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Abstract—Brain-computer interfaces can be used to operate
devices by detecting a person’s intention from their brain activity.
Decoding motor imagery (MI) from electroencephalogram (EEG)
signals is a commonly used approach for this purpose. To reliably
identify MI from EEG signals, a sufficient number of sensors is
usually required. However, a large number of sensors increases
the computational cost of discriminating MI classes. Further-
more, consumer-grade devices that measure EEG signals often
employ a reduced number of sensors compared to medical- or
research-grade devices. In this experimental study, we investigate
the tradeoff between accuracy and complexity when decoding MI
from a restricted number of EEG sensors. For this purpose,
several decoding pipelines were trained on EEG data using
different subsets of electrode locations employing well-established
decoding methods. We found that there is no significant difference
(p=[0.18–0.91]) in average decoding accuracy when using fewer
sensors. The largest loss in performance for a single individual
was a reduction in mean decoding accuracy of 0.1 when using 8
out of 64 available sensors. Decoding MI from a limited number
of sensors is therefore feasible, highlighting the potential of
using commercial sensor devices for this purpose to reduce both
monetary and computational costs.

I. INTRODUCTION

Brain-computer interfaces (BCIs) allow users to operate de-
vices with their thoughts. This type of interface could replace
or improve interaction modalities such as speech recognition
[1] or gesture control [2] among others. One of the main
advantages of BCI is that the need to utter the words or
perform the movement is removed [1]. Interacting with devices
in this way could prove beneficial to people that suffer from
a condition that affects speech or movement.

Thanks to recent technological advances, operating a device
with an EEG-based BCI has become increasingly feasible [3],
[4]. However, there are still several challenges that need to
be addressed before BCI applications can move from the lab
to the real world [5]. One such challenge is downscaling the
amount of EEG sensors to reduce the computational cost of
decoding and enable the use of consumer-grade portable EEG
devices with small numbers of sensors (usually between 2 and
16) [6]. This would also allow a reduction in monetary costs
for decoding hardware and EEG acquisition devices.

Hence, it is of interest to identify the minimal subset of sen-
sors necessary to decode user intention reliably. Additionally,

these sensors’ optimal locations are also important for EEG
decoding. Depending on the EEG modality used to generate
commands, a specific subset of sensors will be necessary. One
such modality is MI, which is the activity related to motor
planning when executing a movement, but also occurs when
imagining a movement.

Most research on reducing the number of sensors in EEG
attempts to identify the optimal user-specific subset for MI
decoding [7] or aims to use statistical methods to reduce
the number of channels [8], [9]. This article aims to ex-
perimentally identify the minimal subset of electrodes and
their optimal locations for MI classification. From existing
literature on the functional regions of the brain, [10], the
optimal locations would be expected around the motor cortex
area of the brain. However, other types of brain responses,
such as motor-onset visually evoked potentials [11] which are
located in the occipital region of the brain, can also play a
role in motor planning.

Since performing an exhaustive search of all possible sensor
subsets would be computationally unfeasible, we decided to
perform an empirical evaluation of decoding performance
when using some specific sensor subsets, using common EEG
decoding methods. The chosen sensor subsets were selected
based on their usage in commercially available EEG devices
or their involvement in motor functions of the brain.

II. MATERIALS AND METHODS

A. Data Acquisition

The EEG data used in this study were acquired between
august and October 2022. Ethical approval for the study
was given by the ethical commission of human sciences of
the Vrije Universiteit Brussel (ECHW 364.02). The dataset
comprises 15 participants (14 male, 1 female) aged between
18 and 50 years. Each participant took part in 5 sessions on
separate days. Each session consisted of multiple runs where
a fixation cross was shown and movements were requested.
There were two types of runs, depending on the session.

In calibration runs, participants had to either perform or
imagine the requested movement. Whether to perform or
imagine movement was orally communicated to the participant
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before the start of a run. In feedback runs, a BCI decoding
model was trained on previously acquired calibration data to
give feedback. The feedback consisted of a textual message
that told the participant if the decoded movement matches the
requested movement. If there was a mismatch, the predicted
movement was also shown. Feedback runs always used imag-
ined movements.

