
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS 1

A Probabilistic Parallel Bit-Flipping Decoder for
Low-Density Parity-Check Codes

Khoa Le , Fakhreddine Ghaffari , Member, IEEE, Lounis Kessal, Member, IEEE,
David Declercq , Senior Member, IEEE, Emmanuel Boutillon, Senior Member, IEEE,

Chris Winstead , Senior Member, IEEE, and Bane Vasić, Fellow, IEEE

Abstract— This paper presents a new bit flipping (BF) decoder,
called the probabilistic parallel BF (PPBF) for low-density parity-
check codes on the binary symmetric channel. In the PPBF,
the flipping operation is performed in a probabilistic manner
which is shown to significantly improve the error correction
performance. The advantage of the PPBF also comes from the
fact that no global computation is required during the decoding
process and that all the computations can be executed in the
local computing units and in parallel. The PPBF provides a
considerable improvement of the operating frequency and com-
plexity, compared to other known BF decoders, while obtaining
a significant gain in error correction. An improved version of the
PPBF, called non-syndrome PPBF is also introduced, in which
the global syndrome check is moved out of the critical path
and a new terminating mechanism is proposed. In order to
show the superiority of the new decoders in terms of hardware
efficiency and decoding throughput, the corresponding hardware
architectures are presented in Section II. The application-specific
integrated circuit synthesis results confirm that the operating
frequency of the proposed decoders is significantly improved,
compared to that of the BF decoders in the literature while
requiring lower complexity to be efficiently implemented.

Index Terms— Low-density parity-check codes, iterative decod-
ing, probabilistic bit flipping decoding, high decoding throughput,
low-complexity implementation.

I. INTRODUCTION

LOW-DENSITY Parity-Check (LDPC) codes were intro-
duced by Gallager in 1963 and they have been adopted as

a part of several standards, such as IEEE 802.11n, 802.16a, etc.
due to their outstanding error correction capability [1], [2].

Manuscript received January 31, 2018; revised May 5, 2018 and
June 11, 2018; accepted June 18, 2018. This work was supported in part by the
French ANR under Grant ANR-15-CE25-0006-01 (NAND Project) and in part
by the NSF under Grant ECCS-1500170. This paper was presented in part at
the International Conference on Advanced Technologies for Communication,
Quynhon, Vietnam, October 2017. This paper was recommended by Associate
Editor G. Masera. (Corresponding author: Khoa Le.)

K. Le, F. Ghaffari, L. Kessal, and D. Declercq are with ETIS,
UMR8051, Université Paris Sein, Université de Cergy-Pontoise, ENSEA,
CNRS, 95014 Cergy-Pontoise, France (e-mail: khoa.letrung@ensea.fr;
fakhreddine.ghaffari@ensea.fr; kessal@ensea.fr; declercq@ensea.fr).

E. Boutillon is with the Lab-STICC, UMR 6285, Université de Bretagne
Sud, 56321 Lorient, France (e-mail: emmanuel.boutillon@univ-ubs.fr).

C. Winstead is with the Department of Electrical and Computer Engi-
neering, Utah State University, Logan, UT 84322-4120 USA (e-mail:
chris.winstead@usu.edu).

B. Vasić is with the Department of Electrical and Computer Engi-
neering, The University of Arizona, Tucson, AZ 85719 USA (e-mail:
vasic@ece.arizona.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2018.2849679

LDPC codes can be decoded by two classes of decoding
algorithms: soft-information message passing algorithms, e.g.,
Min-Sum (MS), Sum Product (SP) [3], or hard-decision
algorithms such as Bit Flipping (BF) and Gallager-A,B
[4], [5]. The soft-information decoding algorithms provide a
very good decoding performance but require a large computa-
tion resources. They exhibit, therefore, very high complexity
in hardware realization [3]. On the contrary, the hardware
implementations of hard-decision decoders were shown to
have low complexity thanks to the simple computation units
and smaller connection networks, but they are weak in error
correction. The increasing demand of massive data rates in
several applications, such as optical communications, high-
speed Ethernet [6], data storage devices [7]–[9] or the New
Radio of 5G enhanced mobile broadband (eMBB) [10], will
require higher decoding throughput. In such applications, hard
decision decoders become the promising candidates thanks
to their simple computations and hence, low complexity and
high decoding throughput, provided that the decoding per-
formance is improved. In this paper, we focus on the Bit
Flipping (BF) hard decision decoder to not only enhancing the
decoding throughput and reducing the decoder complexity but
also improving the error correction performance. Furthermore,
we focus on the decoders which require only the hard infor-
mation from the channel. These decoders could be used when
the channel soft-information is unable to obtain or requires
a long latency to be generated, such as the storage
system [11], [12].

The BF decoding concept is firstly introduced by Gal-
lager [4]. It involves passing binary messages iteratively
between two groups of nodes: the Variable Nodes (VNs)
and the Check Nodes (CNs), and it uses the channel hard-
information as the input values. The CN uses the exclusive-
OR (XOR) operations. In each iteration, a VN is flipped if
the number of unsatisfied neighboring CNs is higher than
a predefined threshold. The BF has a very low complexity
decoder but provides a weak error correction, compared to
the soft-decision decoders. Several BF decoders have been
latter proposed in literature, in which the Gradient Descent
Bit Flipping (GDBF) and the Probabilistic Gradient Descent
Bit Flipping (PGDBF), introduced by Rasheed et al. [13],
could be seen as the most promising algorithms, in terms of
error correction. In the GDBF, the CN operation is the XOR
calculation as in the standard BF decoder, while VN computes
a function called inversion or energy function derived from a
gradient descent formulation. A VN is flipped when its energy

1549-8328 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1453-2537
https://orcid.org/0000-0002-0928-7963
https://orcid.org/0000-0001-7645-7136
https://orcid.org/0000-0001-5238-5852

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 1. The evolution in term of decoding performance of BF decoders on
the Tanner code [15].

value is a maximum, compared to all other energies. The
GDBF provides a very good error correction and it is better
than the previously introduced deterministic BF decoders. The
PGDBF is a variant of the GDBF, introduced also in [13]. The
PGDBF follows precisely the decoding steps of the GDBF, and
differs only in the VN flipping operations. Unlike the GDBF in
which the VNs that satisfy flipping condition are automatically
flipped, all the flipping candidates in PGDBF are only flipped
with a probability of p (0 < p < 1). Interestingly, this
probabilistic behavior improves the decoding performance, far
better than the original GDBF and very close to MS [14]. The
evolution of BF performance improvement is shown in Fig. 1
on the well-known Tanner code [15].

Another newly proposed BF decoder is introduced by Jung
and Park [11], and is called Multi-Bit Flipping (MBF). The
MBF scenario is in line with our target in which the decoder
requires only hard information from the channel for decoding.
The VNs of MBF also compute at each iteration the energy
value basing on its neighbor CN values. The novelty comes
from the fact that, at each iteration of MBF, only a constant
number of VNs are allowed to flip to avoid the overcorrection.
For example, only 4 VNs are flipped at each iteration. This
truly helps the MBF avoid VN miss-flipping and offers a
considerable improvement in error correction.

The GDBF and PGDBF implementations can be found
in [14] and MBF is implemented in [11]. A drawback of
these BF decoders is that a global operation (the Maximum
Finder - MF in [14] and N-to-4 sorter in [11]) is required
to identify the maximum among the VN energy values. This
global function operates on the large number of energy values,
and in the hardware implementations it lengthens the decoder
data path and limits the maximum achievable frequency,
especially when the codeword length is long. Although the
reported decoding throughput of the above decoders is very
promising, the global operation are the main obstacle for
further improving the operating frequency and therefore, limit
the increasing of the decoding throughput.

Another global computing block, which also limits the
maximization of the operating frequency, is the Syndrome

Check (SC) module. During the decoding process, the SC
module verifies all the CN values and indicates at its output
the stopping signal when all of them are satisfied, i.e., when all
of CN values are 0’s. We show in this paper that, the SC is an
important module for prior-introduced BF decoders to obtain
the decoding success but it can not be fully parallelized to
improve the decoding speed. The hardware implementation of
the SC module has all of the CN outputs as its inputs and
the data path becomes significantly long when the number of
CNs is large. A BF decoder in which the SC is eliminated
from the data path, would provide a significant improvement
in operating frequency.

