] M. Ismail, I. Ahmed, and J. Coon, “Low power decoding of LDPC
codes,” ISRN Sensor Netw., vol. 2013, Dec. 2013, Art. no. 650740.

[28] Y.-L. Ueng, C.-Y. Wang, and M.-R. Li, “An efficient combined bit-
flipping and stochastic LDPC decoder using improved probability trac-
ers,” IEEE Trans. Signal Process., vol. 65, no. 20, pp. 5368–5380,
Oct. 2017.

[29] J. Jung and I.-C. Park, “Multi-bit flipping decoding of LDPC codes
for NAND storage systems,” IEEE Commun. Lett., vol. 21, no. 5,
pp. 979–982, May 2017.

[30] T. Brack et al., “Low complexity LDPC code decoders for next gener-
ation standards,” in Proc. Design, Autom. Test Eur. Conf. Exhib., Nice,
France, 2007, pp. 1–6.

[31] T. Nguyen-Ly et al., “FPGA design of high throughput LDPC decoder
based on imprecise Offset Min-Sum decoding,” in Proc. IEEE 13th Int.
New Circuits Syst. Conf. (NEWCAS), Jun. 2015, pp. 1–4.

[32] B. Yuce, H. F. Ugurdag, S. Gören, and G. Dündar, “Fast and efficient
circuit topologies forfinding the maximum of n k-bit numbers,” IEEE
Trans. Comput., vol. 63, no. 8, pp. 1868–1881, Aug. 2014.

[33] D. Declercq, C. Winstead, B. Vasić, F. Ghaffari, P. Ivanis, and
E. Boutillon, “Noise-aided gradient descent bit-flipping decoders
approaching maximum likelihood decoding,” in Proc. 9th Int. Symp.
Turbo Codes Iterative Inf. Process. (ISTC), Sep. 2016, pp. 300–304.

[34] T. T. Nguyen-Ly, T. Gupta, M. Pezzin, V. Savin, D. Declercq,
and S. Cotofana, “Flexible, cost-efficient, high-throughput architecture
for layered LDPC decoders with fully-parallel processing units,” in
Proc. Euromicro Conf. Digit. Syst. Design (DSD), Aug./Sep. 2016,
pp. 230–237.

Khoa Le received the B.Sc. and M.Sc. degrees
in electronics engineering from the Ho Chi Minh
City University of Technology, Vietnam, in 2010
and 2012, respectively, the Ph.D. degree from the
University of Cergy-Pontois, France, in 2017.He is
currently a Post-Doctoral Researcher with the ETIS
Laboratory, ENSEA, France. His research interests
are in error correcting code algorithms, analysis and
their implementations in FPGA/ASIC.

David Declercq (SM’11) was born in 1971. He
received the Ph.D. degree in statistical signal
processing from the University of Cergy-Pontoise,
France, in 1998. He is currently a Full Professor with
ENSEA, Cergy-Pontoise. He is a General Secretary
of the National GRETSI Association. He has held a
junior position at the Institut Universitaire de France
from 2009 to 2014. His research topics lie in digital
communications and error-correction coding theory.
He was involved several years on the particular
family of LDPC codes, both from the code and

decoder design aspects. Since 2003, he developed a strong expertise on
non-binary LDPC codes and decoders in high order Galois fields GF(q). A
large part of his research projects are related to non-binary LDPC codes.
He mainly investigated two aspects the design of GF(q) LDPC codes for
short and moderate lengths, and 2) the simplification of the iterative decoders
for GF(q) LDPC codes with complexity/performance tradeoff constraints. He
has authored over 40 papers in major journals the IEEE TRANSACTIONS

COMMUNICATION, the IEEE TRANSACTIONS INFORMATION THEORETICAL

COMMUNICATIONS LETTERS, the EURASIP JWCN, and over 120 papers in
major conferences in Information Theory and Signal Processing.

Fakhreddine Ghaffari received the Degree in elec-
trical engineering and the master’s degree from the
National School of Electrical Engineering, Tunisia,
in 2001 and 2002, respectively, and the Ph.D. degree
in electronics and electrical engineering from the
University of Sophia Antipolis, France, in 2006.
He is currently an Associate Professor with the
University of Cergy Pontoise, France.

His research interests include VLSI design and
implementation of reliable digital architectures for
wireless communication applications in ASIC/FPGA

platform and the study of mitigating transient faults from algorithmic and
implementation perspectives for high-throughput applications.

Lounis Kessal received the Ph.D. degree in micro-
electronics from Paris-XI University in 1987. He is
currently an Associate Professor with the ENSEA
Engineering School, and involving in research activ-
ities with the ETIS Laboratory. His research interests
are essentially on real-time image processing.

His previous research works lead him to study the
interest of the dynamic reconfiguration approach in
architectures dedicated to signal and image process-
ing. He is also involved in reconfigurable systems
on chip and ASIC/FPGA implementations of error
correcting code algorithms.

Oana Boncalo received the B.Sc. and Ph.D. degrees
in computer engineering from University Politehnica
Timisoara, Romania, in 2006 and 2009, respectively.
She is currently an Associate Professor with Uni-
versity Politehnica Timisoara. She has authored over
50 research papers in topics related to digital design.
Her research interests include computer arithmetic,
LDPC decoder architectures, digital design, and reli-
ability estimation and evaluation.

Valentin Savin received the master’s degree in
mathematics from the École normale supérieure de
Lyon in 1997, and the Ph.D. degree in mathematics
from the J. Fourier Institute, Grenoble, in 2001, and
the master’s degree in cryptography, security and
coding theory from the University of Grenoble 1.
Since 2005, he has been with the Digital Com-
munications Laboratory, CEA-LETI, first as a two-
year Post-Doctoral Fellow, and then as a Research
Engineer. Since 2016, he has been an appointed CEA
Senior Expert in information and coding theory.

Over the last years, he has been involved in the design of low-complexity
decoding algorithms for LDPC and Polar codes, and on the analysis and
the optimization of LDPC codes for physical and upper-layers applications.
He has authored over 80 papers in international journals and conference
proceedings, holds ten patents. He is currently participating in or coordinating
several French and European research projects in ICT.

