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Abstract—This paper proposes a simplified version of the
Successive Cancellation (SC) decoder for Non-Binary Polar
(NB-Polar) codes. The proposed decoder, named Successive
Cancellation Min-Sum (SC-MS), is exclusively formulated in
the Log-Likelihood Ratio (LLR) domain to reduce the decoding
complexity of the SC decoder. The NB-Polar codes are associated
with Cyclic Code-Shift Keying (CCSK) modulation to obtain
a new coded modulation scheme for ultra-low signal-to-noise
ratios (SNRs). The quantized version of the SC-MS decoder
is investigated using quantized LLRs on optimized size of bits.
Our simulation results show that the SC-MS decoder presents
a negligible performance degradation with respect to the SC
decoder for code length N < 2048. Additionally, the 2-bit SC-
MS and 3-bit SC-MS offer a good trade-off between decoding
performance and complexity.

I. INTRODUCTION

Binary Polar codes [1], introduced by Arikan in 2008, are
the first provable capacity-achieving error correction codes for
binary-input discrete memoryless channels with low encoding
and decoding complexity. Binary polar codes have been
adopted for the Enhanced Mobile Broadband (eMBB) control
channel of 5G New Radio (NR).
In the current decade, more than 50 billion devices will be
connected thanks to the Internet of Things (IoT) [2]. The new
generation of mobile networks, notably the 5G system, will
need to support short packet traffic [3], [4]. At the link level,
we can take advantage of powerful error control codes such as
Non-Binary Polar (NB-Polar) codes to transmit short packets.
NB-Polar codes [5]–[9] of length N = 2n, also known as q-
ary polar codes, are powerful Forward Error Correction (FEC)
codes defined over the Galois Field (GF) Fq , q > 2. A NB-
Polar code processes multiple bits in parallel and helps reduce
the probability of frame error compared to binary polar codes.
The Cyclic Code-Shift Keying (CCSK) modulation [10] is a
q-ary direct-sequence spread-spectrum (DSSS) technique that
improves the spectral efficiency of spread-spectrum systems.
The CCSK modulation can provide self-synchronization and
identification capabilities. All CCSK sequences are obtained
from a unique pseudo-random noise (PN) sequence that is
circularly shifted. In [11], the authors propose the association
of NB-LDPC codes and CCSK to prevent the information loss
when calculating channel probabilities at the symbol level.
In this paper, we associate the CCSK modulation to NB-Polar
codes to obtain a new coded modulation scheme that can be
used in low power networks requiring long range connectivity
and high sensitivity, e.g. Low-Power Wide-Area (LPWA)

networks for IoT applications. We examine the Successive
Cancellation (SC) decoder for NB-Polar codes operating in
the probability domain. The association of CCSK and NB-
Polar codes enables the SC decoder to have good decoding
performance at ultra-low signal-to-noise ratios (SNRs). In
order to reduce the complexity of the SC decoder, we propose
a decoder named Successive Cancellation Min-Sum (SC-MS)
decoder that is exclusively formulated in the Log-Likelihood
Ratio (LLR) domain. We investigate SC-MS decoders defined
over small alphabets constructed from Qm ∈ {2, 3, 4, 5} bits
of precision for the internal LLRs. We also quantize the
channel LLRs on small alphabets constructed from Qch ∈
{2, 3, 4, 5} bits of precision.
Our numerical results show that the SC-MS decoder presents
a negligible performance degradation with respect to the SC
decoder for code length N ∈ {64, 128, 256, 512, 1024}. In the
case of code length N = 2048, the SC-MS decoder suffers
a very small performance loss compared to the SC decoder,
the degradation at FER = 10−2 is around 0.1 dB for F28 .
Comparing quantized SC-MS decoders, we observe that the
(Qch = 3, Qm = 4)-bit SC-MS can achieve almost the same
performance as the (Qch = 5, Qm = 5)-bit SC-MS. We also
observe that the (Qch = 2, Qm = 3)-bit SC-MS decoder offers
a good trade-off between performance and complexity.
The outline of the paper is as follows. Section II presents
NB-Polar codes and the CCSK modulation. In Section III, we
describe the LLR calculation of the association between the
CCSK modulation and the NB-Polar code, and we propose
the SC-MS decoder. Section IV presents the finite precision
SC-MS decoder. Simulation results are presented in Section
V. Finally, Section VI concludes the paper.