This paper presents a new probabilistic parallel BF
decoder (PPBF) in which no global operation is required. The
flipping decision in each VN of PPBF is made locally in the
VN basing only on its channel value, neighbor CN values
and a probabilistic binary signal. In the PPBF, depending on
the computed energy value, the VN will be flipped with the
corresponding probability. Therefore, at each iteration, all VNs
in PPBF could be flipped (with different probabilities) and it
is different from the PGDBF decoder where only the VNs
having the maximum energy are the flip candidates. The data
path is significantly shortened which results an enhancement
of decoding throughput. More interestingly, by eliminating the
global operation, PPBF becomes a low-complexity algorithm,
comparable to the deterministic GDBF decoder, while hav-
ing a better decoding performance than PGDBF and being
very close to the MS performance. An improved version of
PPBF, called Non-Syndrome Probabilistic Parallel Bit Flipping
(NS-PPBF), is then introduced, further shortening the critical
path by moving the global SC module out of the data path.
In the NS-PPBF, when converging to a correct codeword,
the decoder will stop flipping thanks to a specific flipping
mechanism. NS-PPBF additionally improves the decoding
frequency, compared to PPBF while maintaining the good
error correction capability.

The rest of the paper is organized as follows. In Section II,
the notations of LDPC codes and LDPC decoding algorithms
are firstly introduced. The PPBF algorithm is then presented.
The analysis of PPBF in improving of decoding performance
and operating frequency is also provided. The improved ver-
sion PPBF (the NS-PPBF) is introduced in Section III. In
Section IV, the implementation architectures for PPBF and
NS-PPBF are presented with detailed circuits for the proba-
bilistic signal generator and processing units. In Section V,
the hardware synthesis results and the simulated error cor-
rection performance are presented. These results confirm that
the proposed decoders significantly improve the operating
frequency, reduce the decoder complexity while improving the
error correction capability, better than all known BF decoders
in the literature. Section VI concludes the paper.

II. THE PROBABILISTIC PARALLEL

BIT FLIPPING DECODERS

A. Notations

An LDPC code is defined by a sparse parity-check matrix
H of dimention M × N , N > M . Each row represents a parity

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: PPBF DECODER FOR LDPC CODES 3

check function, computed by a CN, on the VNs represented
by the columns. The VN vn (1 ≤ n ≤ N) is checked by the
CN cm (1 ≤ m ≤ M) if the entry H (m, n) = 1 and they are
called neighbors. An LDPC code can also be represented by
a bipartite graph called Tanner graph composing two groups
of nodes, the CNs cm , 1 ≤ m ≤ M , and the VNs vn , 1 ≤
n ≤ N . The VN vn (1 ≤ n ≤ N) connects to the CN cm

(1 ≤ m ≤ M) by an edge in the Tanner graph if the entry
H (m, n) = 1. We denote the set of CNs connecting to the
VN vn (the so-called, neighbor set) as N (vn) and |N (vn)| is
called the degree of VN vn . Similarly, N (cm) denotes all VNs
connecting to CN cm and |N (cm)| is the degree of CN cm . This
paper works on the regular LDPC code, i.e., |N (vn)| = dv

and |N (cm)| = dc, ∀n, m. A vector x = {xn} = {0, 1}N is
called a codeword if and only if H xT = 0. x is sent through
a transmission channel and we denote y = {yn} = {0, 1}N

as the channel output. The decoders presented in this paper
are applied on the Binary Symmetric Channel (BSC) where
each bit xn ∈ x is flipped with a probability α, called channel
crossover probability, when being transmitted, i.e., Pr(yn =
xn) = 1 − α and Pr(yn = 1 − xn) = α, 1 ≤ n ≤ N . We use
the superscript (k) together with the node notations, e.g. c(k)

m ,
v

(k)
n , to denote the nodes values at the k-th iteration. Also,

the nodes values vector at the k-th iteration are denoted as
v(k) = (v

(k)
1 , v

(k)
2 , . . . , v

(k)
N) and c(k) = (c(k)

1 , c(k)
2 , . . . , c(k)

M).

B. The Proposed Probabilistic Parallel Bit Flipping Decoder

The proposed PPBF decoding algorithm follows the decod-
ing procedure as in other introduced BF algorithms, in which
the binary messages are iteratively passed between the VNs
and CNs via the decoding iterations. The CN messages are
simply the parity information and its computation is for-
mulated as in Eq. (1), where ⊕ is the bit-wise Exclusive-
OR (XOR) operation.

c(k)
m = ⊕

vn∈N (cm)
v(k)

n (1)

The BF decoding process is stopped either when all CNs
equations are satisfied, i.e., c(k) = 0, in which case, the decod-
ing process is declared as a success and the v(k) are the
decoded codeword, or when k reaches the maximum number
of iterations (denoted by I tmax). In the latter case, the decoding
process is declared as a failure.

When the above stopping conditions are not satisfied, all
the CN computation results, c(k)

m , 1 ≤ m ≤ M , are sent to the
neighboring VNs (called CN messages), and the VN oper-
ations are then repeated again. The computation of VN is
summarized as following. Firstly, each VN evaluates its energy
(reliability) value E (k)

n , using Eq. (2), where the energy value
is the sum of two terms. The first term is the similarity between
its current value, v

(k)
n , and its channel output, yn (computed

by the function ⊕). The second term is the number of its
unsatisfied neighbor CNs, i.e., the number of neighboring
CNs having c(k)

m = 1. It is clear that, the energy value for
a VN is an integer between 0 to dv + 1, (0 ≤ E (k)

n ≤ dv + 1).
Secondly, based on the computed energy value E (k)

n , a random
bit with Bernoulli distribution, B(.), (denoted as R(k)

n) is

generated in each VN such that Pr(R(k)
n = 1) = p(E (k)

n) and
Pr(R(k)

n = 0) = 1 − p(E (k)
n) where p is a pre-defined vector

of real values, p = (p0, p1, . . . , pdv+1), |p| = dv +2 and p(�)
returns the �-th element of p, (0 ≤ � ≤ dv+1), p0 = p(0) = 0,
0 < p� = p(�) ≤ 1,∀� = 1, . . . , dv +1. Finally, each VN will
determine its new value basing on the generated random bit
R(k)

n . If R(k)
n = 1, the VN will update its values by inverting

the current value v
(k)
n , otherwise, it keeps the current value.

All the VN values are sent to the neighbor CNs and a new
decoding iteration will start. The PPBF decoding algorithm is
described in Algorithm 1.

E (k)
n = v(k)

n ⊕ yn +
∑

cm∈N (vn)

c(k)
m (2)

Algorithm 1 The PPBF Decoding Algorithm

1: Initialization k = 0, v(0) = y, p = (p0, p1, . . . , pdv+1)
2: while k ≤ I tmax do
3: for 1 ≤ m ≤ M do � CN processing
4: Compute c(k)

m , using Eq. (1).
5: end for
6: if c(k) = 0 then � Check syndrome
7: exit while
8: end if
9: for 1 ≤ n ≤ N do � VN processing

10: Compute E (k)
n using Eq. (2).

11: Generate R(k)
n from B(p(E (k)

n)).
12: if R(k)

n = 1 then
13: v

(k+1)
n = v

(k)
n ⊕ 1

14: end if
15: end for
16: k = k + 1
17: end while
18: Output: v(k)

It is interesting to make the comparisons between the PPBF
and the state-of-the-art PGDBF decoding algorithm [13], [14]
as the best BF decoder in terms of error correction. The
VN and the global operations of PGDBF (the main differences
between PPBF and PGDBF) are given in Algorithm 2 where
R(k)

n also denotes the random bit generated for vn but differs
from the fact that, Pr(R(k)

n = 1) = p, Pr(R(k)
n = 0) = 1 − p

(p is a pre-defined value). The VN processing of PGDBF can
be divided into 2 parts. At the first part, each VN computes
its energy value E (k)

n using also the Eq. (2). These computed
energy values are sent to a global module to find the maximum
energy E (k)

max = maxn(E (k)
n). At the second part, a random

bit R(k)
n is generated for each VN. Then, the value of each

VN will be flipped if and only if its energy equals to the
maximum energy (E (k)

n = E (k)
max), and the generated random

bit R(k)
n = 1. It can be seen that the PPBF and PGDBF have

the same decoding steps as well as the CN and VN energy
computation formulations. They also apply the probabilistic
flipping of the VN values in each iteration. The differences
between them are twofold. First, the PPBF does not require
the maximum energy value in making flipping selection and
therefore, no global operation is required. This comes from the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

fact that, in the PPBF each VN flips its value basing only on its
own energy and the random signal value, regardless the energy
of other VNs. Second, in the binary random generating step of
the PPBF, the probability of generated bit, R(k)

n , is dynamically
changed over the VNs and over the decoding iterations. This
probability is controlled by the VN energy values at each
iteration while in PGDBF, it is fixed for all iterations and
is equal for all VNs. Therefore, all VNs in PPBF are the
flipping candidates (rather than only the energy-maximum
VNs as in PGDBF) and they are actually flipped with different
probabilities. This property helps PPBF be more advantageous
in error correction than the PGDBF, presented in the next
section.

