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Abstract— This paper deals with the hardware implementa-
tion of the recently introduced Probabilistic Gradient-Descent
Bit-Flipping (PGDBF) decoder. The PGDBF is a new type of
hard-decision decoder for Low-Density Parity-Check (LDPC)
code, with improved error correction performance thanks to the
introduction of deliberate random perturbation in the computing
units. In the PGDBF, the random perturbation operates during
the bit-flipping step, with the objective to avoid the attraction
of so-called trapping-sets of the LDPC code. In this paper, we
propose an efficient hardware architecture which minimizes the
resource overhead needed to implement the random perturba-
tions of the PGDBF. Our architecture is based on the use of
a Short Random Sequence (SRS) that is duplicated to fully
apply the PGDBF decoding rules, and on an optimization of
the maximum finder unit. The generation of good SRS is crucial
to maintain the outstanding decoding performance of PGDBF,
and we propose two different methods with equivalent hardware
overheads, but with different behaviors on different LDPC codes.
Our designs show that the improved PGDBF performance gains
can be obtained with a very small additional complexity, therefore
providing a competitive hard-decision LDPC decoding solution
for current standards.

Index Terms— Gradient descent bit-flipping, high through-
put decoder, low complexity implementation, low-density
parity-check codes, random generation.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes have attracted
much attention in the past several years due to their excel-

lent performance under iterative decoding. These studies focus
either on improving the error correction performance of the
LDPC codes or on reducing the implementation complexity of
the decoders for practical applications. Soft decision iterative
decoding, such as Belief Propagation (BP) or Min-Sum (MS)
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algorithms offers the best error correction performance, close
to the theoretical coding bounds, but comes along with an
intensive computation cost [1]. On the contrary, the class of
hard-decision iterative decoders is often seen as a very low-
complexity solution, with an associated performance loss. Of
special interest is the class of A Posteriori Probability (APP)
based hard decision decoders, such as Bit-Flipping (BF) or
majority-logic decoders where, contrary to message-passing
decoders, both the extrinsic and the intrinsic information are
exchanged between the nodes of the Tanner graph [2], [3].

The BF algorithms significantly reduce the required hard-
ware resources due to their simple computation units, but
lead to a non-negligible performance loss compared to the
BP or MS algorithms. In order to improve the perfor-
mance while keeping the low complexity, many modifications
of BF decoders have been introduced, such as Weighted
BF (WBF) [4], improved WBF [2] and Gradient Descent Bit
Flipping (GDBF) [5]. All the BF decoders share the same
concept of passing only one bit of information between the
Variable Nodes (VNs) and Check Nodes (CNs) of the LDPC
Tanner graph. The difference between BF variants lies on
the mechanism proposed to select the bits to be flipped,
based on the computation of the so-called energy function or
inversion function. Another difference between BF variants
lies in the number of bits that are flipped during one decoding
iteration: the serial BF decoder flips only one bit at a time,
while the parallel or semi-parallel BF flips many bits at
the same time. For weighted BF decoders [4], [6], [7], the
energy function is specifically designed for the Additive White
Gaussian Noise (AWGN) channel through a combination
of the CN values and the channel-output values. All these
BF variants achieve different levels of error correction and
different convergence speeds, impacting on the performance-
throughput trade-off of the LDPC decoder.

More recently, the GDBF algorithm has been introduced by
Wadayama et al.. in [5]. This GDBF algorithm is derived from
a gradient descent formulation and its principle consists of
finding the most suitable bits to be flipped in order to maximize
a pre-defined objective function. The GDBF algorithm showed
an error correction capability superior to most known BF
algorithms while still keeping the hardware implementation
simplicity. A very promising generalization of the GDBF has
been proposed by Rasheed et al. in [8]. The authors proposed
to incorporate a probabilistic feature in the flipping step,
inspired from the probabilistic BF algorithms of [2]. In the
PGDBF decoder, the bits that satisfy the gradient condition
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are not flipped by default, but instead, only a randomly
chosen fraction p0 of them are flipped. Interestingly, this
small modification of the GDBF algorithm led to a large
performance improvement, with error correction capability
approaching the soft-decision message passing decoders [8].

We propose in this paper an efficient hardware (HW)
implementation of the PGDBF decoder, which minimizes the
resource overhead needed to implement the random pertur-
bations of the PGDBF. We restrict our work to decoders for
regular LDPC codes used over the binary symmetric chan-
nel (BSC). Although many wireless communication standards
use irregular LDPC codes, regular LDPC codes could still be
interesting for practical applications, such as fiber optics trans-
missions with the IEEE 802.3an 10GBASE-T standard [9],
satellite communications using short frames [10] or storage
applications (hard drives, flash memories, etc) [11]–[13].