II. NB-POLAR CODES AND CCSK MODULATION

A. Non-Binary Polar Codes

In this paper, a NB-Polar code of length N = 2n is defined
over the Galois Field Fq , with q = 2p and where p > 1.
Let x = (x0, ..., xN−1), xi ∈ Fq for i = 0, ..., N − 1,
be the codeword that is obtained after encoding the message
u = (u0, ..., uN−1), ui ∈ Fq for i = 0, ..., N − 1. Also, let
F∗q denote the set of all non-zero elements of Fq . It is worth
mentioning that a GF element can be represented by a binary
vector of size p, e.g. x1 = (x01, ..., x

p−1
1 ). For the construction

of NB-Polar codes, we consider the kernel transformation
T : (x0, x1) = (u0⊕u1, h�u1), with ’⊕’ and ’�’ respectively
denoting the addition and multiplication rules over Fq , and
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where h ∈ F∗q is a randomly chosen element. It has been
shown in [5] that the transformation T guarantees polarization
of the NB-Polar codes if q is a prime power. A NB-Polar code
of length N = 2n is obtained by applying T recursively (n
times), and in each step of the recursion different values of
h can be used. In the decoding process, T is composed of a
check node (CN) and a variable node (VN), hence a NB-Polar
code of N = 2n has n(N/2) VNs/CNs. The update rule for
a VN/CN is presented in section III. Fig. 1 shows a graph
of a NB-Polar code of N = 23 and composed of 12 VNs(
represented with =

)
and 12 CNs

(
represented with

⊕ )
.
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Fig. 1: Graph of a NB-Polar code of length N = 8.

A (N,K) NB-Polar code has K information symbols, a total
length of N = 2n, N − K frozen symbols, and code rate
Rc = K/N . Thus a codeword is composed of K × p bits of
information. Let I = {i0, ..., iK−1} denote the set of indices
0 ≤ iK ≤ N − 1 that serves to indicate the positions of the
information symbols, and let Ic denote the set of all elements
in the set {0, ..., N − 1} that are not in I. We use a genie-
aided successive cancellation decoder [1] to compute the sets I
and Ic at each SNR value. In this paper, the frozen symbols
uIc = {ui, i ∈ Ic} are set to zero and their positions are
known to both encoder and decoder. Note that u = (uI ,uIc),
where uI = {ui, i ∈ I} are the information symbols.

B. Cyclic Code-Shift Keying Modulation

The CCSK modulation is a technique that associates pseudo-
random noise (PN) sequences of length q = 2p to p-bit
symbols. Each sequence is derived from a unique PN sequence
η0 = (η0(0), ..., η0(q − 1)) of length q, where η0(k) ∈ {0, 1}
for k = 0, ..., q − 1. We perform the circular shift to the left
of η0 in s ∈ {0, ..., q−1} positions to obtain the PN sequence
ηs = (ηs(0), ..., ηs(q−1)), where ηs(k) = η0((k+s) mod q)
for k = 0, ..., q− 1. The rate of the modulation is Rm = p/q.
PN sequences can be constructed using a Linear Feedback
Shift Register (LFSR). The PN sequence generated by an
LFSR has good autocorrelation properties. Algorithms like the
genetic algorithm can also be used to generate and optimize
a PN sequence.

III. SUCCESSIVE CANCELLATION BASED DECODERS

In this section, we present the association of CCSK modulation
to NB-Polar codes. We also propose a simplified version of
the SC decoder. Taking advantage of the recursive structure,
the decoder for the NB-Polar code proceeds in n + 1 stages

` ∈ {0, ...n}, see Fig 1. From this section onwards, we
distinguish between two types of LLRs, the channel LLRs
calculated at stage ` = 0 and the internal LLRs obtained at
stage ` ∈ {1, ..., n}.