Algorithm 2 The VN and Global Operation in PGDBF
Decoder
1: for 1 ≤ n ≤ N do � VN processing part 1
2: Compute E (k)

n , using Eq. (2).
3: end for
4: Compute E (k)

max = maxn(E (k)
n) � Global operation

5: for 1 ≤ n ≤ N do � VN processing part 2
6: Generate R(k)

n from B(p).
7: if E (k)

n = E (k)
max and R(k)

n = 1 then
8: v

(k+1)
n = v

(k)
n ⊕ 1

9: end if
10: end for

C. The PPBF Improves the BF State-of-the-Art Error
Correction Capability

The PPBF is proposed with the probabilistic strategy in
flipping the VN, which provides an ability known as oscil-
lation breaking to improve error correction, with respect to
the deterministic BF decoders [16], [24]. Indeed, when we
consider the case of the GDBF, the failure comes from the
fact that, during the decoding process, GDBF decoder falls
into the infinite oscillations (or loops) between the tentative
states of v, which prevent GDBF converging to the correct
codeword [14], [16]. The probabilistic flip of PPBF helps break
this oscillation and thus helps it converge. For illustration,
we conducted a statistical analysis on the failures of GDBF
decoder and the oscillation breaking of PPBF on the Tanner
code. The results are plotted in Fig. 2. In Fig. 2A, we classified
all the failure cases of GDBF into the t-iterations oscillation
types, i.e., the positions of erroneous bits repeat the same
after t iterations, v(k+t) = v(k), for several values of α and
I tmax = 300. It is confirmed by Fig. 2A that, all of the
decoding failures of GDBF are due to the infinite oscillation
between states of v and furthermore, the 2-iteration oscillations
dominate other types, especially in the low error rate region.
We then re-decoded the GDBF failure cases by PPBF (and also
by PGDBF for comparison). The results are plotted in Fig. 2B.
It is remarked that, the PPBF corrects almost the failure cases
of GDBF, especially in low error rate region. This above
interesting property is the source of PPBF error correction
improvement.

Fig. 2. The statistical analysis of decoding failure of BF decoders on the
Tanner code: A. The failure types of GDBF decoder, B. The remaining after
re-decoding the failure codewords in (A) by PPBF (bars) and by PGDBF
(red triangle-marked curve).

Fig. 3. An example of error pattern with which PGDBF failed to correct
while PPBF can correct.

The error correction of PPBF in the above statistics is even
better than that of the PGDBF decoder. This is because of the
fact that, there are certain error patterns with which PGDBF
failed to correct while PPBF succeeds. We show an example
of these error patterns in Fig. 3 where there are 4 bits in
error allocated in a Trapping Set (5, 3) [14]. Fig. 3A describes
the error positions initially received from the channel. The
correct VNs (satisfied CNs) are denoted as white-filled circles
(squares), the erroneous VNs (unsatisfied CNs) are the black-
filled circles (squares). The smaller cycles denote the channel
values of each VN. When decoding this error pattern by
PGDBF decoder, the VN v5 has maximum energy (E (1)

5 = 2)
(other VNs have energy of 1) and v5 becomes the only flipping
candidate. The PGDBF will either flip v5 (if R(1)

5 = 1) or not
flip v5 (if R(1)

5 = 0). In the latter case, PGDBF keeps the
same error pattern for the next iteration. In the case PGDBF
flips v5, the error locations are illustrated in Fig. 3B and in the
next iteration, v5 is again the only flipping candidate since it
has energy of 2 while others have either 1 or 0. The PGDBF
may again flip or not flip v5 depending on R(2)

5 . Therefore,
the PGDBF is trapped in the 2-iteration oscillation and never
correct all erroneous VNs due to its maximum-energy VN flip
constraint. On the contrary, in the case of PPBF, all VNs are
the flipping candidates. With the above error pattern, at the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: PPBF DECODER FOR LDPC CODES 5

Fig. 4. The decoding performance of PPBF decoder with different values of
p combined from Tab. I, on comparison to the GDBF and PGDBF (p = 0.7)
on the Tanner code at α = 0.02, I tmax = 300.

first iteration, the PPBF not only flips v5 with p(2) (because
E (1)

5 = 2) but also other erroneous VNs (v1, v2, v3 and v4)
with p(1) > 0 (because E (1)

1 = E (1)
2 = E (1)

3 = E (1)
4 = 1).

For example, PPBF can correct this error pattern in a single
iteration with probability (p(1))4(1 − p(2)) > 0 where it
flips 4 erroneous energy-1 VNs and does not flip other VNs.
Using the analysis method in [24], it is shown that PPBF will
eventually correct this error pattern in a subsequent number
of iterations.

The PPBF error correction capability is controlled by the
values of p. We show that, it is feasible to choose p such
that PPBF provides the significant decoding gain, compared to
PGDBF and GDBF, by the following experiment. A statistics
on the Frame Error Rate (FER) as a function of p was
conducted on the Tanner code (dv = 3, dc = 5). The testing
values of p were chosen with the ranges and steps as in the
Table I and they are explained as following. It is obvious to
choose p0 = p(0) = 0 since the VN having all neighbor
CN satisfied and being similar to the channel received value,
should not be flipped. In principle, the VN that has higher
energy values should have higher probability of flip. The
VN that has all neighbor CN unsatisfied and its value disagrees
with the channel received value (in the Tanner code, its energy
is 4), should be flipped with high probability (p4 = p(4)
should be close to 1). The VN that has energy of 1 should
be flipped with a small probability (p1 = p(1) should be
close to 0) to avoid flip too many correct VNs unintentionally
since there may exist many correct VNs having the energy
of 1. p2 = p(2) and p3 = p(3) were chosen to cover a
large ranges. Table I shows all of the studied configurations.
A nested loops are formed to cover all combinations where
p1 is in the most inner loop, p4 is the most outer loop. There
are 6400 combinations and they are marked by an index i
(0 ≤ i ≤ 6399) from p[0] to p[6399]. We run the PPBF decoder
with those values of p[i] at α = 0.02, I tmax = 300 and plot the
results in Fig. 4. We also show the decoding performance of

TABLE I

THE PROBABILITY RANGES FOR THE STATISTICAL EXPERIMENT

Fig. 5. FER of the proposed PPBF, the GDBF and PGDBF (p = 0.7)
decoders as function of the number of decoding iterations on the Tanner code
for α = 0.01.

GDBF and PGDBF decoders (also at α = 0.02, I tmax = 300)
to make the comparisons.

It can be seen that, there are many values of p with which
PPBF decoder outperforms PGDBF decoder. This number is
even larger when comparing to the GDBF decoder. Some of
them may have 1.4 decade better than GDBF and 0.6 decade
better than PGDBF. The numerous options of p providing a
good decoding performance, are very promising since they
facilitate the choice of PPBF to have the good decoding per-
formance and simplify the hardware implementation, as shown
in Section IV.

It is observed that the performance of PPBF decoder is con-
tinuously improved when increasing the number of decoding
iterations. Indeed, as seen in Fig. 5 where we plot the FER
as a function of the number of iterations, the PGDBF tends
to saturate in correcting errors after 200 decoding iterations
while the GDBF is saturated even after 10 decoding iterations.
Running GDBF and PGDBF after those numbers of iterations
will not provide any gain in error correction. However, this is
not the case of PPBF decoder which continues to decrease the
FER after the first 200 iterations. It can be seen that, when
PPBF runs up to I tmax = 1000 iterations, the FER si reduced
around 1 decade compared to the one at 200 iterations. The
PPBF is, therefore, very favorable in the applications where
error correction is more important than the decoding time
constraint.

