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Abstract— This paper introduces a new approach to cost-
effective, high-throughput hardware designs for low-density
parity-check (LDPC) decoders. The proposed approach, called
nonsurjective finite alphabet iterative decoders (NS-FAIDs),
exploits the robustness of message-passing LDPC decoders to
inaccuracies in the calculation of exchanged messages, and it
is shown to provide a unified framework for several designs
previously proposed in the literature. NS-FAIDs are optimized
by density evolution for regular and irregular LDPC codes,
and are shown to provide different tradeoffs between hardware
complexity and decoding performance. Two hardware architec-
tures targeting high-throughput applications are also proposed,
integrating both Min-Sum (MS) and NS-FAID decoding kernels.
ASIC post synthesis implementation results on 65-nm CMOS
technology show that NS-FAIDs yield significant improvements
in the throughput to area ratio, by up to 58.75% with respect
to the MS decoder, with even better or only slightly degraded
error correction performance.

Index Terms— Error correction, high throughput, low-density
parity-check (LDPC) codes, low cost, nonsurjective finite
alphabet iterative decoder (NS-FAID).

I. INTRODUCTION

THE increasing demand of massive data rates in wire-
less communication systems will require significantly

higher processing speed of the baseband signal, as compared
with conventional solutions. This is especially challenging
for forward error correction (FEC) mechanisms, since FEC
decoding is one of the most computationally intensive base-
band processing tasks, consuming a large amount of hardware
resources and energy. The use of very large bandwidths

Manuscript received April 10, 2017; revised July 13, 2017 and
October 2, 2017; accepted November 4, 2017. Date of publication
December 14, 2017; date of current version February 22, 2018. This work
was supported in part by the European H2020 Work Program under Project
Flex5Gware and in part by the Franco-Romanian (ANR-UEFISCDI) Joint
Research Program Blanc-2013 under Project DIAMOND. (Corresponding
author: Valentin Savin.)

T. T. Nguyen-Ly is with CEA-LETI, MINATEC Campus, 38054 Grenoble,
France, and also with ETIS ENSEA / UCP / CNRS UMR-8051, 95014 Cergy-
Pontoise, France (e-mail: thientruong.nguyen-ly@cea.fr).

V. Savin is with CEA-LETI, MINATEC Campus, 38054 Grenoble, France
(e-mail: valentin.savin@cea.fr).

K. Le, D. Declercq, and F. Ghaffari are with ETIS ENSEA /
UCP / CNRS UMR-8051, 95014 Cergy-Pontoise, France (e-mail:
khoa.letrung@ensea.fr; declercq@ensea.fr; ghaffari@ensea.fr).

O. Boncalo is with the Computers and Information Technology Depart-
ment, University Politehnica Timisoara, 300006 Timisoara, Romania (e-mail:
boncalo@cs.upt.ro).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2017.2776561

will also result in stringent, application-specific, requirements
in terms of both throughput and latency. The conventional
approach to increase throughput is to use massively parallel
architectures. In this context, low-density parity-check (LDPC)
codes are recognized as the foremost solution, due to the
intrinsic capacity of their decoders to accommodate various
degrees of parallelism. They have found extensive applications
in modern communication systems, due to their excellent
decoding performance, high-throughput capabilities [1]–[4],
and power efficiency [5], [6], and have been adopted in several
recent communication standards.

This paper targets the design of cost-effective, high-
throughput LDPC decoders. One important characteristic of
LDPC decoders is that the memory and interconnect blocks
dominate the overall area/delay/power performance of the
hardware design [7]. To address this issue, we build upon
the concept of finite alphabet iterative decoders (FAIDs)
introduced in [8]–[10]. While FAIDs have been previously
investigated for variable-node (VN) regular LDPC codes over
the binary symmetric channel, this paper extends their use to
any channel model and to both regular and irregular LDPC
codes.

The approach considered in this paper, referred to as
nonsurjective finite FAIDs (NS-FAIDs), is to allow storing
the exchanged messages using a lower precision (a smaller
number of bits) than that used by the processing units. The
basic idea is to reduce the size of the exchanged messages,
once they have been updated by the processing units. Hence,
to some extent, the proposed approach is akin to the use
of imprecise storage, which is seen as an enabler for cost
and throughput optimizations. Moreover, NS-FAIDs are shown
to provide a unified framework for several designs previ-
ously proposed in the literature, including the normalized
and offset Min-Sum (OMS) decoders [11], [12], the partially
OMS (POMS) decoder [13], the MS-based decoders proposed
in [14] and [15], or the recently introduced dual-quantization
domain MS decoder [16].

This paper refines and extends some of the concepts we
previously introduced in [17] and [18]. In particular, the defi-
nition of NS-FAIDs [17] is extended such as to cover a larger
class of decoders, which is shown to significantly improve the
decoding performance in case that the exchanged messages are
quantized on a small number of bits (e.g., 2 bits per exchanged
message). We show that NS-FAIDs can be optimized by
using the density evolution (DE) technique, so as to obtain
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the best possible decoding performance for given hardware
constraints, expressed in terms of memory size reduction.
The DE optimization is illustrated for both regular and irregu-
lar LDPC codes, for which we propose a number of NS-FAIDs
with different tradeoffs between hardware complexity and
decoding performance.

To assess the benefits of the NS-FAID approach, we further
extend the hardware architectures proposed in [18] to cover
the case of irregular codes, and provide implementation results
targeting an ASIC technology, which is more likely to reflect
the benefits of the proposed NS-FAID approach in terms of
throughput/area tradeOFF. The proposed architectures target
high throughput and efficient use of the hardware resources.
Both architectures implement layered decoding with fully
parallel processing units. The first architecture is pipelined,
so as to increase throughput and ensure an efficient use of the
hardware resources, which in turn imposes specific constraints
on the decoding layers,1 in order to ensure proper execution
of the layered decoding process. The second architecture does
not make use of pipelining, but allows maximum parallelism
to be exploited through the use of full decoding layers,2 thus
resulting in significant increase in throughput. Both MS and
NS-FAID decoding kernels are integrated into each of the
two proposed architectures, and compared in terms of area
and throughput. ASIC postsynthesis implementation results on
65-nm CMOS technology show a throughput to area ratio
improvement by up to 58.75%, when the NS-FAID kernel
is used, with even better or only slightly degraded error
correction performance.

The rest of this paper is organized as follows. NS-FAIDs are
introduced in Section II, which also discusses their expected
implementation benefits and the DE analysis. The optimization
of regular and irregular NS-FAIDs is presented in Section III.
The proposed hardware architectures, with both MS and
NS-FAID decoding kernels, are discussed in Section IV.
Numerical results are provided in Section V, and Section VI
concludes this paper.