A. Definition of the Log-Likelihood Ratio

Let η0 = (η0(0), ..., η0(q − 1)) denote a fundamental PN
sequence, and let η = (ηx0

, ..., ηxN−1
) denote the codeword

after applying the CCSK technique to x = (x0, ..., xN−1).
Each symbol xi ∈ Fq , i = 0, ..., N − 1, of x is mapped
to the PN sequence ηxi = (ηxi(0), ..., ηxi(q − 1)), where
ηxi(k) = η0((k + xi) mod q) for k = 0, ..., q − 1, with
ηxi(k) ∈ {0, 1}. The code rate after the CCSK modulation
is Re = Rc × Rm = (K × p)/(N × q). We consider
that η is modulated by the Binary Phase-Shift Keying
(BPSK) modulation and transmitted over the Binary Input
Additive White Gaussian Noise (BI-AWGN) channel with
noise variance σ2. The channel output y = (y0, ..., yN−1),
with yi = (yi(0), ..., yi(q−1)) for i = 0, ..., N−1, is modeled
by yi(k) = (1−2ηxi(k))+zi(k), k = 0, . . . , q−1, where zi(k)
is a sequence of independent and identically distributed (i.i.d.)
Gaussian random variables with zero mean and variance σ2.
We can define the vector of channel LLRs Li =
(Li(0), ..., Li(q − 1)) of a GF symbol xi as

Li(xi) = log
(

Pr(yi | η̂xi)
Pr(yi | ηxi)

)
∀xi ∈ Fq, (1)

where η̂xi is the hard decision over yi, i.e. η̂xi(k) = 1 if
yi(k) < 0, η̂xi(k) = 0 otherwise, k = 0, . . . , q − 1. Equation
(1) can be expressed as:

Li(xi) =

q−1∑

k=0

log (Pr(yi(k) | η̂xi(k)))− log (Pr(yi(k) | ηxi(k))) ∀xi ∈ Fq.

(2)
Replacing the conditional distribution for the BI-AWGN
channel Pr(y | x) = 1√

2πσ
e−(y−x)

2/2σ2

, we obtain

Li(xi) =

q−1∑

k=0

2yi(k)

σ2
(ηxi(k)− η̂xi(k)) ∀xi ∈ Fq. (3)

The vector of channel LLRs computed with (3) allows us to
obtain only positive LLR values. To set at least one element
of Li equal to zero, we use

L′i(xi) = Li(xi)−min(Li) ∀xi ∈ Fq. (4)

From the LLR values, the probability distribution Pi(xi) =
Pr(yi | xi) can be computed by:

Pi(xi) =
e−Li(xi)∑

x′i∈Fq
e−Li(x

′
i)
∀xi ∈ Fq. (5)

B. Successive Cancellation Decoder

The SC decoder, defined in the probability domain [12],
estimates the information symbols one by one. Note that each
estimated symbol is used to decode the next symbol.
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Let P ` = (P `0 , ..., P
`
N−1) denote the probability distribution

computed at stage ` ∈ {0, ..., n} during the decoding process,
where P `i = (P `i (0), ..., P

`
i (q − 1)), i = 0, ..., N − 1, denotes

the probability distribution of the intermediate values u`i , and
let û`i denote the estimated symbol of u`i . We note that u0i =
xi. At the initialization stage of the SC decoder (` = 0), P 0

i

is initialized with (5), i.e. P 0
i = Pi(xi) for i = 0, ..., N − 1.

Let us consider the transformation

T :
(
u`−1
θ`−1
t

, u`−1
φ`−1
t

)
=
(
u`
θ`−1
t
⊕ u`

φ`−1
t
, h`−1
φ`−1
t

� u`
φ`−1
t

)
, (6)

where θ`−1t and φ`−1t are given by

θ`−1t = 2t− (t mod 2`−1),

φ`−1t = 2`−1 + 2t− (t mod 2`−1),

for t = 0, 1, ..., N/2− 1. To simplify the notations, we use θ
(respectively φ) to denote θ`−1t (respectively φ`−1t ). Similarly,
h is used to denote h`−1

φ`−1
t

for simplicity.
The update rules considering T are shown in Fig. 2.
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+

h
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h
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û`θ û`−1
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+

h

(c) Propagation of û.

Fig. 2: Update rules for the SC decoder.