As a conclusion of this section, our statistical analysis
reveals that PPBF is a very promising decoder in terms of error
correction. It is even more interesting since PPBF is shown

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

to improve significantly the decoding frequency when being
implemented, which is presented in the next section. Some
open research directions may be opened, e.g., the theoretical
optimization and the systematic choice of p where it may be
considered as a function of α or even a function of decoding
iterations. PPBF may be optimized for the additive white
gaussian noise (in which PPBF may converge to the Noisy
GDBF in [27]) channel and/or on irregular LDPC codes. These
interesting directions are kept for our future work.

D. The PPBF Improves the Decoding Throughput and
Reduces the BF Decoder Complexity

Typically, the average decoding throughput of a hardware
implemented BF decoder, θ (in bits/s), is computed using the
Eq. (3) where fmax denotes the maximum decoding frequency,
Nc denotes the number of clock cycles required for each
decoding iteration and I tave is the number of iterations in
average.

θ = N ∗ fmax

I tave ∗ Nc
(3)

In a hardware implemented LDPC decoder, the maximal
operating frequency is limited by the length of the longest
data path (and so-called, critical path) and fmax should be
inferior to 1/tD, (fmax < 1/tD), where tD is the length of
the critical path to avoid the timing error in run-time [25].
In order to improve the decoding throughput (assuming keep-
ing N , I tave and Nc constant), the hardware implementations
of LDPC decoders tend to be parallelized to shorten the crit-
ical path [22], increasing maximally the achievable operating
frequency fmax . However, the maximization of the operating
frequency in some BF decoders reported in the literature, such
as GDBF, PGDBF [14] or MBF [11] may be limited since the
global operation still required in these decoders, dramatically
increases the critical path [17]. In order to clarify the effect of
the global operation on the critical path as well as the decoder
complexity, we choose to analyze the architecture of PGDBF
decoder in [14] (presented in Fig. 6). The operation of PGDBF
decoder on this architecture may be found in that paper. The
longest data path in PGDBF implementation is shown by the
dashed green path in Fig. 6. This critical path starts from
the output of D Flip-Flop storing v

(k)
n and passes to the CN

computing unit (CNU), the energy computation (summation
block), the Maximum Finder (MF block), several computing
units and ends at the input-D of the D Flip-Flop (the updated
VN value for the next iteration, v

(k+1)
n). Many implementing

methods of the MF can be found in [17]. We illustrate the
implementation of MF in Fig. 6 by the binary tree of the
Compare-And-Swap Units (CASUs) [11]. The CASU passes
at its output the larger value of the 2 input values. The latency
of the MF module can be formulated as tM F = tc�[

]
log2(N)	

where tc is the delay of a single CASU module. This critical
path may become longer when longer code is used. The ASIC
synthesis results of the PGDBF decoder on the dv = 3,
dc = 6, N = 1296, M = 648, code rate R = 0.50 regular
LDPC code [22] (denoted as dv3R050N1296) show that,
the MF occupies more than 40% of the total length of the
critical path (the details of synthesis setup are introduced in

Fig. 6. The critical paths in PGDBF decoder.

Section V). The MF is also a large part of PGDBF in terms
of complexity since it requires approximately N − 1 CASUs.
The synthesis shows also that, the MF is responsible for 20%
of the total PGDBF decoder area.

The VNs of PPBF do not require the maximum energy value
for their operations. This is the source of the improvement in
the terms of operating frequency of PPBF. For example, it is
expected that, PPBF will reduce the critical path by 40% when
designed and synthesized on the same dv3R050N1296 LDPC
code. Since the MF is not implemented, the decoder complex-
ity will be reduced, compared to that of the PGDBF.

III. THE NON-SYNDROME PROBABILISTIC

PARALLEL BIT FLIPPING DECODER

The PPBF is expected to improve the operating frequency
since the critical path is significantly reduced (as proven by
the synthesis results in Section V). In the synthesized PPBF
decoder, it is observed that, the critical path of PPBF starts
from the output of the D Flip-Flop storing v

(k)
n and passes

to the CNU, the SC module and ends at this SC module
output (which controls the enable-input of D Flip-Flop to
store v

(k+1)
n into the place of v

(k)
n). This critical path is similar

to the second longest data path in PGDBF implementation
illustrated in Fig. 6 by the dashed blue path. We target
improving the operating frequency of the PPBF by eliminating
the SC module from the data path and shortening the critical
path of PPBF. This modified version of PPBF is named as
NS-PPBF decoder.

In some LDPC decoding algorithms such as MS, OMS,
Sum-Product or Gallager-A/B, the decoding process may
continue to run when the decoder already converges to the
correct codeword. This extra updating of the A-Posteriori-
Probability (APP) will make the hard-decision even more
solid. This property provides the possibilities that, the early
stopping condition (the SC module) may not be needed.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: PPBF DECODER FOR LDPC CODES 7

The situation is different in the case of BF decoders such
as GDBF, PGDBF, PPBF etc. where the SC module plays an
important role in ensuring the finding of correct codewords.
Indeed, when converging to the correct codeword (all CN
values are zeros), the computed energy in these BF decoders
is either 0 (of the correctly received VNs from channel) or 1
(of the incorrectly received VNs from channel, the value of
1 comes from the term v

(k)
n ⊕ yn in energy computation of

Eq. (2). If the SC result is not verified to stop the decoding
process, the BF decoders tend to flip the energy-1 VNs in
the next iteration (Note that the GDBF will flip all energy-
1 VNs while PPBF and PGDBF flip a random part of them).
These decoders are re-entering to the incorrect-codeword states
and the correct codeword may not be found after I tmax itera-
tions or in a subsequent number of iterations after converging.
Because of this flipping principle, the SC is inevitable when
implementing these BF decoders (note further that, since the
computations are simple, in the literature, these BF decoders
are usually implemented such that they take only Nc = 1
clock cycle for 1 decoding iteration). In the PPBF, the SC
module becomes a part of the critical path. Moreover, the SC
is a global operation which verifies all the values of M CNs
in each iteration. It occupies, therefore, a noticeable part of
that critical path in PPBF. In fact, the SC introduces a delays
of tSC = to�[

]
log2(M)	, where to is the delay of a single

OR gate, when implemented as a binary tree of OR gates
(as in Fig. 6). The hardware synthesis of PPBF shows that
the delay of SC module is around 20% of the PPBF critical
path length. Our proposed NS-PPBF decoder introduces a new
stopping mechanism which does not depend on the SC result.

Algorithm 3 The VN Operations of the NS-PPBF Decoder
1: for 1 ≤ n ≤ N do � VN processing
2: Compute E (k)

n , using Eq. (2).
3: if E (k)

n
= 1 or v
(k)
n = yn then

4: Generate R(k)
n from B(p(E (k)

n)).
5: if R(k)

n = 1 then
6: v

(k+1)
n = v

(k)
n ⊕ 1

7: end if
8: end if
9: end for

The proposed flipping mechanism targets to automatically
stop flipping the VNs when the correct codeword are found,
i.e., all the CNs are satisfied (all CNs are 0’s). The VN oper-
ation of NS-PPBF is described in Algorithm 3. It can be
seen that, the flipping of NS-PPBF decoder is almost similar
to that of the PPBF decoder and the difference is on the
flipping when the VN energy is 1. In fact, it is sufficient to
additionally manipulate on the case that E (k)

n = 1 because
when the codeword is found, the VN produces only the values
1 or 0 as its energy, and the energy-0 VNs are not flipped
since p0 = 0. In NS-PPBF, when the energy E (k)

n = 1,
it separates the case where the value 1 is obtained from the
term v

(k)
n ⊕ yn and the case where the value 1 is obtained from

the term
∑

cm∈N (vn) c(k)
m . NS-PPBF then flips the VN having

E (k)
n = 1 with probability p1 = p(1) only in the latter case.

Fig. 7. An example of error pattern where the PPBF has higher probability to
correct than the NS-PPBF: (A) the error configuration received from channel,
(B) a trapping state during the decoding process.