The paper is organized as follows. In Section II, we present
the main principles of the PGDBF algorithm and conduct a
statistical analysis in order to have a precise characterization of
its key parameters, especially the values of p0 that lead to the
maximum coding gains. This analysis is performed through
Monte Carlo simulations in both the waterfall and the error
floor regions. In the second part of the paper, Section III,
we present our optimized HW architecture for the PGDBF
decoder. Our architecture is based on the use of a short
random signal sequence that is duplicated to fully apply the
PGDBF decoding rules on the whole codeword. We propose
two different solutions with equivalent HW overheads, but
with different behaviors on different LDPC codes. We also
propose an optimization of the maximum finder unit of the
PGDBF algorithm in order to reduce the critical path and
improve the decoding throughput. Finally, in Section IV, we
provide synthesis results on ASIC 65 nm technology, and run
Monte-Carlo simulations with a bit-accurate C implementation
of our PGDBF architecture on LDPC codes with various rates
and lengths.

II. DESCRIPTION AND ANALYSIS OF THE PGDBF

A. Notations and PGDBF Algorithm

An LDPC code is defined by a sparse parity-check matrix
H with size (M, N), where N > M . A codeword is a vector
x = (x1, x2, . . . , xN ) ∈ {0, 1}N which satisfies H xT = 0. We
denote by y = {y1, y2, . . . , yN } ∈ {0, 1}N the output of a BSC,
in which the bits of the transmitted codeword x have been
flipped with crossover probability α. The decoders presented
in this paper are dedicated to the BSC channel. The graphical
representation of an LDPC code is a bipartite graph called
Tanner graph composed of two types of nodes, the VNs vn ,
n = 1, . . . , N and the CNs cm , m = 1, . . . , M . In the Tanner
graph, a VN vn is connected to a CN cm if H (m, n) = 1. Let
us also denote N (vn) the set of CNs connected to the VN vn ,
with a connection degree dvn = |N (vn)|, and denote N (cm)
the set of VNs connected to the CN cm , with a connection
degree dcm = |N (cm)|. When an LDPC code is regular,
its connection degrees are equal for all nodes, i.e., dcm =
dc,∀m and dvn = dv ,∀n. In this paper, we will mainly study
the case of regular Quasi-Cyclic LDPC (QC-LDPC) codes.
A QC-LDPC code is obtained by a specific construction in

which a small base matrix HB is expanded by replacing each
vertex in HB by a circulant permutation of main diagonal
Z × Z matrix, in order to obtain the actual LDPC matrix H .
QC-LDPC codes are often preferred in practical applications
because of their hardware friendly structure, and have been
adopted by several standards [14] [15]. Although applicable to
irregular LDPC codes, the bit-flipping decoders are specially
attractive and efficient for regular LDPC codes, and we will
restrict the study in this paper to regular dv = 3 and dv = 4
LDPC codes.

A BF decoder is defined as an iterative update of the variable
node values over the decoding iterations. We denote by v

(k)
n the

value of the VN vn at the k-th iteration. We correspondingly
denote by c(k)

m the binary value of the CN cm parity check
node at iteration k, which indicates whether the m-th parity-
check equation is satisfied or not. The BF decoding process is
terminated when all CNs values are satisfied or a maximum
number of iteration I tmax is reached. The CN calculation in
BF algorithms can be written as

c(k)
m =

⊕

vn∈N (cm)

v(k)
n (1)

where
⊕

is the bit-wise exclusive-OR (XOR) operation.
For the n-th VN calculation, the update rule uses the

information on satisfiability of the neighboring CN N (vn) to
keep or flip the value of v

(k)
n . In the case of GDBF algorithms,

a function called inversion function or energy function is
defined for each VN, and is used to evaluate whether the
value v

(k)
n should be flipped or not. The original GDBF has

been proposed for the AWGN channel [5] and the energy
function was defined as in (2), where γn is the Log-Likelihood
Ratio (LLR) received from AWGN channel.

�(k)
vn
= (1− 2 v(k)

n )γn +
∑

cm∈N (vn)

(1− 2 c(k)
m ) (2)

For the GDBF on the AWGN channel, the energy function
is real valued, and has a unique minimum, corresponding to
the bit with lowest reliability. In [5], two modes for the bit-
flipping rule at iteration k are proposed: either a single bit
having smallest energy function is flipped (single flip), or a
group of bits having energy function lower than a predefined
threshold are flipped (multiple flips).