The update rule at a CN is given by

P `θ (u
`
θ) = β

∑

u`φ∈Fq

P `−1θ (u`θ ⊕ u`φ)P `−1φ (h� u`φ) ∀u`θ ∈ Fq,

(7)
where β−1 =

∑
u`θ∈Fq P

`
θ

(
u`θ
)
, i.e. β is a normalization factor.

The update rule at a VN is defined as

P `φ
(
u`φ
)
= δP `−1θ

(
û`θ ⊕ u`φ

)
P `−1φ

(
h� u`φ

)
, (8)

where δ−1 =
∑
u`φ∈Fq P

`
φ

(
u`φ

)
.

To propagate the estimated symbols, we use
(
û`−1θ , û`−1φ

)
=
(
û`θ ⊕ û`φ, h� û`φ

)
. (9)

We can estimate a message û = (ûn0 , ..., û
n
N−1) of length

N = 2n by applying (7), (8), and (9) at each decoding stage
`. At stage ` = n, the hard decision of uni is obtained as

ûni =

{
0, if i ∈ Ic

argmax
uni

Pni (u
n
i ), if i ∈ I. (10)

C. Successive Cancellation Min-Sum Decoder

We propose a simplified version of the SC decoder named
Successive-Cancellation Min-Sum (SC-MS) decoder that is
exclusively formulated in the LLR domain.
Let L` = (L`0, ..., L

`
N−1) denote the LLRs computed at

stage ` ∈ {0, ..., n} during the decoding process, and let
L`i = (L`i(0), ..., L

`
i(q− 1)), i = 0, ..., N − 1, denote the LLR

of u`i . The SC-MS decoder is initialized using (4), i.e. we have

L0
i = L′i(xi) for i = 0, ..., N − 1. With these notations and

considering T of (6), the update rule at a CN is given by

L`θ(u
`
θ) = min

u`φ∈Fq

(
L`−1θ (u`θ ⊕ u`φ) + L`−1φ (h� u`φ)

)
∀u`θ ∈ Fq.

(11)
The update rule at a VN is defined as

L′φ
(
u`φ
)
= L`−1θ

(
û`θ ⊕ u`φ

)
+ L`−1φ

(
h� u`φ

)
. (12)

L`φ
(
u`φ
)
= L′φ

(
u`φ
)
−min

(
L′φ
)
. (13)

Equation (13) is necessary for numerical reasons to ensure the
nondivergence of the SC-MS decoder. In the decoding process
without the use of (13), the internal LLRs converge to very
large numerical values that are computationally intractable.
We can estimate û = (ûn0 , ..., û

n
N−1) by applying (11), (12),

(13), and (9), where the hard decision of uni is obtained as

ûni =

{
0, if i ∈ Ic

argmin
uni

Lni (u
n
i ), if i ∈ I. (14)

D. Complexity of SC-based Decoders

We measure decoding complexity by counting the adders,
multipliers, and comparators used by the decoder over the field
Fq . In an SC decoder, a CN requires q2 multiplications and
q(q − 1) additions; and a VN requires q multiplications. The
normalization process requires q−1 additions and q divisions.
In the case of an SC-MS decoder, a CN requires q2 additions
and q(q − 1) comparisons; and a VN requires q additions,
q−1 comparisons, and q subtractions. We report in Table I the
complexity of a CN and a VN. Note that the subtractions are
considered as additions and the divisions as multiplications.

TABLE I: Complexity of a single CN and a single VN for Fq .

Decoder Node
# of # of # of Area† Power†

multipliers adders comparators (mm2) (W)

SC
CN q2 + q q2 − 1 - 344.91 37.745
VN 2q q − 1 - 8.18 1.026

SC-MS
CN - q2 q(q − 1) 169.11 9.147
VN - 2q q − 1 5.11 0.281

† The area utilization and power consumption for the field F26 .

To make a rough estimation of complexity, we consider
floating point calculations in single precision format with
0.18 µm technology. Based on results presented in [13], a
simple precision addition requires an area of 38560 µm2 and
consumes 2.15 mW, and a multiplication occupies an area of
44953 µm2 and consumes 6.957 mW. In [14], a comparator
has an area of 2771 µm2 and consumes 84.52 µW. Considering
the field F26 and assuming that all operations are carried out in
parallel, the kernel node (a VN + a CN) of the SC-MS reduces
the area by 50.66% (from 353.09 mm2 to 174.22 mm2), also
one can see a power consumption saving of 75.68% (from
38.771 W to 9.428 W). We can clearly see that the SC-MS
decoder reduces hardware complexity and helps save power.