It means that, NS-PPBF will not flip the VNs having energy 1
coming from the disagreement between the current value and
the channel value. By using this principle, whenever a correct
codeword is found, all the CNs are satisfied, the NS-PPBF
will not flip any VNs and the current v(k) is preserved. The
decoding process will stop either when I tmax iterations have
been reached (if the SC is not implemented), or the parallelized
implemented SC produces the stopping signal. v(k) is then
declared as the decoded codeword.

It can be seen that, the NS-PPBF decoding process will
terminate without using the signal from the SC module. The
SC contribution to the critical path have been eliminated,
which will improve the operating frequency of the decoder.
However, the constraint applied on the energy-1 VNs reduces
the decoding dynamics and may lead to degradation in error
correction, compared to the PPBF decoder. We observed that
the performance degradation depends on the existence of the
small and “harmful” sub-graphs in the Tanner graph e.g.,
the trapping set (5,3) in the Tanner code, which prevent the
decoding convergence. We show an example as in Fig. 7 where
Fig. 7A shows the channel error configuration. Decoding this
error configuration may lead to a special state as in Fig. 7B
where all VNs in the TS(5,3) are erroneous. It can be seen
that, this is a trapping state since flipping any bits out of this
TS will not increase the energy of the VN in the TS. In other
words, only flipping the VNs in the TS helps escape from this
state and converge. With the PPBF, all 5 VNs have flipping
probability p1 while only v2, v4 and v5 may be flipped in
the case of the NS-PPBF. This reduces the decoding success
chance of NS-PPBF. In fact, decoding this error configuration
by the PPBF and NS-PPBF with p = (0, 0.0081, 0.3, 0.7, 1)
produces FER of 4.2e−3 and 2.58e−2, respectively.

IV. THE HARDWARE ARCHITECTURE

In order to verify the efficiency of the proposed BF decoders
in terms of decoding frequency and complexity, the hardware
architectures implementing these decoders are introduced in
this section. These hardware architectures are then synthesized
on the Application-Specific Integrated Circuit (ASIC). The
synthesis results and discussions are presented in the next
section.

The first proposed hardware architecture of the PPBF
decoder is presented in Fig. 8. Similarly to the architecture
of PGDBF decoder, the CN operations is realized by the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 8. The LFSR-based implementation of PPBF decoder.

dc-input XOR gates. The VN energy value is computed by the
summation block whose inputs are the CN computation results
and the XOR1 (computing the term v

(k)
n ⊕ yn). The key feature

of this architecture is that the computed energy values controls
the threshold input of a random generator (RG). This threshold
input is used to control the probability of the generated bit and
by doing that, the probability of the generated bit is adapted
for each VN and each iteration. One RG method could be
used is the Linear Feedback Shift Register (LFSR) as in [18].
The VN value for the next iteration, v

(k+1)
n , is computed by

the XOR2 gate based on the generated bit and the VN current
value v

(k)
n . The v

(k+1)
n is an inversion of v

(k)
n if the generated bit

R(k)
n = 1 since X ⊕ 1 = NOT(X), ∀X. When the generated bit

R(k)
n = 0, v

(k+1)
n = v

(k)
n since X ⊕ 0 = X, ∀X. The SC module

is implemented to stop the decoder when the correct codeword
is found. This architecture can fully execute the operations of
the PPBF decoder and can also be adapted for the NS-PPBF.
However, the results reported in [18] revealed that, this method
may be costly since each VN requires an LFSR module and
the decoder complexity may be increased due to these RGs,
especially when the LDPC code with large N is used. We
leave aside this architecture and focus on a low-complexity
solution to generate the binary random signals, introduced
in [14], called Cyclic Shift Truncated Sequence (CSTS).

A. The Probabilistic Signal Generator for PPBF and
NS-PPBF Decoders

Inspired by the results of [14] where the correlation in the
random generation may not much affect the error correction of
the probabilistic BF decoders, we apply that CSTS approach
to implement the RGs for PPBF and NS-PPBF decoders,
to reduce the hardware resources. In the CSTS, a short D
Flip-Flop sequence, Rt with size |Rt | = S < N , is allocated.
Rt initially stores the generated bits where the 1’s are with the
ratio of pr on the total of bits, and they are distributed in an
arbitrary order. For each clock cycle, Rt is cyclically shifted.

Fig. 9. The proposed probabilistic signal generator (random generator - RG)
for PPBF decoder.

It can be approximated that in S clock cycles each output of
Rt produces the bits 1 with probability pr . The outputs of D
Flip-Flops in Rt are used as a random bit, triggered to the
Variable Node Processing Units (VNUs) and one output can
be used for multiple VNUs of the PGDBF without degrading
the decoding performance [14].

The RGs of the PPBF and NS-PPBF decoders are required
to generate the random bits with different probabilities.
In order to produce these desired probabilities, we use the logic
gates as introduced in [18] and its principle is briefly recapit-
ulated as follows. Let a and b be two independent random
binary variables with Pr(a = 1) = pr and Pr(b = 1) = pr .
It can be shown that, Pr((a AND b) = 1) = p2

r , Pr(NOT(a) =
1) = 1 − pr and Pr((a OR b) = 1) = 2 pr − p2

r . Other
logic functions such as XOR etc. can also be formulated. We
design the Probability Controlling Units (PCUs), composed
by the logic gates, to produce the random bits for our PPBF
and NS-PPBF decoders. The PCU has the binary values from
Rt as its inputs through the crossbar network and has several
binary outputs. Each output has different probability to be 1,
which is transformed from the probability pr from Rt .

In this paper, we target to implement PPBF and NS-PPBF
decoders for the Tanner and the dv3R050N1296 LDPC codes
with dv = 3. The extension for other LDPC codes which
have higher VN degree, i.e., dv ≥ 4, is straightforward. As
shown in the statistical analysis, several values of p may be
used to provide good decoding performance gain. We use p =
(0, 0.0081, 0.3, 0.7, 1) as an example to implement since it
provides a good error correction while facilitating the hardware
implementation. In fact, it can be shown that this particular p
is equal to (0, p4

r , pr , 1− pr , 1) where pr = 0.3. The designed
RG is shown in Fig. 9 where N PCUs are designed for N VNs.
Each PCU has dv = 3 outputs (internally named as p1, p2
and p3). The outputs have the value of 1 with the probability
correspondingly to p1, p2 and p3. The outputs of each PCU
are triggered to the corresponding implemented VNU of the
PPBF and NS-PPBF, presented in the next section.

B. The Computing Units of PPBF Decoder

PPBF decoder is realized in hardware by two connection
networks connecting two groups of processing units: the
VNUs and CNUs. The proposed architecture to implement
PPBF decoder is presented in Fig. 10. The connection net-
work 1 transmits the messages from VNUs to CNUs and the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: PPBF DECODER FOR LDPC CODES 9

Fig. 10. The proposed architecture for the realization of PPBF decoder for dv = 3 LDPC codes.

connection network 2 is to transfer the messages from CNUs
to VNUs. The CNUs in PPBF decoder are also the dc-inputs
XOR gates, computing the parity check on the VN messages.
The CNUs outputs are transmitted to the VNUs inputs and
we denote (as in Fig. 10) cvn as the group of messages of
cm ∈ N (vn), 1 ≤ n ≤ N . In each VNU, the summation
block computes the VN energy value and this computed energy
controls the selection of the multiplexer MUX5to1 module.
The MUX5to1 module is a key module which results to
flip or not the VN current value, v

(k)
n , by producing 1s or 0s at

its output. When the output of MUX5to1 is 1, the VN current
value, v

(k)
n , is XOR-ed by 1 by the XOR2 and is flipped,

otherwise, v
(k+1)
n = v

(k)
n ⊕ 0 = v

(k)
n . The flipping probability

of v
(k)
n is, therefore, controlled by its energy. Indeed, the input

0 of MUX5to1 is always reset to 0 while the input 4 is set
to 1 which results the fact that, the VN which has energy of
0 is not flipped and the VN having energy of 4 is flipped
with probability of 1. When the energy is from 1 to 3,
the corresponding flipping probability is arranged as p1, p2
and p3, controlled by the RG. The SC is implemented by
M-inputs OR gate whose inputs are the outputs of the CNUs.
The decoder will stop when SC produces 0.