II. NONSURJECTIVE FINITE ALPHABET

ITERATIVE DECODERS

A. Preliminaries

LDPC codes are defined by sparse bipartite graphs, com-
prising a set of VNs, corresponding to coded bits, and a set of
check nodes (CNs), corresponding to parity-check equations.
FAIDs are message-passing LDPC decoders that have been
introduced in [8]–[10]. We state below the definition of a
subclass of FAID decoders, which is less general than the one
proposed in [10]. Let Q be a positive integer. A (2Q + 1)-
level FAID is a 4-tuple (M, �,�v , �c), where we have the
following.

1) M = {−Q, . . . ,−1, 0,+1, . . . ,+Q} is the alphabet of
the exchanged messages, and is also referred to as the
decoder alphabet.

1A decoding layer may consist of one or several rows of the base matrix
of the quasi-cyclic (QC)-LDPC code, assuming that they do not overlap.

2A decoding layer is said to be full if each column of the base matrix has
one nonnegative entry in one of the rows composing the layer.

2) � ⊆ M is the input alphabet of the decoder, i.e., the set
of all possible values of the quantized soft information
supplied to the decoder.

3) �v and �c denote the update rules for VNs and CNs,
respectively.

We will use m ∈ M and γ ∈ � to denote the elements of M
and �, respectively. The CN-update function �c is the same
for any FAID decoder, and is equal to the update function
used by the MS decoder. Precisely, for a CN of degree dc,
the update function �c : Mdc−1 → M is given by

�c(m1, . . . ,mdc−1) =
(dc−1∏

i=1

sgn(mi )

)
min

i=1,...,dc−1
|mi |. (1)

The VN-update function �v : � × Mdv−1 → M, for a
VN of degree dv , is defined as

�v(γ,m1, . . . ,mdv−1) = F

⎛
⎝γ +

dv−1∑
j=1

m j

⎞
⎠ (2)

where the function F : Z → M is defined based on a set of
threshold values T = {T0, T1, . . . , TQ+1} ⊂ R̄+, with T0 = 0,
TQ+1 = +∞, and Ti < Tj for any i < j

F(x) = sgn(x)m, where m is s.t. Tm ≤ |x | < Tm+1. (3)

In (2), the variable γ represents the channel contribution,
i.e., the quantized soft information that has been supplied
to the decoder for the corresponding VN. The quantization
method and its impact on FAIDs’ decoding performance
will be discussed in Section II-E. It is also worth noting
that in [10], FAIDs are introduced with a more general
VN-update function �v , but the simpler definition (2) that we
use has many hardware implementation benefits, which will
be described in Section IV. Moreover, it can be easily seen
that any nondecreasing odd function satisfies (3). Precisely,
Proposition 1 holds.

Proposition 1: For any function F : Z → M, there exists
a threshold set T such that F is given by (3), if and only if
F satisfies the following two properties.

1) F is an odd function, i.e., F(−x) = −F(x), ∀x ∈ Z.
2) F is nondecreasing, i.e., F(x) ≤ F(y) for any x < y.

We note that Proposition 1 also implies that F(0) = 0 and
F(x) ≥ 0,∀x > 0. In this paper, we further extend the
definition of FAIDs by allowing F(0) to take on nonzero
values. To ensure symmetry of the decoder, we shall write
F(0) = ±λ, with λ ≥ 0, meaning that F(0) takes on either
−λ or +λ with equal probability. In the following, F will be
referred to as framing function.

As the focus of this paper is on practical implementations,
we will further assume that the sum γ + ∑dv−1

j=1 m j in (2) is
saturated to M, prior to applying F on it. Consequently, in the
sequel, we shall only consider framing functions F : M →
M, and the VN-update function �v from (2) is redefined as

�v(γ,m1, . . . ,mdv−1) = F

⎛
⎝sM

⎛
⎝γ +

dv−1∑
j=1

m j

⎞
⎠

⎞
⎠ (4)
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Algorithm 1 FAID Decoding With Framing Function F

where sM : Z → M, sM(x) = sgn(x) min(|x |, Q), is the
saturation function. Since F(−m) = −F(m),∀m ∈
M, F is completely determined by the vector
[|F(0)|, F(1), . . . , F(Q)], further referred to as the lookup
table (LUT) of F , which satisfies the following inequalities
(Proposition 1):

0 ≤ |F(0)| ≤ F(1) ≤ · · · ≤ F(Q) ≤ Q. (5)

Summarizing, the subclass of FAIDs considered in this
paper is defined by (4), where F is a framing function satis-
fying (5). Furthermore, for any integer q > 0, the expression
q-bit FAID is used to refer to a (2Q + 1)-level FAID, with
Q = 2q−1 − 1. It follows that messages exchanged within the
FAID decoder are q-bit messages (including 1 bit for the sign).
Finally, the message-passing iterative decoding process for an
FAID with framing function F is shown in Algorithm 1.

B. Nonsurjective FAIDs

The finite alphabet MS decoder is a particular example of
FAID, with framing function F : M → M being the identity
function. Using (5), it can be easily verified that this is the
only FAID for which the framing function F is surjective
(or equivalently bijective, since M is finite). For any other
framing function F , there exists at least one element of M,
which is not in the image of F . The class of FAIDs defined by
nonsurjective framing functions3 is investigated in this section.

3Although we restrict the study in this paper to nonsurjective framing
functions F : M → M, it can be readily extended to nonsurjective framing
functions F : Z → M. While such an extension would widen the class of
NS-FAIDs, our preliminary investigations have shown that the best NS-FAIDs
are actually those within the subclass of NS-FAIDs defined by F : M → M,
investigated in this paper.

TABLE I

EXAMPLES OF 4-bit FRAMING FUNCTIONS OF WEIGHT W = 4

Definition 2: The weight of a framing function F : M →
M, denoted by W , is the number of distinct entries in the
vector [|F(0)|, F(1), . . . , F(Q)]. It follows that 1 ≤ W ≤
Q + 1. By a slight abuse of terminology, we shall also refer
to W as the weight of the NS-FAID. We further define the
framing bit-length as w = 
log2(W )� + 1.

Definition 3: An NS-FAID is an FAID of weight
W < Q + 1. Hence, the framing function F is nonsurjective,
meaning that the image set of F is a strict subset of M.

Table I provides two examples of q = 4-bit NS-FAIDs
(hence Q = 7), both of which are of weight W = 4, hence
framing bit-length w = 
log2 4� + 1 = 3. Note that F1 maps
0 to 0, while F2 maps 0 to ±1. The image sets of F1 and F2 are
Im(F1) = {0,±1,±3,±7} and Im(F2) = {±1,±3,±4,±7}.

The main motivation for the introduction of NS-FAIDs is
that they allow reducing the size of the memory required
to store the exchanged messages. Clearly, for an NS-FAID
with framing bit-length w, the exchanged messages can be
represented using only w instead of q bits (including 1 bit
for the sign). Moreover, as a consequence of the message size
reduction, the size of the interconnect network that carries the
messages from the memory to the processing units is also
reduced.

Proposition 4: The number of (2Q +1)-level NS-FAIDs of
weight W is given by

NNS-FAID(Q, W ) =
(

Q

W − 1

)(
Q + 1

W

)
(6)

where
(y

x

)
denotes the binomial coefficient.