The first 2 sessions were familiarization sessions where
the participant was alternately tasked to perform and imag-
ine movements without feedback. At the end of the second
familiarization session, a first MI decoding model was trained
on the data from the imagined movement run. This model was
subsequently used in the first feedback run. The last 3 sessions
each started with an imagined movement calibration run and
three or more feedback runs. The decoding model for feedback
was always trained on the data from the initial calibration run.

EEG data were acquired with a 64-channel LiveAmp (Brain
Products GmbH) device at a sampling rate of 500 Hz, using
active wet electrodes. Electrode locations follow the 10-20
system according to the 64-channel actiCap layout. The data
link to the device was achieved over Bluetooth.

The stimulus presentation software was implemented in
the Python programming language, using the Shady library
[12]. The EEG signal and cue presentation timings were
synchronized using the Labs Streaming Layer protocol1. The
markers for movement initiation cues were recorded in a
separate data stream. The synchronized data streams of EEG
and marker streams were recorded in the XDF file format.

B. Data processing

EEG data were first pre-processed by following the stan-
dardized preprocessing offered by the PREP pipeline [13],
[14]. The data were then filtered with a finite impulse response
filter with a highpass frequency of 8 Hz and a lowpass
frequency of 30 Hz as these frequencies contain most infor-
mation related to MI [15]. The filter was designed as a one-
pass, zero-phase, non-causal bandpass filter using a windowed
time-domain design (firwin). The windowing method uses a
Hamming window with 0.0194 passband ripple and 53 dB
stopband attenuation. The lower transition bandwidth was 2.00
Hz and the upper transition bandwidth was 7.50 Hz, both with
a -6 dB cutoff frequency. The filter length consisted of 825
samples resulting in a time window of 1.653 seconds. These
design choices were based on the recommendations by [16].

The preprocessed data were split into epochs of 2 seconds
before the movement initiation cue and 2 seconds after the
cue and then resampled to 250 Hz. The epochs of individual
runs of the same type and session for the same participant
were merged to get individual datasets that were then used to
evaluate the decoding pipeline.

Finally, the preprocessed data were used to train a decoding
pipeline using Common Spatial Patterns (CSP, [17]) features
and Linear Discriminant Analysis (LDA, [18]). This decoding
pipeline was chosen for its low complexity and common

1https://labstreaminglayer.readthedocs.io/info/intro.html

usage [5] in MI decoding. The classification task consisted of
distinguishing feet and right hand MI. For the CSP features, 4
components were used. The pipelines were evaluated by 5-fold
cross-validation for each sensor subset. Mean cross-validation
accuracies were compared with an independent sample t-test
at a significance level of 0.05.

The considered sensor subsets were chosen based on ex-
isting datasets, the sensors used in commercial devices, and
brain regions that are associated with motor control, such
as the motor cortex located around the central brain areas
[10]. Figure 1 shows the electrode positions for each subset
according to the 10-20 system. The Full subset uses all 64
EEG channels, while the Half subset uses 32 channels by
reducing the spatial resolution. The BCI Comp subset uses 21
of the 22 locations that are present in the BCI competition IV
dataset 2a [19]. The FCz electrode was not available because
the LiveAmp device uses it as the reference. The OpenBCI 8
and OpenBCI 16 subsets correspond to the default locations
for the OpenBCI headset2 in its 8-channel and 16-channel
configurations respectively. Finally, the Motor cortex (MC)
subset corresponds to the 24 locations associated with motor
activity, and the MC reduced subset uses 9 of those locations.
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Fig. 1. Sensor locations of the different subsets. Empty circles indicate that
the sensor location is not used in any subset.

Data were processed and analyzed using the MNE-Python
software library for EEG analysis [20]. Machine learning
methods that decode EEG were implemented with the Scikit-
Learn library [21]. The libraries used for statistical analysis
were Pandas [22] for data manipulation and SciPy [23] for
statistical testing. Figures were generated with Seaborn [24].

III. RESULTS

Table I gives an overview of the number of sensors, mean,
standard deviation (std), minimum, and maximum cross-
validation accuracy for each sensor subset over all participants.

Table I shows that there is great variability in the cross-
validation results when using the full set of 64 channels, with

2https://docs.openbci.com/AddOns/Headwear/MarkIV/
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TABLE I
MEAN CROSS-VALIDATION ACCURACY RESULTS FOR EACH CONSIDERED

SENSOR SUBSET.