IV. FINITE PRECISION SC-MS DECODERS

In this section, we present a finite precision version of the SC-
MS decoder for low complexity hardware implementation.
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A. Quantization used for SC-MS Decoders

For quantized SC-MS decoders, the LLRs have to be quantized
and saturated. Let Qch denote the number of precision bits of
quantized channel LLRs, and let Ach denote the alphabet of
channel LLRs defined as Ach = {0,+1, ...,+Nch}, composed
of Nch + 1 states, where Nch = 2Qch − 1.
Let us also denote the quantizer by Q : R → Ach for the
quantized SC-MS decoders, defined as

Q (a) = min (bα× ac , Nch) , (15)

where b.c depicts the floor function. The parameter α is called
channel gain factor and is used to increase or decrease the
amplitude of channel LLRs at the decoder input.
After computing L′i with (3) and (4), the quantized version
Ii = (Ii(0), ..., Ii(q − 1)) of L′i can be obtained as

Ii (xi) = Q (L′i(xi)) ∀xi ∈ Fq. (16)

The quantized channel LLR Ii is used to initialize the decoder.
Let us denote by AL the alphabet of the internal LLRs defined
as AL = {0,+1, ...,+Nm}, composed of Nm+1 states, with
Nm = 2Qm−1 and where Qm is the number of precision bits
of quantized internal LLRs.

B. Update Rules for SC-MS Decoders

Let I` = (I`0, ..., I
`
N−1) denote the quantized LLRs computed

at stage ` ∈ {0, ..., n} during the decoding process, and let
I`i = (I`i (0), ..., I

`
i (q − 1)), i = 0, ..., N − 1, denote the

quantized LLR of u`i . At stage ` = 0, the input of the
quantized decoder is obtained with (16), i.e. I0i = Ii(xi) for
i = 0, ..., N − 1.
Considering T of (6), the update rule at a CN is given by

I`θ
(
u`θ
)
= min
u`φ∈Fq

(
I`−1θ

(
u`θ ⊕ u`φ

)
+ I`−1φ

(
h� u`φ

))
∀u`θ ∈ Fq.

(17)
For the case of a VN, the update rule is determined by

I ′φ
(
u`φ
)
= I`−1θ

(
û`θ ⊕ u`φ

)
+ I`−1φ

(
h� u`φ

)
. (18)

I`φ
(
u`φ
)
= min

(
I ′φ
(
u`φ
)
−min

(
I ′φ
)
, Nm

)
. (19)

The message û = (ûn0 , ..., û
n
N−1) can be estimated using (17),

(18), (19), and (9). The hard decision uni is obtained using
(14), where Lni is replaced by Ini for i = 0, ..., N − 1.
The operators used in the quantized SC-MS decoder require
Qm+1 bits of precision. Since it is easier to implement fixed
point operations, the (Qch, Qm)-bit SC-MS decoder reduces
computational complexity. Comparing the (64, 64)-bit SC-MS
(floating-point) with the (2, 3)-bit SC-MS, we can roughly
obtain a 93.7% reduction in complexity. Note that we compare
the number of bits of the operators, i.e. 100(1−(Qm+1)/64).

V. NUMERICAL RESULTS

In this section, we present the frame error rate (FER)
performance of SC-based decoders over the BI-AWGN
channel for various NB-Polar codes and two high-order GFs.
A genie-aided SC decoder is used to compute the set I.
Additionally, the set of symbol positions IMS is obtained

using a genie-aided SC-MS decoder. The sets I and IMS are
calculated at each value of SNR; the results show that the two
sets are not equal although they may have many elements in
common.