It should be noted that, this PPBF architecture requires
Nc = 1 clock cycle for each decoding iteration. The critical
path of the PPBF is denoted by the dashed green path and
the second longest data path is shown by the dashed blue path
in Fig. 10.

C. The Computing Units of NS-PPBF Decoder

The implementation architecture of NS-PPBF decoder is
presented in Fig. 11, which follows mostly the principle of
PPBF architecture. The difference comes from the added

multiplexer MUX2to1. The MUX2to1 is controlled by the
output of the XOR1 which indicates the similarity between the
v

(k)
n and yn . This added MUX2to1 contributes to the flipping

feature of NS-PPBF in the case when the energy-1 appears.
In fact, when E (k)

n = 1 and v
(k)
n differs from yn , XOR2 always

receives 0’s from MUX5to1 and v
(k)
n will not be flipped. When

E (k)
n = 1 and v

(k)
n equals to yn , XOR2 receives signal from

the RG with the probability p1 to be equal to 1.
In the NS-PPBF hardware architecture, the SC is not imple-

mented and the decoder will stop after I tmax iterations. The
critical path of NS-PPBF in the synthesized decoder is shown
by the dashed green path in Fig. 11.

V. SYNTHESIS RESULTS AND DECODING PERFORMANCE

A. Synthesis Results

In this section, we report the ASIC synthesis results of
our decoder implementations. The proposed decoders are
implemented using the Digital Standard Cell Library SAED-
EDK90-CORE, Process 1P9M 1.2v/2.5v. The hierarchical
design flow is followed with the Synopsys Design Platform:
Synopsys Design Compiler is used for VHDL synthesis,
Synopsys VCS tool for simulation and DVE, a graphical user
interface for debugging and viewing waveforms. Synopsys
Prime Time tool is used for timing analysis, power and energy
estimation. We generate the switching activity interchange
format (saif) file to estimate the power consumption of the
decoders. The Synopsys IC Compiler (ICC) is used for floor
planning, place and route.

We make the first synthesis of our decoders on the Tanner
code (dv = 3, dc = 5, N = 155, M = 93). Our strategy
is to look for the minimum timing constraint to which the
synthesizer can pass (which indicates the maximum achievable

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 11. The proposed architecture for the realization of NS-PPBF decoder for dv = 3 LDPC codes.

Fig. 12. Layout plot of the PPBF decoder implemented in Table III.

frequency that the decoders can reach) after place-and-route
synthesizing processing. The GDBF and PGDBF decoders
are implemented following the architecture described in [14].
The synthesis results are reported in Table II. It can be seen,
as expected, that PPBF increases more than 43% the operating
frequency compared to GDBF and PGDBF while NS-PPBF
is even more than 64%. The average decoding throughput
at α = 0.012 is also provided. It is shown that, the PPBF
and NS-PPBF are faster in decoding speed than PGDBF (with
28.1 Gbps and 32.5 Gbps compared to 25.3 Gbps). In terms
of hardware complexity, PPBF reduces 3.4% and NS-PPBF
reduces 1.4% compared to the PGDBF. This complexity
reduction is interesting since PPBF and NS-PPBF provide a
better error correction (shown in the next sub-section) while
requiring less hardware resources. The complexity reduction
is modest because of the fact that, the RGs are more costly
than that of the PGDBF, which diminishes the advantage of
the MF removal. Our decoders consume more energy than
other BF decoders. PPBF needs 0.59 pJ to decode 1 bit while

TABLE II

THE SYNTHESIS RESULTS OF PPBF AND NS-PPBF IN THE COMPARISONS

TO GDBF AND PGDBF DECODERS ON THE TANNER CODE. ALL THE
RGS ARE THE CSTS-BASED IMPLEMENTATIONS WITH S = 155.

PGDBF IS WITH p = 0.7. THE AVERAGE THROUGHPUT θ AND

THE AVERAGE POWER CONSUMPTION (ENERGY/BIT) ARE
COMPUTED AT α = 0.012

NS-PPBF requires 0.6 pJ, compared to 0.33 pJ of PGDBF and
0.24 pJ of GDBF. It is because of the fact that, the proposed
decoders operate at higher frequency. Also, more switching
activities may be produced in PPBF and NS-PPBF due to the
randomness injection in all levels of VN energy.

In the second synthesis, we implement the proposed
decoders for the longer code (the dv3R050N1296 LDPC
code). We present the detailed complexity of the computing
units of PPBF and NS-PPBF decoders in Table III. Further
comparisons of the proposed decoders with other BF-based
decoders as well as the MS benchmark from the literature
are shown in Table IV. It can be seen in the Table IV that,
PPBF and NS-PPBF provide a significant gain in decoding
frequency. PPBF can operate at fmax = 476MHz and NS-
PPBF is at fmax = 556MHz, compared to 385MHz of
GDBF and 357MHz of PGDBF. PPBF and NS-PPBF are
much faster than MS (250MHz) and ATBF (250MHz). In
terms of hardware complexity, the proposed decoders require
small hardware resource to be implemented. The required area

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: PPBF DECODER FOR LDPC CODES 11

TABLE III

THE SYNTHESIS RESULTS OF THE IMPLEMENTED PPBF AND NS-PPBF
DECODERS ON DV3R050N1296: AREA PERCENTAGE OF COMPUTING

UNITS. THE IMPLEMENTED LAYOUT OF THE PPBF
IS SHOWN IS FIG. 12

is from 0.35 − 0.37 mm2 which is equivalent to that of the
GDBF (and PGDBF) decoder. It is only 1/5 of SBF, 1/4
of MS and 1/2 of ATBF decoders. In terms of decoding
throughput, we compute θ in the worst case (where I tmax

is used) and in the average case (where I tave at F E R = 10−5

is used). In the former case, the proposed decoders provide
the throughput from 2 to 2.5 Gbps which are higher than
the GDBF (1.44 Gbps), PGDBF (1.35 Gbps) and MS (1.95
Gbps). The better decoding throughput is also observed in
the average throughput to maintain the FER at 10−5. In
order to make the comparison in the hardware efficiency,
we compute the throughput area ratio (TAR) for all the
synthesis results and make comparison to other decoders. It
can be seen that, the TAR of PPBF and NS-PPBF (218 −
272 Gbps/mm2) are much higher than the other decoders such
as ATBF (34.6 Gbps/mm2), SBF (18.8 Gbps/mm2) and MS
(16.7 Gbps/mm2).

B. Decoding Performance

The decoding performance of the PPBF and NS-PPBF
decoders, simulated on several LDPC codes, is shown in this
section. The values of p are chosen by empirical experiments.
On the illustrating figures, we show the decoding performance
comparisons with other hard decision decoders such as the
conventional BF, GDBF, PGDBF (p = 0.7) and Gallager-B
(GaB). All hard decision decoders are run with I tmax = 300.
The simulations are run until 1000 error frames are found.
The performance of the quantized soft-decision MS decoder,
implemented in layered scheduling with 4 bits for LLR (Log-
LikeLihood Ratio) and 6 bits for A Posteriori Log-LikeLihood
Ratio (AP-LLR) [21], are also added, with the I tmax = 20.
We additionally compare the BF decoding performance to the
floating point sum-product (SP) decoding (I tmax = 20).

Fig. 13 shows the decoding performance on the Tanner
code. It can be seen that, the PPBF is the best error correction
compared to all other BF decoders. NS-PPBF is better than the
PGDBF especially in the low-error rate region. With a small
degradation compared to PPBF, NS-PPBF is at the gains of
decoding throughput as shown in the previous section. We also
extend the simulation of PPBF and NS-PPBF on this Tanner

Fig. 13. The decoding performance of the PPBF and the NS-PPBF with
p = (0, 0.0081, 0.3, 0.7, 1.0), on comparison to other BF decoders and to
the MS (I tmax = 20) on the Tanner code. The curves with (*) are with
I tmax = 1000 while the others are with I tmax = 300.

Fig. 14. The decoding performance of the PPBF and the NS-PPBF with
p = (0, 0.0081, 0.3, 0.7, 1.0), on comparison to other BF decoders and to the
MS (I tmax = 20), SP (I tmax = 20) on the dv = 3, dc = 6, N = 1296, code
rate R = 0.5 LDPC code. All BF-based decoders are with I tmax = 300.