Full Half BCI Comp OpenBCI 16 OpenBCI 8 Motor cortex MC reduced

sensors 64 32 21 16 8 24 9
mean 0.67 0.67 0.67 0.66 0.65 0.66 0.65
std 0.15 0.16 0.15 0.15 0.15 0.16 0.15
min 0.31 0.31 0.34 0.23 0.34 0.27 0.35
max 1.00 1.00 1.00 0.98 0.93 1.00 0.94

a standard deviation of 0.15. For the full set of electrodes,
the lowest accuracy was below random chance at 0.31, while
the highest achieved accuracy was 1.00. The mean accuracy
for the full set of sensors was 0.67. None of the differences
in mean accuracy are statistically significant with p-values
of 0.90 (half), 0.91 (BCI Comp), 0.74 (OpenBCI 16), 0.18
(OpenBCI 8), 0.52 (Motor cortex), and 0.25 (MC Reduced)
when comparing to the full 64 sensor set.

Figure 2 visualizes the cross-validation results in a box-plot
format to further investigate trends in the results.
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Fig. 2. Cross-validation accuracies for different sensor subsets.

From this figure, we can observe that the maximum accu-
racy is slightly lower for both OpenBCI sensor subsets and
the MC reduced subset. For the other subsets, the maximum
accuracy of 1.0 is retained. We can also observe that the
minimum accuracy seems to increase for some sensor subsets,
while it appears to decrease for others. The mean accuracy
remains more stable, with the lowest being 0.65 for both
OpenBCI 8 and MC reduced subsets, which is the same for
the median accuracy. However,

To investigate if this performance is maintained at the level
of individual participants, we look at the decoding accuracies
for both the participants where the highest and lowest mean
decoding accuracy was achieved. These comparisons can be
found in figures 3 and 4 respectively.

There are also no significant differences in mean accuracy
for these particular participants, with p-values ranging between
0.55 and 0.84, and between 0.48 and 0.95, respectively.
However, a reduced variance and an increase in minimum
accuracy for specific sensor subsets can be observed. For
example, for the BCI comp subset in figure 3, median accuracy
is almost the same while minimum accuracy increases by more
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Fig. 3. Cross-validation accuracies for different sensor subsets for the
participant with the best mean accuracy when using the full sensor set.
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Fig. 4. Cross-validation accuracies for different sensor subsets for the
participant with the worst mean accuracy when using the full sensor set.

than 0.2 (except for an outlier), and the boxplot boundaries
show a reduced variance compared to the full set.

IV. DISCUSSION

The goal of this research was to downscale the number
of sensors that are necessary to decode imagined movements
from EEG signals. To identify the minimal set of sensors that
are necessary for this purpose and their optimal locations, an
experimental study was performed. This study consisted of
training a well-known decoding pipeline using different sensor
subsets and comparing their cross-validation results.

From the results, we observe that the decoding accuracy
does not significantly differ between the chosen sensor subsets.
This highlights the feasibility of downscaling the number of
sensors for BCI decoding purposes. It is noteworthy to mention
that a large inter-individual variability exists, which is in
line with current literature [25]. The obtained p-values for
the subsets with fewer electrodes (i.e. OpenBCI 8 and MC
Reduced) are smaller than those obtained for the larger subsets,
which seems to indicate that there might be a threshold for the
minimal number of sensors for MI decoding.

When comparing decoding performance at the participant
level, the variance in decoding accuracy is reduced for certain
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sensor subsets, indicating a more stable decoding performance.
We can also observe that there is a difference in which
specific subsets maintain (or in some cases improve) decoding
performance for different individuals. This finding is also
consistent with literature that aims to identify optimal user-
specific sensor subsets [7].

An important finding of this study is that focusing solely
on the motor cortex does not seem to be sufficient. Other
areas, such as frontal and occipital areas of the brain seem
to also contain information that is useful in differentiating
MI. One possible explanation is that the model could learn
to eliminate the noise in some sensors based on the activity in
other locations. This is also consistent with the literature as,
for example, the FP1 and FP2 locations are sometimes used
solely to detect noise from frowning and eye movement [26].
For occipital areas, the motion-onset visually evoked potentials
also appear to play a role in decoding MI [11].

We have shown that high-density EEG, typically defined
as EEG setups with 64 sensors or more [27], is not essential
for decoding MI and that this might even negatively affect
decoding performance by introducing noise in the data. A
relatively small number of electrodes could be used to decode
imagined movement from EEG signals.