A. Performance of Floating-Point SC-based Decoders

We present the Monte Carlo simulations for (N,K) NB-Polar
codes with CCSK modulation at very low SNR considering
four cases: (i) (K = 20, q = 64), (ii) (K = 160, q = 64),
(iii) (K = 30, q = 256), and (iv) (K = 240, q = 256).
We consider N ∈ {64, 128, 256} for K ∈ {20, 30}, and
N ∈ {512, 1024, 2048} for K ∈ {160, 240}. For all NB-Polar
codes, the SC decoder performance is shown as a benchmark.
Fig. 3 shows the FER performance comparison between the
SC and SC-MS using I and IMS , for three code lengths N ∈
{64, 128, 256} with K = 20, and for the GF F26 . The results
obtained show that the SC-MS decoders present a negligible
performance degradation with respect to the SC decoders.
Considering the case of K = 30 and the field F28 , the
simulation results also show a negligible performance loss for
SC-MS decoders when the code length is N ∈ {64, 128, 256}.
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Fig. 3: FER performance of SC-based decoders for K = 20
and N ∈ {64, 128, 256} over F26 .

Simulation results for the code length N ∈ {512, 1024, 2048}
and the field F28 are provided in Fig. 4. We observe at FER =
10−2 a very small performance loss of about 0.1 dB for (N =
2048,K = 240), 0.08 dB for (N = 1024,K = 240), and 0.05
dB for (N = 512,K = 240). Similar behavior is observed for
K = 160, F26 , and N ∈ {512, 1024, 2048}.
When comparing the FER performance of the SC-MS
decoders using the sets I and IMS , the SC-MS decoders
implemented with I have (almost) the same decoding
performance as SC-MS decoders implemented with IMS .

B. Performance of Fixed-Point SC-MS Decoders

In this section, we present the simulation results of finite
precision SC decoders over the field F26 . We focus on the
(N = 64,K = 20) NB-Polar code and different bits of
precision for channel LLRs and internal LLRs. All quantized
decoders use the set I for the symbol positions.
The channel gain factor α used to quantize the channel LLRs
are optimized using Monte Carlo simulations. In Table II, we
indicate the optimal values of α for (Qch, Qm)-bit SC-MS
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Fig. 4: FER performance of SC-based decoders for K = 240
and N ∈ {512, 1024, 2048} over F28 .

decoders. We also report in Table II the SNR losses of the
(Qch, Qm)-bit SC-MS decoder with respect to the SC decoder.

TABLE II: SNR losses of finite precision SC-MS decoders for
the (N = 64,K = 20) NB-Polar code and for the field F26 .

(Qch, Qm) α∗
SNR loss (dB)

(Qch, Qm) α∗
SNR loss (dB)

@ FER = 10−2 @ FER = 10−2

(2, 2) 0.40 1.00 (3, 4) 0.90 0.17
(2, 3) 0.55 0.45 (3, 5) 0.90 0.15
(2, 4) 0.55 0.45 (4, 4) 1.10 0.14
(2, 5) 0.55 0.45 (4, 5) 1.40 0.11
(3, 3) 0.60 0.38 (5, 5) 1.90 0.07

Fig. 5 depicts the FER performance of the best quantized SC-
MS decoders for low precision (Qch, Qm). We can see that
the (5, 5)-bit SC-MS decoder has the best FER performance,
and the (3, 4)-bit SC-MS decoder can achieve almost the
same performance as the (5, 5)-bit SC-MS decoder. From all
these results, the (2, 3)-bit SC-MS decoder is a good option
for applications that require low hardware complexity. In the
case where the decoding performance is privileged by the
applications, the (3, 4)-bit SC-MS decoder is a good choice
for a hardware implementation.
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Fig. 5: FER performance of the (Qch, Qm)-bit SC-MS
decoders over F26 , N = 64, and K = 20.

VI. CONCLUSION

In this paper, we have shown that NB-Polar codes associated
with CCSK modulation can achieve very low FER at ultra-low

SNR. Moreover, we have proposed a simplified version of the
SC decoder. The SC-MS decoder has been defined in the LLR
domain and it reduces the decoding complexity. We have also
proposed a quantized version of the SC-MS decoder.
The Monte Carlo simulations have shown that the SC-
MS decoders present a negligible performance degradation
with respect to the SC decoders for code length N ∈
{64, 128, 256, 512, 1024}. In this study, we have demonstrated
that the (2, 3)-bit SC-MS and (3, 4)-bit SC-MS offer a good
trade-off between decoding performance and complexity.
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