Fig. 15. The decoding performance of the PPBF and the NS-PPBF with
p = (0, 0.001, 0.1, 1.0, 1.0), on comparison to other BF decoders and to the
MS (I tmax = 20), SP (I tmax = 20) on the dv = 3, dc = 12, N = 1296, code
rate R = 0.75 LDPC code. All BF-based decoders are with I tmax = 300.

code to run up to I tmax = 1000. Our proposed decoders
provide a significant gain in the decoding performance as
shown in the statistical analysis. At α = 0.004, PPBF

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

TABLE IV

COMPARISON BETWEEN THE PROPOSED BF DECODERS AND THE STATE-OF-THE-ART LDPC DECODERS

Fig. 16. The decoding performance of the PPBF and the NS-PPBF with
p = (0, 0.001, 0.05, 0.3, 0.95, 0.95), on comparison to other BF decoders and
to the MS (I tmax = 20), SP (I tmax = 20) on the dv = 4, dc = 8, N = 1296,
code rate R = 0.5 LDPC code. All BF-based decoders are with I tmax = 300.

provides around 2 decades gain in FER compared to PGDBF,
3.3 decades when compared to GDBF. With I tmax = 1000,
PPBF gains around 1 decade in FER when compared to itself
with I tmax = 300, which confirms the superiority of PPBF
when increasing the number of decoding iterations. It is also
shown that, the decoding performance of PPBF and NS-PPBF
is very close to that of the MS decoder.

The decoding performance on other LDPC codes with
different (VN and CN) node degrees and code rates, are shown
in Fig. 14, 15 and 16. Fig. 14 shows the performance on
the dv3R050N1298 (dv = 3, dc = 6, N = 1296, code rate
R = 0.5) LDPC code. With the chosen value of p, PPBF and
NS-PPBF have the equivalent error correction and they are
better than PGDBF when FER > 1e−5. Compared to GDBF
decoder, PPBF and NS-PPBF provide a significant gain in
performance, half-way approaching the MS, while requiring
the equivalent hardware complexity and 1.5 times faster in
decoding speed, as shown in the previous section.

The good decoding performance of PPBF and NS-PPBF
are also observed on dv = 3, dc = 6, N = 1296, code rate

R = 0.75 code (Fig. 15) and dv = 4, dc = 8, N = 1296,
code rate R = 0.5 (Fig. 16). Especially, PPBF and NS-
PPBF are very close to the MS performance for the latter
code.

VI. CONCLUSION

In this paper, we propose a new high-throughput, low-
complexity Bit Flipping decoder for Low-Density Parity-
Check (LDPC) codes on Binary Symmetric Channel (BSC),
called Probabilistic Parallel Bit Flipping (PPBF). The PPBF
is more advantageous than other state-of-the-art BF decoders
such as the Gradient Descent Bit Flipping and Probabilistic
Gradient Descent Bit Flipping decoders, in terms of operating
frequency and decoder complexity, thanks to the elimination
of the global operation which helps shorten the critical path
and reduce the decoder hardware cost. Furthermore, in PPBF,
the probabilistic flipping of the Variable Node is introduced for
all levels of its energy value rather than only on the maximum
values as in PGDBF. PPBF provides, therefore, a very good
error correction capability and in some cases, overcomes
some error patterns with which PGDBF can not correct. One
improved version of PPBF, named as non-syndrome Proba-
bilistic Parallel Bit Flipping (NS-PPBF), is then introduced
in which the critical path is further shortened by eliminating
the global Syndrome Check module from the data path. The
operating frequency of the NS-PPBF is heightened while a
negligible error correction degradation observed, with respect
to those of the PPBF. The hardware architectures to imple-
ment the PPBF and NS-PPBF decoders are introduced with
the detailed circuits of the random generator and computing
units. The ASIC synthesis results of the proposed archi-
tectures re-confirm as expected that, PPBF and NS-PPBF
are high hardware-efficiency and high decoding throughput.
The proposed PPBF and NS-PPBF appear as the very low-
complexity, high throughput decoders with the significant
improvement in error correction, which can be seen as the
competitive candidates for the next communication and storage
standards.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: PPBF DECODER FOR LDPC CODES 13

REFERENCES

[1] IEEE Standard for Information Technology—Local and Metropoli-
tan Area Networks—Specific Requirements—Part 11: Wireless LAN
Medium Access Control (MAC)and Physical Layer (PHY) Spec-
ifications Amendment 5: Enhancements for Higher Throughput,
IEEE Standard 802.11n-2009, Mar. 2008.

[2] IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air
Interface for Fixed Broadband Wireless Access Systems—Amendment 2:
Medium Access Control Modifications and Additional Physical Layer
Specifications for 2–11 GHz, IEEE Standard 802.16a-2003, 2003.

[3] D. Declercq, M. Fossorier, and E. Biglieri, Channel Coding: Theory,
Algorithms, and Applications: Academic Press Library in Mobile and
Wireless Communications. New York, NY, USA: Academic, 2014.

[4] R. G. Gallager, Low-Density Parity-Check Codes (Research Mono-
graph). Cambridge, MA, USA: MIT Press, 1963.

[5] B. Unal, A. Akoglu, F. Ghaffari, and B. Vasić, “Hardware implemen-
tation and performance analysis of resource efficient probabilistic hard
decision LDPC decoders,” IEEE Trans. Circuits Syst. I, Reg. Papers, to
be published.

[6] IEEE Standard for Information Technology Telecommunications and
Information Exchange Between Systems Specific Requirements Part 3:
Carrier Sense Multiple Access With Collision Detection (CSMA/CD)
Access Method and Physical Layer Specifications Corrigendum
2: IEEE Std 802.An-2006 10GBASE-T Correction, IEEE Standard
802.3-2005/Cor 2-2007 (Corrigendum to IEEE Std 802.3-2005),
Aug. 2007.

[7] S. Jeon and B. V. K. V. Kumar, “Performance and complexity of 32 k-
bit binary LDPC codes for magnetic recording channels,” IEEE Trans.
Magn., vol. 46, no. 6, pp. 2244–2247, Jun. 2010.

[8] K.-C. Ho, C.-L. Chen, Y.-C. Liao, H.-C. Chang, and C.-Y. Lee,
“A 3.46 Gb/s (9141,8224) LDPC-based ECC scheme and on-line channel
estimation for solid-state drive applications,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2015, pp. 1450–1453.

[9] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in nand flash memory,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 58, no. 2, pp. 429–439, Feb. 2011.

[10] LDPC Codes for the Enhanced Mobile Broadband (eMBB) Data Chan-
nel the 3GPP 5G New Radio. [Online]. Available: http://www.3gpp.org/
ftp/tsgran/WG1RL1/TSGR188/Report/

[11] J. Jung and I.-C. Park, “Multi-bit flipping decoding of LDPC codes
for NAND storage systems,” IEEE Commun. Lett., vol. 21, no. 5,
pp. 979–982, May 2017.

[12] Y. Du, Q. Li, L. Shi, D. Zou, H. Jin, and C. J. Xue, “Reducing LDPC
soft sensing latency by lightweight data refresh for flash read perfor-
mance improvement,” in Proc. 54th ACM/EDAC/IEEE Design Autom.
Conf. (DAC), Austin, TX, USA, Jun. 2017, pp. 1–6.

[13] O. Al Rasheed, P. Ivaniš, and B. Vasić, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder,” IEEE Commun. Lett., vol. 18,
no. 9, pp. 1487–1490, Sep. 2014.

[14] K. Le, F. Ghaffari, D. Declercq, and B. Vasić, “Efficient hardware
implementation of probabilistic gradient descent bit-flipping,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 4, pp. 906–917,
Apr. 2017.

[15] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured
LDPC codes,” in Proc. 5th Int. Symp. Commun. Theory Appl., Jul. 2001,
pp. 365–370.

[16] D. Declercq, C. Winstead, B. Vasić, F. Ghaffari, P. Ivaniš, and
E. Boutillon, “Noise-aided gradient descent bit-flipping decoders
approaching maximum likelihood decoding,” in Proc. 9th Int. Symp.
Turbo Codes Iterative Inf. Process. (ISTC), Brest, France, Sep. 2016,
pp. 300–304.