C. Examples of NS-FAIDs

As mentioned above, if the framing function F is the
identity function, then the corresponding FAID is equivalent
to the MS decoder with finite alphabet M. Some examples of
NS-FAIDs are provided in the following.

Example 1: Let F : M → M be defined by

F(m) = sgn(m) max(|m| − θ, 0) (7)

where θ ∈ {1, . . . , Q − 1}. Then, the corresponding NS-FAID
is the OMS decoder with offset factor θ .

Example 2: Let F : M → M be defined by

F(m) =
{

m, if |m| is even

sgn(m)(|m| − 1), if |m| is odd.
(8)

Then, the corresponding NS-FAID is the POMS decoder
from [13].

Moreover, it can be seen that the MS-based decoders
proposed in [14] and [15] and the dual-quantization domain
decoder proposed in [16] are particular realizations of
NS-FAIDs.
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While the main reason behind the NS-FAIDs definition
consists in their ability to reduce memory and interconnect
requirements, we can also argue that they may allow improving
the error correction performance (with respect to MS). This is
the case of both OMS and POMS decoders mentioned above.
Given a target message bit-length w (e.g., corresponding to
some specific memory constraint), one may try to find the
framing function F of corresponding weight W , which yields
the best error correction performance. The optimization of the
framing function can be done by using the DE technique,
which will be discussed in Section II-E.

Since F is a nondecreasing function, it can be shown
that the framing function F can alternatively be applied at
the CN-processing step (instead of VN-processing), while
resulting in an equivalent decoding algorithm. Whether F is
applied at the VN-processing or the CN-processing step is
rather a matter of implementation. When F is applied at the
VN-processing step, both VN- and CN-messages belong to a
strict subset of the alphabet M, namely, M′ = Im(F) ⊂ M.
When F is applied at the CN-processing step, only
CN-messages belong to M′. However, it is worth noting that
many hardware implementations of QC LDPC decoders rely
on a layered architecture, which only requires storing the CN
messages [7].

D. Irregular NS-FAIDs

In case of irregular LDPC codes, irregular NS-FAIDs are
NS-FAIDs using different framing functions Fdv for VNs of
different degrees dv . Framing functions Fdv may have different
weights Wdv . In this case, messages outgoing from degree-dv

VNs can be represented by using only wdv = 
log2(Wdv )�+1
bits. However, the message size reduction does not necessarily
apply to CN-messages, due to the fact that a CN may be
connected to VNs of different degrees. Let M′

dv
= Im(Fdv ).

Then, messages outgoing from a CN c can be represented by
using ⌈

log2
(∣∣ ∪dv∈Dc M′

dv

∣∣)⌉ bits (9)

where Dc is the set of degrees of VNs connected to c, and | · |
is used to denote the number of elements of a set.

Alternatively, it is also possible to define CN-irregular
NS-FAIDs in a similar manner. However, in this paper, we only
deal with VN-irregular NS-FAIDs, since most of the practical
irregular LDPC codes are irregular on VNs, while almost
regular (or semiregular) on CNs. In order to reduce the size
of the CN-messages, in Section III-B, we will further impose
certain conditions on the framing functions Fdv , by requiring
their images being included in one another.

E. Density Evolution Analysis

For the sake of simplicity, we only consider transmission
over binary-input memoryless noisy channels. We assume that
the channel input alphabet is X = {−1,+1}, with the usual
convention that +1 corresponds to 0-bit and −1 corresponds
to 1-bit, and denote by Y the output alphabet of the channel.
We denote by x ∈ X and y ∈ Y the transmitted and received
symbols, respectively.

We further consider a function ϕ : Y → � that maps the
output alphabet of the channel to the input alphabet of the
decoder, and set γ = ϕ(y). Hence, ϕ encompasses both
the computation of the soft (unquantized) log-likelihood ratio
(LLR) value and its quantization. We shall refer to ϕ as
quantization map and to γ as the input LLR of the decoder.

For transmission over the binary-input additive white
Gaussian noise (AWGN) channel, we shall consider that the
decoder’s input information as well as the exchanged messages
are quantized on the same number of bits; therefore � = M
unless otherwise stated. In this case, y = x + z, where z is the
white Gaussian noise with variance σ 2, and the quantization
map ϕ : Y → M is defined by

ϕ(y) = [μ · y]M (10)

where μ > 0 is a constant referred to as gain factor and
[x]M denotes the closest integer to x that belongs to M (see
also [19] and the gain factor quantizer defined therein).

The objective of the DE technique is to recursively compute
the probability mass function of the exchanged messages,
through the iterative decoding process. This is done under the
assumption that exchanged messages are independent, which
holds in the asymptotic limit of the code length. In this case,
the decoding performance converges to the cycle free case. DE
equations for the NS-FAID decoder can be derived in a similar
way as for the finite-alphabet MS decoder [19]. Similar to [19],
the DE is used to compute the asymptotic error probability,
defined as

p(+∞)
e = lim

	→+∞ p(	)
e (11)

where p(	)
e is the bit error probability at iteration 	.

For a target bit error probability η > 0, the η-threshold
is defined as the worst channel condition for which decoding
error probability is less than η. Assuming the binary-input
AWGN channel model, the η-threshold corresponds to the
maximum noise variance σ 2 (or equivalently minimum SNR),
such that the asymptotic error probability is less than η

σ 2
thres(η) = sup{σ 2 | p(+∞)

e ≤ η}. (12)

In case that η = 0, the η-threshold is simply referred to as DE
threshold [20]. However, the asymptotic decoding performance
of finite-precision MS-based decoders is known to exhibit
an error floor phenomenon at high SNR [19]. This makes
the η-threshold definition more appropriate in practical cases,
when the target bit-error rate (BER) can be fixed to a practical
nonzero value.

Finally, it is worth noting that the σ 2
thres(η) value depends on:

1) the irregularity of the LDPC code, parametrized as usual by
the degree distribution polynomials λ(x) and ρ(x) [20]; 2) the
NS-FAID, i.e., the size of the decoder alphabet and the framing
function F ; and 3) the channel quantizer ϕ or equivalently
the gain factor μ used in (10). Therefore, assuming that the
degree distribution polynomials λ(x) and ρ(x) and the size of
the decoder alphabet are fixed, we use the DE technique to
jointly optimize the framing function F and channel quantizer.
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TABLE II

BEST NS-FAIDs FOR (3, 6)-REGULAR LDPC CODES

III. DENSITY EVOLUTION OPTIMIZATION OF NS-FAIDS

Throughout this section, we consider q = 4-bit NS-FAIDs
(hence, Q = 7). To illustrate the tradeoff between hardware
complexity and decoding performance, we consider the opti-
mization of both regular and irregular NS-FAIDs.