For the BSC channel, the energy function can be modified
with the following equation:

E (k)
vn
= v(k)

n

⊕
yn +

∑

cm∈N (vn)

c(k)
m (3)

In this case, the energy function is integer-valued, varies
from 0 to (dvn + 1), and the bits which have the maximum
value E (k)

max = maxn(E (k)
vn ) are flipped. Due to the integer

representation of the energy function, many bits are likely
to have the maximum energy, leading to the multiple flips
mode. Let us use an indicator variable to indicate the VNs
which have the maximum energy at iteration k, i.e., I (k)

n = 1
if E (k)

vn = E (k)
max , and I (k)

n = 0 otherwise. The fact that the
number of bits to be flipped cannot be precisely controlled,
induces a negative impact to the convergence of the GDBF,
as the analysis of [8] shows. To avoid this effect, the authors
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Fig. 1. The difference in the flipping operator between GDBF and PGDBF
algorithms.

Algorithm 1 Probabilistic Gradient Descent Bit-Flipping

Initialization k = 0, v
(0)
n ← yn, n = 1, . . . , N .

s = H v(0)T
mod 2

while s �= 0 and k ≤ I tmax do
Generate R(k)

n , n = 1, . . . , N , from B(p0).
Compute E (k)

vn , n = 1, . . . , N , using (3).
E (k)

max = maxn(E (k)
vn ),

for n = 1, . . . , N do
if E (k)

vn = E (k)
max and R(k)

n = 1 then
v

(k+1)
n = v

(k)
n ⊕ 1

end if
end for
s = H v(k+1)T

mod 2
k = k + 1
end while
Output: v(k)

in [8] proposed the PGDBF algorithm, in which instead of
flipping all the bits with maximum energy function value,
only a random fraction of those bits are flipped. The random

fraction is fixed to a pre-defined value p(k)
n , which could be

different for each VN and each iteration. In this work, we
restrict ourself to the case for which p(k)

n are constant for all
iterations and all VNs, denoted p0 ∈ [0, 1] hereafter.

The random signals in PGDBF can be implemented using
a sequence of N random bits, generated following a Bernoulli
distribution B with parameter p0, with different realizations
at each iteration. We denote the random signal (RS) sequence
at the k-th iteration by R(k) = {R(k)

n |1 ≤ n ≤ N} in which
the random signal R(k)

n is triggered correspondingly to VN
n-th. The difference in flipping decision between GDBF and
PGDBF is described in Fig. 1. In the GDBF algorithm, a VN
v

(k)
n at iteration k is flipped (is XOR-ed by “1”) when its en-

ergy function is a maximum (the indicator variable is I (k)
n = 1)

while in PGDBF, a VN v
(k)
n is flipped if and only if the two

conditions I (k)
n = 1 and R(k)

n = 1, are both satisfied. The
PGDBF algorithm is presented in Algorithm 1.

B. Statistical Analysis of PGDBF

Several recent papers showed that the decoding performance
of PGDBF is superior to all known BF algorithms [8], [16] as
illustrated in Fig. 2 for a regular (dv , dc) = (4, 8) QC-LDPC
code of length N = 1296 bits. As we can see on this figure, the
PGDBF performs halfway between the GDBF and the Min-
Sum decoder, which is promising in terms of error correction,

Fig. 2. Performance Comparison between LDPC decoders: BF, GDBF,
PGDBF (p0 = 0.9), Quantized MS, Quantized Offset Min-Sum (OMS) with
offset factor of 1. Regular QC-LDPC code (dv = 4, dc = 8, Z = 54),
(N = 1296, M = 648).

Fig. 3. Frame Error Rate versus p0 in the waterfall region (α = 0.01).
Tanner code (dv = 3, dc = 5, Z = 31), (N = 155, M = 93).

provided that the extra hardware complexity to implement the
generation of the random sequences R(k) is small enough.

In order to better understand the impact of the random-
ness of PGDBF on the Frame Error Rate (FER), we have
conducted a statistical analysis of PGDBF using Monte Carlo
simulations. Our objective is to identify which features of the
probability density function of the binary random sequence
R(k) are the most critical for the performance improvements.