To determine the ideal number and location of sensors,
future work should focus on additional sensor subsets and
the effect of including or excluding specific sensor locations.
Additionally, investigating inter-individual differences in de-
coding performance could also provide better insights into the
sensor locations to include. By using more advanced methods
that also learn a representation of the data, such as deep
learning, an optimal set of sensors could also be identified
in a data-driven way.

V. CONCLUSION

Decoding MI from EEG data is feasible with a relatively
low number of sensors. Decoding accuracy does not signifi-
cantly decrease when using fewer sensors. The largest loss in
performance for an individual participant was observed for the
smallest subset of 8 sensors with a difference of 0.1 in median
accuracy, while the difference in maximum accuracy was
lower at 0.05. On average over all participants, this decrease is
not statistically significant (p=[0.18 - 0.91]). Therefore, using
commercial EEG devices with a small number of sensors for
BCI applications is feasible. However, more work is necessary
to establish a standard optimal set of sensor locations by using
more advanced decoding methods and investigating inter-
individual differences in optimal sensor locations.

ACKNOWLEDGMENT

The authors would like to thank the people who partici-
pated in the data-gathering experiments and the students who
assisted in the execution of these experiments.

REFERENCES

[1] S.-H. Lee, M. Lee, and S.-W. Lee, “Neural Decoding of Imagined
Speech and Visual Imagery as Intuitive Paradigms for BCI Commu-
nication,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 28, no. 12, pp. 2647–2659, Dec. 2020.

[2] T. I. Voznenko, E. V. Chepin, and G. A. Urvanov, “The Control System
Based on Extended BCI for a Robotic Wheelchair,” Procedia Computer
Science, vol. 123, pp. 522–527, Jan. 2018.

[3] F. R. Willett et al., “High-performance brain-to-text communication via
handwriting,” Nature, vol. 593, no. 7858, pp. 249–254, May 2021.

[4] Y. Liu, M. Habibnezhad, and H. Jebelli, “Brain-computer interface
for hands-free teleoperation of construction robots,” Automation in
Construction, vol. 123, p. 103523, Mar. 2021.

[5] M. Rashid et al., “Current Status, Challenges, and Possible Solutions
of EEG-Based Brain-Computer Interface: A Comprehensive Review,”
Frontiers in Neurorobotics, vol. 14, 2020.

[6] R. Riedl et al., “Consumer-Grade EEG Instruments: Insights on the
Measurement Quality Based on a Literature Review and Implications for
NeuroIS Research,” in Information Systems and Neuroscience. Springer
International Publishing, 2020, pp. 350–361.

[7] D. Gurve et al., “Subject-specific EEG channel selection using non-
negative matrix factorization for lower-limb motor imagery recognition,”
Journal of Neural Engineering, vol. 17, no. 2, p. 026029, Apr. 2020.

[8] S. Roy et al., “Assessing impact of channel selection on decoding
of motor and cognitive imagery from MEG data,” Journal of Neural
Engineering, vol. 17, no. 5, p. 056037, Oct. 2020.

[9] Y. Wang et al., “EEG signal feature reduction and channel selection
method in hand gesture recognition BCI system,” in 2021 International
Conference on Computer Engineering and Application (ICCEA), Jun.
2021, pp. 280–284.

[10] R. S. Snell, Clinical Neuroanatomy. Lippincott Williams & Wilkins,
2010.

[11] M. Kuba et al., “Motion-onset VEPs: Characteristics, methods, and
diagnostic use,” Vision Research, vol. 47, no. 2, pp. 189–202, Jan. 2007.

[12] N. J. Hill et al., “Shady: A software engine for real-time visual stimulus
manipulation,” Journal of Neuroscience Methods, vol. 320, pp. 79–86,
May 2019.

[13] S. Appelhoff et al., “PyPREP: A Python implementation of the prepro-
cessing pipeline (PREP) for EEG data.” Mar. 2022.

[14] N. Bigdely-Shamlo et al., “The PREP pipeline: Standardized prepro-
cessing for large-scale EEG analysis,” Frontiers in Neuroinformatics,
vol. 9, 2015.

[15] A. Singh et al., “A comprehensive review on critical issues and pos-
sible solutions of motor imagery based electroencephalography brain-
computer interface,” Sensors, vol. 21, no. 6, pp. 1–35, 2021.
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