A. Optimization of Regular NS-FAIDs

In this section, we consider the optimization of regular
NS-FAIDs for (dv = 3 and dc = 6)-regular LDPC codes.
We consider q = 4-bit NS-FAIDs, with framing bit-length
parameter w ∈ {2, 3}. According to Proposition 4, the number
of NS-FAIDs is given by NNS-FAID(q = 4, w = 3) =
NNS-FAID(Q = 7, W = 4) = (7

3

)(8
4

) = 2450, and
NNS-FAID(q = 4, w = 2) = NNS-FAID(Q = 7, W = 2) =(7
1

)(8
2

) = 196.
All regular NS-FAIDs have been evaluated by using the

DE technique from Section II-E. Table II summarizes the
best NS-FAIDs according to w and F(0) values,4 for 0 ≤
|F(0)| ≤ 3; DE thresholds (η = 0) and corresponding gain
factors (μ) are also reported. Best NS-FAIDs for w = 2 and
w = 3 are emphasized in bold. For comparison purposes,
the DE threshold of the q = 4-bit MS decoder is also
reported: MS threshold is equal to 1.643 dB, for μ = 5.6.
For w = 3, it can be observed that best NS-FAIDs with
F(0) = 0 or F(0) = ±1 have better DE thresholds than the
4-bit MS decoder. The best NS-FAID is given by the framing
function F = [0, 1, 1, 3, 3, 3, 7, 7] and its DE threshold is
equal to 1.409 dB (μ = 3.8), representing a gain of 0.23 dB
compared with 4-bit MS. For w = 2, the best NS-FAID is
given by the framing function F = [±1, 1, 1, 1, 1, 6, 6, 6]
and its DE threshold is equal to 1.834 dB (μ = 6.4), which
represents a performance loss of only 0.19 dB compared with
4-bit MS. To emphasize the benefits of the proposed NS-
FAIDs extension, we note that that for w = 2, best NS-FAIDs
with F(0) = ±1, F(0) = ±2, or F(0) = ±3 have better DE
thresholds than the best NS-FAIDs with F(0) = 0. The latter
is given by the framing function F = [0, 0, 0, 0, 0, 6, 6, 6] and
its DE threshold is equal to 2.251 dB (μ = 8.6), thus resulting
in a performance loss of approximately 0.61 dB compared with
4-bit MS.

4NS-FAIDs with |F(0)| > 3 have worse DE thresholds, and thus they have
not been included in the table.

B. Optimization of Irregular NS-FAIDs

As a case study, we consider the optimization of irregular
NS-FAIDs for the WiMAX irregular LDPC codes with rate
1/2 [21] (of course, the proposed method can be applied
to any other irregular codes in the same manner). The
edge-perspective degree distribution polynomials are given
by λ(x) = 0.2895x + 0.3158x2 + 0.3947x5 and ρ(x) =
0.6316x5+0.3684x6. Hence, VNs are of degree dv ∈ {2, 3, 6}.
For each VN-degree dv , we consider that the correspond-
ing framing function Fdv may be of any weight Wdv ∈
{2, 4, 8}, corresponding to a framing bit-length wdv ∈ {2, 3, 4}.
Hence, the total number of framing functions is given by
NNS-FAID(7, 2)+ NNS-FAID(7, 4)+ NNS-FAID(7, 8) = 2645 (see
Proposition 4). Since a different framing function may be
applied for each VN-degree, it follows that the total number
of irregular NS-FAIDs is equal to 26453 = 18 504 486 125.
Clearly, even though we rely on DE, it is practically impos-
sible to evaluate the decoding performance of all the irreg-
ular NS-FAIDs. To overcome this problem, we proceed as
described in the following.

1) Optimization Procedure: First, we evaluate the DE
thresholds of NS-FAIDs applying one and the same framing
function to all the VNs, irrespective of their degree, which for
simplicity will be referred to as uniform NS-FAIDs throughout
this section. Uniform NS-FAIDs with framing bit-length w =
{2, 3, 4} are then sorted with increasing DE threshold value,
from the best to the worst decoder. Note that the case w = 4
represents a slight abuse of terminology, since there is only
one such decoder, corresponding to the original MS decoder.
We further denote by U (best)-NS-FAID-w the set of best
uniform NS-FAIDs with framing bit-length w, determined as
follows.

1) U (best)-NS-FAID-2 is comprised of the uniform
NS-FAIDs with w = 2, whose DE threshold is less
than or equal to 5 dB; this represents 121 decoders
out of the total of NNS-FAID(Q = 7, w = 2) = 196
decoders.

2) U (best)-NS-FAID-3 is comprised of the uniform
NS-FAIDs with w = 3, whose DE threshold is less
than or equal to 3 dB; this represents 946 decoders
out of the total of NNS-FAID(Q = 7, w = 3) = 2450
decoders.

3) U (best)-NS-FAID-4 is comprised of the MS decoder only;
its DE threshold is equal to 1.374 dB.

The limiting values of the DE thresholds for U (best)-NS-FAID-
2 and U (best)-NS-FAID-3 are chosen such that the number of
selected NS-FAIDs in each set is small enough.

For irregular NS-FAIDs, we denote by NS-FAID-w2w3w6
the ensemble of NS-FAIDs defined by a triplet of framing
functions (F2, F3, and F6), corresponding to VN degrees
dv = 2, 3, 6, with framing bit-lengths w2, w3, w6. Since
w2, w3, w6 ∈ {2, 3, 4}, there are 27 such ensembles. Since
the number of NS-FAIDs in these ensembles can be very
large, we only evaluate part of them, by further imposing the
following two constraints.

a) Decoding performance constraint: We only consider
irregular NS-FAIDs defined by triplets of framing functions
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TABLE III

HARDWARE COMPLEXITY VERSUS DECODING PERFORMANCE TRADEOFF FOR OPTIMIZED IRREGULAR NS-FAIDs

TABLE IV

LUTs USED BY NS-FAIDs IN TABLE III

(F2, F3, and F6), such that Fdv ∈ U (best)-NS-FAID-wdv , for
any dv ∈ {2, 3, 6}.

b) Memory size reduction constraint: We further impose
the following inclusion constraint between the image sets of
framing functions used for different VN-degrees. Let w(max) =
maxdv wdv and d (max)

v = argmaxdv
wdv . We impose that

Im(Fdv ) ⊆ Im(Fd (max)
v

), ∀dv ∈ {2, 3, 6}. According to (9),
this constraint ensures that CN-messages can be represented
by using only w(max) bits, which is particularly suitable for
layered architectures.

The number of irregular NS-FAIDs that satisfy the above
two constraints is equal to N irregular

NS-FAIDs = 7 017 762.

2) Density Evolution Evaluation: For each of the N irregular
NS-FAIDs

irregular NS-FAIDs, we compute its decoding threshold for
a target BER η = 10−6, using the DE technique from
Section II-E. The threshold computation also encompasses the
optimization of the channel gain factor μ. Hence, for each
NS-FAID, we first determine the gain factor μ that maximizes
the η-threshold defined in (12). The corresponding η-threshold
value is then reported as the η-threshold of the NS-FAID.