[17] B. Yuce, H. F. Ugurdag, S. Gören, and G. Dündar, “Fast and
efficient circuit topologies forfinding the maximum of n k-bit
numbers,” IEEE Trans. Comput., vol. 63, no. 8, pp. 1868–1881,
Aug. 2014.

[18] K. Le et al., “Efficient realization of probabilistic gradient descent bit
flipping decoders,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Lisbon, Portugal, May 2015, pp. 1494–1497.

[19] G. Sundararajan, “Noisy gradient descent bit flip decoding of low
density parity check codes: Algorithm and implementation,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Utah State Univ., Logan, Utah,
2016.

[20] M. Ismail, I. Ahmed, and J. Coon, “Low power decoding of LDPC
codes,” ISRN Sensor Netw., vol. 2013, Dec. 2013, Art. no. 650740.

[21] T. T. Nguyen-Ly, T. Gupta, M. Pezzin, V. Savin, D. Declercq,
and S. Cotofana, “Flexible, cost-efficient, high-throughput architecture
for layered LDPC decoders with fully-parallel processing units,” in
Proc. Euromicro Conf. Digit. Syst. Design (DSD), Limassol, Cyprus,
Aug./Sep. 2016, pp. 230–237.

[22] T. T. Nguyen-Ly, V. Savin, K. Le, D. Declercq, F. Ghaffari, and
O. Boncalo, “Analysis and design of cost-effective, high-throughput
LDPC decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 26, no. 3, pp. 508–521, Mar. 2018.

[23] D. Declercq, V. Savin, O. Boncalo, and F. Ghaffari, “An imprecise
stopping criterion based on in-between layers partial syndromes,” IEEE
Commun. Lett., vol. 22, no. 1, pp. 13–16, Jan. 2018.

[24] B. Vasić, P. Ivaniš, D. Declercq, and K. LeTrung, “Approaching max-
imum likelihood performance of LDPC codes by stochastic resonance
in noisy iterative decoders,” in Proc. Inf. Theory Appl. Workshop (ITA),
La Jolla, CA, USA, 2016, pp. 1–9.

[25] F. Leduc-Primeau, F. R. Kschischang, and W. J. Gross, “Modeling and
energy optimization of LDPC decoder circuits with timing violations,”
IEEE Trans. Commun., vol. 63, no. 3, pp. 932–946, Mar. 2018.

[26] K. Le, D. Declercq, F. Ghaffari, L. Kessal, O. Boncalo, and V. Savin,
“Variable-node-shift based architecture for probabilistic gradient descent
bit flipping on QC-LDPC codes,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 65, no. 7, pp. 2183–2195, Jul. 2018.

[27] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent
bit-flip decoding for LDPC codes,” IEEE Trans. Commun., vol. 62,
no. 10, pp. 3385–3400, Oct. 2014.

[28] J. Cho, J. Kim, and W. Sung, “VLSI implementation of a high-
throughput soft-bit-flipping decoder for geometric LDPC codes,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 5, pp. 1083–1094,
May 2010.

Khoa Le received the bachelor’s and
M.Sc. degrees in electronics engineering from
the Ho Chi Minh City University of Technology,
Vietnam, in 2010 and 2012, respectively, and
the Ph.D. degree from the University of Cergy-
Pontoise, France, in 2017. He is currently a
Post-Doctoral Researcher with the ETIS Laboratory,
ENSEA, France. His research interests are in
error correcting code algorithms and analysis and
their implementations in field-programmable gate
array/application-specific integrated circuit.

Fakhreddine Ghaffari received the Degree in elec-
trical engineering and the master’s degree from the
National School of Electrical Engineering, Tunisia,
in 2001 and 2002, respectively, and the Ph.D. degree
in electronics and electrical engineering from the
University of Sophia Antipolis, France, in 2006. He
is currently an Associate Professor with the Univer-
sity of Cergy-Pontoise, France. His research inter-
ests include very large-scale integration design and
implementation of reliable digital architectures for
wireless communication applications in application-

specific integrated circuit/field-programmable gate array platform and the
study of mitigating transient faults from algorithmic and implementation
perspectives for high-throughput applications.

Lounis Kessal received the Ph.D. degree in micro-
electronics from Paris-XI University in 1987. He is
currently an Associate Professor with the ENSEA
Engineering School, where he involved in research
activities with the ETIS Laboratory. His research
interests are essentially on real-time image process-
ing. His previous research works lead him to study
the interest of the dynamic reconfiguration approach
in architectures dedicated to signal and image
processing. He focused on reconfigurable systems on
chip and application-specific integrated circuit/field-

programmable gate array implementations of error correcting code algorithms.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

David Declercq (SM’11) was born in 1971. He
received the Ph.D. degree in statistical signal
processing from the University of Cergy-Pontoise,
France, in 1998. He held a junior position with
the Institut Universitaire de France from 2009 to
2014. He is currently a Full Professor with ENSEA,
Cergy-Pontoise. His research topics lie in digital
communications and error-correction coding theory.
He focused on the particular family of low-density
parity-check (LDPC) codes, both from the code and
decoder design aspects for several years. Since 2003,

he has been developing a strong expertise on non-binary LDPC codes and
decoders in high-order Galois fields GF(q). A large part of his research
projects are related to non-binary LDPC codes. He mainly investigated two
aspects: 1) the design of GF(q) LDPC codes for short and moderate lengths
and 2) the simplification of the iterative decoders for GF(q) LDPC codes with
complexity/performance tradeoff constraints. He has authored over 40 papers
in major journals (IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
TRANSACTIONS ON INFORMATION THEORY, IEEE COMMUNICATION LET-
TERS, and EURASIP JWCN) and over 120 papers in major conferences in
Information Theory and Signal Processing. He is the General Secretary of the
National GRETSI Association.

Emmanuel Boutillon was born in Chatou, France,
in 1966. He received the Diploma degree in engi-
neering from the Telecom Paris Tech, Paris, France,
in 1990, and the Ph.D. degree in 1995. In 1991,
he joined the Ecole Multinationale Supérieure des
Télécommunications, Dakar, Africa, as an Assistant
Professor. In 1992, he joined Telecom Paris Tech as
a Research Engineer, where he conducted research
in the field of very large-scale integration for digital
communications. In 1998, he spent a sabbatical year
at the University of Toronto, ON, Canada. In 2000,

he joined the University of Bretagne Sud as a Professor. He was the Head of
the LESTER Lab from 2005 to 2007 and the CACS Department from 2008 to
2015. In 2011, he had a sabbatical year at INICTEL-UNI, Lima, Peru. He is
currently the Scientific Adviser of the Lab-STICC. His research interests are
on the interactions between algorithm and architecture in the field of wireless
communications and high-speed signal processing. He focuses on turbo codes
and LDPC decoders.

Chris Winstead received the B.S. degree in electri-
cal and computer engineering from The University
of Utah in 2000 and the Ph.D. degree from the
University of Alberta in 2005. From 2013 to 2014,
he was a Fulbright Visiting Professor with the Uni-
versite de Bretagne Sud, Lorient, France. He is cur-
rently an Associate Professor with the Electrical and
Computer Engineering Department, Utah State Uni-
versity. His research interests include algorithms for
probabilistic error correction and inference, particu-
larly Bayesian networks and hidden Markov models,

implementation of high-performance forward error correction techniques,
especially low-density parity check codes, mixed-signal circuit design for
reliable wireless communication, low-power and fault-tolerant very large-scale
integration circuits, and theory of stochastic computation with applications
in electronics and synthetic biology. He is a member of the Tau Beta Pi
Engineering Honor Society. He received the NSF Career Award for research
in low-energy wireless communication circuits in 2010.

Bane Vasić is currently a Professor of electrical
and computer engineering and mathematics with The
University of Arizona. He is with BIO5, the Insti-
tute for Collaborative Bioresearch. He is also the
Director of the Error Correction Laboratory. He is an
Inventor of the soft error-event decoding algorithm,
and the Key Architect of a detector/decoder for Bell
Labs data storage chips which were regarded as the
best in industry. He is the Chair of the IEEE Data
Storage Technical Committee, an Editor of the IEEE
JSAC Special Issues on Data Storage Channels,

and a member of the Editorial Board of the IEEE TRANSACTIONS ON
MAGNETICS. He is a da Vinci Circle and Fulbright Scholar, and a Founder
and a Chief Scientific Officer of Codelucida.