DE results for the MS decoder (indicated as NS-FAID-444),
as well as for the NS-FAIDs with the best η-thresholds from
five NS-FAID-w2w3w6 ensembles, are shown in Table III:
the framing functions used for VN-degrees dv = 2, 3, 6 are
shown in columns 2–4, while the η-threshold value (in dB) and
the corresponding gain factor μ are shown in column 5. The
SNR gain (+) or loss (−) reported in column 6 corresponds
to the differences between the SNR threshold of the MS
decoder (NS-FAID-444) and the SNR threshold of the best
NS-FAID-w2w3w6. The memory size reduction of the NS-
FAID-w2w3w6 decoders compared with the MS decoder is

Fig. 1. Memory size reduction versus decoding performance.

reported in columns 7–9, for both VN and CN messages. For
CN messages, two possibilities are considered, according to
whether they are stored in an uncompressed or compressed
format, where compressed format means that only the signs,
first minimum, second minimum, and index of the first mini-
mum are stored [22]. Finally, the framing functions’ LUTs of
the best NS-FAID-w2w3w6 decoders are reported in Table IV.

Fig. 1 captures the tradeoff between decoding perfor-
mance and memory size reduction, for each of the 27 NS-
FAID-w2w3w6 ensembles. For each ensemble, we select the
NS-FAID with the best threshold, and indicate the correspond-
ing memory gains and decoding performance. The height
of vertical bars indicates the VN memory size reduction
(values on the left vertical axis), while their color indi-
cates the CN memory size reduction (uncompressed CN
message storage is assumed in the legend). The red stems
indicate the SNR threshold gain or loss compared with MS
decoder (values on the right vertical axis). It can be seen
that the NS-FAID-332 decoder allows a significant memory
size reduction for both VN and CN messages, while still
performing 0.1 dB ahead the MS decoder. The NS-FAID-
433 decoder is also a very good candidate for applications
requiring increased decoding performance: it achieves the best
SNR gain (0.36 dB), while providing a VN memory size
reduction by 17.76% with respect to the MS decoder.

Finally, it is worth noting that the reported memory size
reductions do not necessarily translate as such in hardware



514 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 3, MARCH 2018

implementations, for several reasons. First, depending on the
hardware architecture, VN messages may or may not be stored
in a dedicated memory. For instance, layered architectures
only require the storage of CN messages, which can be
further stored in either a compressed or uncompressed format.
Moreover, VN processing units (VNUs) need to be equipped
with a framing and a deframing module, which may offset
part of the promised gains. This is even more true in case of
irregular codes, for which some VNUs may need to implement
more than one single framing function, since the same VNU
may be reused to process VN of different degrees (except for
fully parallel architectures). To assess the gains of NS-FAIDs
in practical implementations, the integration of the NS-FAID
mechanism (framing/deframing modules) into two different
MS decoder architectures is discussed in Section IV, and ASIC
synthesis results for the CMOS 65-nm process technology are
provided in Section V.

IV. HARDWARE ARCHITECTURES FOR

NS-FAID DECODERS

In this section, we propose two layered decoder archi-
tectures for QC-LDPC codes, with both MS and NS-FAIDs
decoding kernels. Proposed architectures target high through-
put, while ensuring an efficient use of the hardware
resources. Two possible approaches to achieve high through-
put are explored, consisting in either pipelining the data
path or increasing the hardware parallelism.

We consider a QC-LDPC code defined by a base matrix
B of size R × C , and expansion factor z, corresponding to
a parity check matrix H of size M × N , with M = z R and
N = zC . With the notation from Section II-E, we denote by
x = (x1, . . . , xN ) ∈ X N the transmitted codeword, by y =
(y1, . . . , yN ) ∈ YN the received word, and by (γ1, . . . , γN )
the input LLRs of the decoder, where γn = ϕ(yn) and ϕ is
the quantization map. VN and CN messages are denoted by
αm,n and βm,n , respectively, and the a posteriori (AP)-LLR of
a VN n is denoted by γ̃n . Hence, γ̃n = γn + ∑

m∈H(n) βm,n ,
where the sum is taken over all the CNs m connected to n,
denoted by m ∈ H (n). Input LLRs and exchanged messages
are quantized on q-bits, while AP-LLRs are assumed to be
quantized on q̃ bits, with q̃ > q .

A decoding layer (or simply referred to as a layer) consists
of one or several consecutive rows of B , assuming that they
do not overlap, i.e., each column of B has at most one
nonnegative entry within each layer. It is assumed that the
same number of rows of B participates in each decoding layer,
which is denoted by RPL (rows per layer). Hence, the number
of decoding layers is given by L = R/RPL. We further define
Z = z × RPL, corresponding to the number of rows of H
(parity checks) within one decoding layer, and referred to as
the parallelism degree of the hardware architecture. To ease
the description of the hardware architectures proposed in this
section, we shall assume that all CNs have the same degree,
denoted by dc. However, no assumptions are made concerning
VN degrees. We present each architecture assuming the MS
decoding kernel is being implemented, and then we discuss the
required changes in order to integrate the NS-FAID decoding
kernel.

A. Pipelined Architecture

The proposed architecture with MS decoding kernel is
detailed in Fig. 2. A high-level representation is also shown
in Fig. 5(a), for both MS and NS-FAID decoding kernels.
The architecture is optimized so as to reduce the critical
path. In particular, we completely reorganize the interconnect
network (barrel shifters BS_INIT and BS_R, see in the fol-
lowing), thus removing the need for a barrel shifter on the
writing data back side. The main blocks of the architecture
are discussed as follows.

1) Input/Output Buffers: The input buffer, implemented as
a number of serial input parallel output shift registers, is used
to store the input LLR values (γn) received by the decoder.
The output buffer is used to store the hard bit estimates of the
decoded word. Input–output buffers allow data load/offload
operations to take place concomitantly with the decoding of
the current code word.

2) Memory Blocks: Two memory blocks are used, one
for AP-LLR values (γ̃ _memory) and one for CN-messages
(β_memory). γ̃ _memory is implemented by registers, in order
to allow massively parallel read or write operations. It is
organized in C blocks, denoted by APj ( j = 1, . . . , C),
corresponding to the columns of the base matrix, each one
consisting of z × q̃ bits. Data are read from/written to
blocks corresponding to nonnegative entries in the decoding
layer being processed. β_memory is implemented as a dual
port random access memory (RAM), in order to support
pipelining, as explained in the following. Each memory word
consists of Z × β_messages, corresponding to one decoding
layer. Depending on the CN unit (CNU) implementation,
β_messages can be either “uncompressed” (i.e., for a CN
m, the corresponding β_message is given by the dc values
[βm,n1, . . . , βm,ndc

], where n1, . . . , ndc denote the VN con-
nected to m) or “compressed” (i.e., for a CN m, the corre-
sponding β_message is given by the signs of the above βm,ni

messages, their first and second minimum, denoted by min1
and min2, and the index of the first minimum, denoted by
indx_min1) [22].

3) Read and Write Permutations (PER_R and PER_W):
PER_R permutation is used to rearrange the data read from
γ̃ _memory, according to the processed layer, so as to ensure
processing by the proper VNU/CNU. PER_W block operates
oppositely to PER_R.

4) Barrel Shifters (BS_INIT and BS_R): Barrel shifters are
used to implement the cyclic (shift) permutations, according
to the nonnegative entries of the base matrix. The γ̃ _memory
is initialized from the input LLR values stored in the input
buffer. However, input LLR values are shifted by BS_INIT
block before being written to the γ̃ _memory, according to the
last nonnegative shift factor on the corresponding base matrix
column. BS_R blocks are then used to shift the LLR values
read from the γ̃ _memory, such that to properly align them with
the appropriate VNU. Note that there are dc BS_R_{1, . . . , dc}
blocks. In case RPL = 1, a decoding layer corresponds to a
row of B , and each BS_R block is used to shift the LLR
values within one of the dc columns with nonnegative entries
in the current row. Let i be the index of the current row. The
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Fig. 2. Block diagram of the proposed pipelined architecture with MS-kernel.

cyclic shift implemented by a BS_R block, corresponding to a
column j with bi, j ≥ 0, is given by −bi ′, j +bi, j , where bi ′, j is
the previous nonnegative entry in column j (i.e., the previous
row i ′ with bi ′, j ≥ 0). In case RPL > 1, each BS_R block
actually consists of RPL subblocks as above, with one subblock
for each row in the layer. The values of the cyclic shifts are
computed off-line for each layer 	. This eliminates the need for
data write-back barrel shifters, thus reducing the critical path
of the design. Finally, the BS_INIT block operates oppositely
to BS_INIT, and is used to shift back the hard decision bits
into appropriate positions.

5) Variable Node Units and AP-LLR Units: These units
compute VN-messages (αm,n) and AP-LLR values (γ̃n). Each
VN message is computed by subtracting the corresponding CN
message from the AP-LLR value, that is αm,n = γ̃n − βm,n .
This operation is implemented by a q̃-bit subtractor, and hence
the αm,n value outputted by the VNU is quantized on q̃ bits.
The AP-LLR value is updated by the AP-LLR unit, by γ̃n =
αm,n + βnew

m,n , where βnew
m,n is the corresponding CN message

computed at the current iteration (see in the following).
6) Saturators (SATs): Prior to CNU processing, αm,n values

are saturated to q bits.
7) Check Node Units: These processing units compute

the CN-messages (βm,n). For simplicity, Fig. 2 shows one
CNU block with dc inputs, each one of size Z × q bits.
Thus, this block actually includes Z computing units used
to process in parallel the Z CNs within one layer. The CNU
is implemented by using either: 1) the high-speed low-cost
tree-structure approach proposed in [23] for “compressed”
CN-messages or 2) comparator trees for “uncompressed”
CN-messages.

8) Decompress (DCP): This block is only used in case that
the CN messages are in compressed format (signs, min1, min2,

Fig. 3. Base matrix of the (3, 6)-regular QC-LDPC code.

and indx_min1). It converts the β_messages from compressed
to the uncompressed format.

9) Controller: This block generates control signals, such
as count_layer_read and count_layer_write to indicate which
layers are being processed, write_en to enable data writing,
and so on. It also controls the synchronous execution of the
other blocks.

10) Pipelining: To increase the operating frequency,
the data path is pipelined by adding a set of registers after the
VNU-blocks. The timing schedule is shown in Fig. 5(a), where
the two pipeline stages (P1 and P2) are indicated by purple and
brown arrows. Hence, processing one layer takes two clock
cycles, but at each clock cycle the two pipeline stages work
on two consecutive layers of the base matrix. This imposes
specific constraints on the base matrix, as consecutive layers
must not overlap, in order to avoid γ̃ _memory conflicts (note
that memory stall cycles would cancel the pipelining effect).
An example of dc = 6 regular base matrix without overlap
between consecutive layers is given in Fig. 3, assuming that
each layer corresponds to one row of the base matrix.

11) Regular NS-FAID Decoding Kernel: The changes
required to integrate a regular NS-FAID decoding kernel,
with framing function F , are shown in Fig. 5(a). First, the
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Saturation (SAT) block used within the MS-decoding kernel
is replaced by a Framing (FRA) block. Note that the output of
the VNU consists of q̃-bit (unsaturated) VN-messages. Hence,
the FRA block actually implements the concatenation of the
following operations, corresponding to F ◦ sM in (4):
[−Q̃, . . . ,+Q̃] sM−→ [−Q, . . . ,+Q] F−→ Im(F)

∼−→ [−W, . . . ,+W ] (13)

where [−Q̃, . . . ,+Q̃] is the alphabet of unsaturated messages
(Q̃ = 2q̃−1 − 1), F is the framing function being used,
Im(F) is the image of F (which is a subset of [−Q, . . . ,+Q]
according to the framing function definition), and the last
operation consists of a requantization of the Im(F) values
on a number of w-bits, where w = 
log2(W )� + 1 is the
framing bit-length. The Deframing (DE-FRA) block simply
converts back from w-bit to q-bit values ([−W, . . . ,+W ] ∼→
Im(F) ⊂ [−Q, . . . ,+Q]), i.e., it inverts the requantization
operation above. Although we have to add the deframing
blocks, the reduction of the CN-messages size may still
save significant hardware resources, as compared with MS
decoding. This will be discussed in more detail in Section V.

12) Irregular NS-FAID Decoding Kernel: First, we note
that the pipeline architecture proposed in this section can
be applied to the WiMAX QC-LDPC code with rate 1/2,
considered in Section III-B, by assuming that each decoding
layer consists of one row of the base matrix. Indeed, it is
known that for this code, the rows of the base matrix can
be reordered, such that any two consecutive rows do not
overlap [24].

Regarding the integration of an irregular NS-FAID decoding
kernel, the same framing (FRA) or deframing (DE-FRA)
block is reused for several VNs, which may be of different
degrees. This may require several framing functions to be
implemented within the FRA/DE-FRA blocks, thus increasing
the hardware complexity. To overcome this problem, one
may change the way the VNs are mapped to the processing
units, by reordering the columns of the base matrix processed
within each decoding layer. We determine off-line such a
reordering for each decoding layer, so as to minimize the
number of FRA/DE-FRA blocks implementing more than
one single framing function. Hence, the PER_R and PER_W
blocks, which ensure the proper alignment between data and
processing units, are redefined accordingly.

The optimal mapping between VNs and VNUs is shown
in Fig. 4, for the base matrix with reordered rows from [24].
For each VNU, we indicate the index of the VN (or equiv-
alently, base matrix column) processed by the VNU, within
each decoding layer. The last row of the table indicates
the number of framing functions that have to be imple-
mented within the FRA/DE-FRA blocks corresponding to each
VNU. One may see that three of the FRA/DE-FRA blocks
must implement two framing functions, while the other four
FRA/DE-FRA blocks implement only one framing function.

B. Full-Layer Architecture

A different possibility to increase throughput is to increase
the hardware parallelism, by including several nonoverlapping

Fig. 4. Mapping between VNs and VNUs. Black: VNs of degree 2. Red:
VNs of degree 3. Blue: VNs of degree 6.

rows of the base matrix in one decoding layer. For instance,
for the base matrix in Fig. 3, we may consider RPL = 4
consecutive rows per decoding layer, and thus the number of
decoding layers is L = 3. In this case, each column of the base
matrix has one (and only one) nonzero entry in each decoding
layer; such a decoding layer is referred to as being full.
Full layers correspond to the maximum hardware parallelism
that can be exploited by layered architectures, but they also
prevent the pipelining of the data path. One possibility to
implement a full-layer decoder is to use a similar architecture
to the pipelined one, by removing the registers inserted after
the VNU (since pipelining is incompatible with the use of
full layers), and updating the control unit. However, in such
an architecture, read/write operations from/to the β_memory
would occur at the same memory location, corresponding to
the current layer being processed 	. This would require the use
of asynchronous dual-port RAM to implement the β_memory,
which in general is known to be slower than synchronous dual-
port RAM. The architecture proposed in this section, shown
in Fig. 5(b), is aimed at avoiding the use of asynchronous
RAM, while providing an effective way to benefit from the
increased hardware parallelism enabled by the use of full
layers. We discuss below the main changes with respect to
the pipelined architecture from the Section IV-A, consisting of
the α_memory and the barrel shifters blocks (the other blocks
are the same as for the pipelined architecture), as well as a
complete reorganization of the data path. However, it can be
easily verified that both architectures are logically equivalent,
i.e., they both implement the same decoding algorithm.

1) α_Memory: This memory is used to store the
VN-messages for the current decoding layer (unlike the
previous architecture, the AP-LLR values are not stored in
memory). Since only one q̃-bit (unsaturated) VN-message
is stored for each VN, this memory has exactly the same
size as the γ̃ _memory used within the previous pipelined
architecture. VN-messages for the current layer 	 are read
from the α_memory, then saturated or framed depending
on the decoding kernel, and supplied to the corresponding
CNUs. CN-messages computed by the CNUs are stored in
the β_memory (location corresponding to layer 	), and also
forwarded to the AP-LLR unit, through the DCP (decompress)
and DE-FRA (deframing) blocks, according to the CNU imple-
mentation (compressed or uncompressed) and the decoding
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Fig. 5. High-level description of the proposed HW architectures, with both MS and NS-FAID kernels. (a) Pipelined architecture. (b) Full-layer architecture.

kernel (MS of NS-FAID). The AP-LLR unit computes the sum
of the incoming VN- and CN-messages, which corresponds to
the AP-LLR value to be used at layer 	 + 1 (since already
updated by layer 	). The AP-LLR value is forwarded to the
VNU, through corresponding BS and PER blocks. Eventually,
the VN-message for the layer 	 + 1 is computed as the dif-
ference between the incoming AP-LLR and the corresponding
layer-(	 + 1) CN-message computed at the previous iteration,
the latter being read from the β_memory.

2) PER/BS Blocks: PER_1 / BS_1 blocks permute / shift
the data read from the input buffer, according to the posi-
tions / values of the nonnegative entries in the first decod-
ing layer. Similar to the BS_R blocks in the pipelined
architecture, the PER_WR / BS_WR blocks permute / shift the
AP-LLR values, according to the difference between the posi-
tions / values of the current layer’s (	) nonnegative entries
and those of the next layer (	 + 1). This way, VN-messages
stored in the α_memory are already permuted and shifted for
the subsequent decoding layer. Finally, PER_L / BS_L blocks
permute / shift the hard decision bits (sign of AP-LLR values),
according to the positions / values of the nonnegative entries
in the last decoding layer.

V. IMPLEMENTATION RESULTS

This section reports implementation results, as well as
the error correction performance of the implemented codes,
in order to corroborate the analytic results obtained in
Section III. As mentioned in Section IV, both architec-
tures are logically equivalent, and thus they both yield
the same decoding performance (assuming that they imple-
ment the same MS/NS-FAID decoding kernel), but they
may have a different performance in terms of area and
throughput.

A. Regular LDPC Codes

We consider the (3, 6)-regular QC-LDPC code with base
matrix B of size R × C = 12 × 24, as shown in Fig. 3. The
expansion factor z = 54, and thus the code-word length is
N = zC = 1296 bits. The base matrix can be divided in
either L = 12 decoding layers (RPL = 1), for the pipelined
architecture, or L = 3 horizontal decoding layers (RPL = 4),
for the full-layer architecture.

Fig. 6(a) shows the BER performance of the MS decoder
with quantization parameters (q, q̃) = (4, 6), as well as
q = 4-bit NS-FAIDs with w = 2 and w = 3 [framing
functions F corresponding to w and F(0) values in the legend
are those from Table II]. Binary input AWGN channel model
is considered, with 20 decoding iterations. It can be seen
that the simulation results corroborate the analytic results
from Section III-A, in terms of SNR gain / loss provided by
NS-FAIDs, as compared with MS. For comparison purposes,
we have further included simulations results for the floating-
point belief propagation decoder [12], as well as the MS
decoder with (3, 5) and (2, 4)-quantization.

ASIC postsynthesis implementation results on 65-nm
CMOS technology are shown in Table V, for the MS(4, 6)
decoder and the NS-FAIDs with [w = 3 and F(0) = 0]
and [w = 2 and F(0) = ±1], indicated in the table as
NS-FAID-3 and NS-FAID-2, respectively. The first (Variant)
row in Table V indicates the architecture (pipelined or full
layers) and the CNU type (compressed or uncompressed).
We also note that for the NS-FAID-2, the assumption that
0 is mapped to either −1 or +1, with equal probability,
is only needed for theoretical analysis (the symmetry of the
decoder allows reducing the analysis to the all-zero code
word). However, in practical situations, one may always map
0 to +1, since random code words are transmitted (for
instance, in telecommunications systems, pseudorandomness
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Fig. 6. BER performance of optimized regular and irregular NS-FAIDs. (a) (3, 6)-regular LDPC code. (b) WiMAX irregular LDPC code.

TABLE V

ASIC POSTSYNTHESIS IMPLEMENTATION RESULTS ON 65-nm CMOS TECHNOLOGY FOR (3, 6) REGULAR LDPC

of the transmitted data is ensured by a scrambling
mechanism).

Throughput reported in Table V is given by the formula

Throughput = N × fmax

δ + L × niter
(14)

where fmax is the maximum operating frequency (postsyn-
thesis), niter is the number of decoding iterations (set to 20),
and δ = 1 for the pipelined architecture or δ = 0 for the
full-layer architecture. To keep the throughput comparison on
an equal basis, we further define the throughput-to-area ratio
metric TAR = throughput/area (Mb/s/mm2).

While the NS-FAID-3 decoder outperforms the base-
line MS(4, 6) decoder by 0.19 dB at BER = 10−5

[see Fig. 6(a)], it can be seen from Table V that it also
exhibits a TAR improvement between 18.88% and 31.61%,
depending on the hardware architecture and a CNU type.
As predicted, the NS-FAID-2 decoder exhibits a performance
loss of 0.21 dB compared with MS(4, 6), but yields a signifi-
cant TAR improvement, by 34.37% to 58.75%.

B. Component-Level Area Analysis

This section presents a component-level analysis of area
savings and overhead of the NS-FAID kernel implementation
with respect to the conventional MS decoder, for the full-
layer architecture with uncompressed CN messages. Note that
this architecture achieves the highest TAR value, for both
NS-FAID and MS kernels (see Table V). Fig. 7 provides

area results for the three blocks of the architecture that are
impacted by the use of the NS-FAID kernel: the β-memory
block, the SAT/FRA and DE-FRA blocks, and the CNUs
(which operate in the lower quantization domain). All the
other blocks are the same for both MS and NS-FAIDs. The
total area is also shown on the right-hand side of Fig. 7,
with corresponding area values shown on the right y-axis. The
height of the vertical bars indicates the area values obtained
when the decoders are synthesized to maximize their operating
clock frequency (as reported in Table V). As expected, it can
be observed that NS-FAIDs allow significant area reductions
for the β-memory and CNU blocks. Indeed, for NS-FAID-2
and NS-FAID-3 decoders, the β-memory block occupies 0.075
and 0.111 mm2, respectively, representing only 49.7% and
73.5% as compared to MS (0.151 mm2). Gains even more
significant are obtained for the CNU block, which occupies
0.033 and 0.045 mm2, representing only 24.4% and 33.3%
as compared to MS (0.135 mm2). Since NS-FAIDs require
an additional DE-FRA block, this leads to an increased area
of the SAT/FRA & DE-FRA blocks. However, these blocks
make only a modest contribution to the total area values. These
results confirm the benefits of the NS-FAID approach, in terms
of both area and maximum operating frequency.

Finally, we note that the occupied area may considerably
increase when timing constraints are pushed to their lim-
its [27] (i.e., when the design is synthesized at the maximum
operating frequency). Indeed, the occupied area is known to
decrease with loosening timing constraint, and it eventually
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TABLE VI

ASIC POSTSYNTHESIS IMPLEMENTATION RESULTS ON 65-nm CMOS TECHNOLOGY FOR WiMAX LDPC

TABLE VII

COMPARISON BETWEEN THE PROPOSED NS-FAID AND THE STATE-OF-THE-ART IMPLEMENTATIONS FOR THE WiMAX QC-LDPC CODE

Fig. 7. Component-level area comparison (full-layer architecture, with
uncompressed CN messages).

reaches a minimum value when the timing constraint is loose
enough. For completeness, we have also depicted the case
when the design is optimized with respect to the occupied
area. Minimum area values are also shown in Fig. 7, by a
horizontal line across each of the area bars (note that no
decrease in the area of the β-memory block has been observed
for the NS-FAID-2 and NS-FAID-3 decoders). It can be
observed that the minimum total area values of NS-FAID-2
and NS-FAID-3 decoders are 0.486 and 0.578 mm2, respec-
tively, representing 71.7% and 85.3% of the minimum total

area of the MS decoder (0.678 mm2). These results show
the same resource consumption trend as for the maximum
frequency case.

C. Irregular LDPC Codes

We consider the irregular WiMAX QC-LDPC code of
rate 1/2, with base matrix of size R × C = 12 × 24 [21].
The expansion factor z = 96, thus resulting in a code-
word length N = zC = 2304 bits. The pipelined archi-
tecture from Section IV-A is implemented, with RPL = 1
row per decoding layer, after reordering the rows of the
base matrix, such that any two consecutive rows do not
overlap [24]. Note that the full-layer architecture does not
apply to irregular WiMAX LDPC codes, since it is not
possible to group the rows of the base matrix in full decoding
layers.

BER results for the MS(4, 6) decoder and the NS-FAID-
w1w2w3 decoders from Table III are shown in Fig. 6(b), while
ASIC postsynthesis implementation results on 65-nm CMOS
technology are shown in Table VI. The throughput reported is
computed using (14). TAR results and corresponding gain/loss
(+/−) with respect to the MS(4, 6) decoder are reported on
the last row. The NS-FAID-433 and NS-FAID-432 decoders
outperform the MS decoder by 0.3 and 0.15 dB (at BER=
10−5), respectively, at the price of a small degradation of
the TAR. NS-FAIDs-333 improves the BER performance
by 0.12 dB, with TAR improvement by 13.51%–16.39%,
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depending on the CNU type (compressed or uncompressed).
NS-FAIDs-332 exhibits similar BER performance, with TAR
improvement by 13.51%–19.30%. The NS-FAID-222 decoder
yields the most significant TAR improvement (up to 42.09%),
but this comes at the price of a significant BER degradation
by ≈ 1 dB as estimated in Section III-B.

To further emphasize the high-throughput characteristic of
the proposed architecture, the irregular NS-FAID-332 decoder
is further compared with other state-of-the-art implementations
of WiMAX decoders in Table VII. We also report the TAR and
normalized TAR (NTAR) metrics, so as to keep the throughput
comparison on an equal basis with respect to technology,
area, and a number of iterations. To scale throughput and
area to 65 nm, we use scale factors (technology_size/65)
and (65/technology_size)2, respectively, as suggested in [28].
The computation of the TAR and NTAR metrics is detailed
in the footnote of Table VII. Note that for all the reported
implementations, the achieved throughput is inversely pro-
portional to the number of iterations, and hence the NTAR
metric corresponds to the TAR value assuming that only one
decoding iteration is performed. We mention that the decoders
proposed in [24] and [26] are reconfigurable decoders that
support the IEEE 802.16e (WiMAX) and the IEEE 802.11n
(WiFi) wireless standards. The reported throughput is the
maximum achievable coded throughput for the (1152, 2304)
WiMAX code, with either ten or five decoding iterations. From
Table VII, it can be seen that the proposed irregular NS-FAID
compares favorably with the state-of-the-art implementations,
yielding an NTAR value of 45.86 Gb/s/ mm2/iteration.

VI. CONCLUSION

In this paper, we first introduced the new framework of
NS-FAIDs, which allows trading off decoding performance
for hardware complexity reductions. NS-FAIDs have been
optimized by DE and shown to provide significant mem-
ory size reductions, with similar or even better decoding
performance, as compared to the MS decoder. Then, two
hardware architectures have been presented, making use of
either pipelining or increased hardware parallelism in order
to increase throughput. Both MS and NS-FAID decoding
kernels have been integrated into each of the two proposed
architectures, and compared in terms of area and throughput.
ASIC postsynthesis implementation results demonstrated the
effectiveness of the NS-FAID approach in yielding significant
improvements in terms of area and throughput, as compared
to the MS decoder, with even better or only slightly degraded
decoding performance.
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