1) Waterfall Analysis: In this section, we focus on the effect
of the relative occurrence of zeros and ones in the sequence
R(k) in the waterfall region of the decoder. The simulations are
performed on the BSC channel with cross-over probability α.
For each noisy codeword, a fraction of p0 N ones are put in the
random sequence R(k), and we draw the FER of the PGDBF
decoder as a function of p0, for different iteration and a value
of α corresponding to the waterfall region. The results in Fig. 3
are presented for the (N = 155, M = 93) Tanner code [17]
which is a regular QC-LDPC code with (dv = 3, dc = 5,
Z = 31).

Based on these results, two interesting conclusions can be
drawn. First, during the first decoding iterations (k ≤ 10),
using randomness does not help. On the contrary, it degrades
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Fig. 4. Error configurations with (a) 3 erroneous bits and (b) 4 erroneous bits
located on a TS(5, 3). Black/white circles denote erroneous/correct variable
nodes, and black/white squares denote unsatisfied/satisfied check nodes.

the decoding performance since the FER of PGDBF is worse
than that of GDBF for almost all values of p0 (note that
GDBF corresponds to PGDBF for p0 = 1). This comes from
the fact that the random part of the PGDBF slows down the
convergence speed, since fewer bits are flipped than what the
energy function indicates. Second, after a sufficient number
of iterations, the performance gain is substantial and does not
depend much on p0. This means in particular that optimizing
RS sequence probability p0 does not impact significantly the
performance gain, as was already observed in [8].

We have confirmed these conclusions for several regular
LDPC codes with different lengths and values of dv .

2) Error Floor Analysis: Similar to other iterative LDPC
decoders, the GDBF algorithm fails to correct some low-
weight error patterns concentrated on trapping sets (TS)
[1], [18], giving rise to the so-called error floor region. The
PGDBF has been introduced to overcome the attraction of
TS. In this section, we conduct the same experiment as in
Section II-B.1 for the Tanner code (dv = 3, dc = 5, Z = 31),
(N = 155, M = 93), but in the error floor region. The smallest
trapping set for this code is composed of 5 VNs and 3 odd-
degree CNs, denoted TS(5, 3) (see Fig. 4).

The minimum number of bits that cannot be corrected by the
deterministic GDBF is three [19], and they are located in the
TS(5, 3) of the LDPC code as indicated in Fig. 4(a) with black
circles. Note that (v1, v2, v3) and (v1, v4, v3) are also weight-3
error patterns which cannot be corrected by the GDBF. The
PGDBF can potentially help correct these low weight error
patterns, resulting in a coding gain in the error floor region.
Fig. 4(b) shows also a weight-4 error pattern which is uncor-
rectable by the GDBF. In order to analyze the PGDBF in the
error floor, we fix the channel errors on the positions indicated
in Fig. 4, and evaluate whether a random sequence R(k) with
probability p0 can correct these error patterns. The results are
shown in Figs. 5 and 6.

The first remark that can be made is that, contrary to the
conclusion of the waterfall analysis, it is useful to use the
random feature of the PGDBF, even during the first decoding
iterations. This is verified for both the weight-3 error and
the weight-4 error patterns. The weight-3 error pattern is
eventually corrected when the number of iterations increases,
for all values of p0 ∈ [0.3, 0.9]. The weight-4 error patterns
can also be corrected by the PGDBF for a wide range of
p0 values, but flattens at a FER equal to 0.5. This means
that half of the generated random sequences R(k) can correct
the weight-4 error pattern, while the other half does not

Fig. 5. Frame Error Rate versus p0 in the error floor region with 3 erroneous
bits. Tanner code (dv = 3, dc = 5, Z = 31), (N = 155, M = 93).

Fig. 6. Frame Error Rate versus the p0 in the error floor region with
4 erroneous bits. Tanner code (dv = 3, dc = 5, Z = 31), (N = 155, M = 93).

improve the performance. PGDBF performance gains depend
on the realizations of R(k), and in some situations requires
the concept of PGDBF decoder rewinding [19], that is to start
again the decoder from the initial values, but with different
random sequences R(k). For the example of the weight-4 error
patterns of Fig. 4(b), a PGDBF with k rewinding stages would
correct the error patterns with probability 1 − (0.5)k . Since
our work deals with low complexity implementation of the
PGDBF decoder and because the PGDBF gain is already
significant without rewinding, we will not discuss decoder
rewinding in this paper.

As a conclusion of this section, our statistical analysis
reveals that the random generator does not need to have a
specific value for p0 in order to provide the performance
gains of the PGDBF, as long as it is bounded away from
p0 = 1. This motivated the proposition of a simplified, low
complexity hardware realization for the generation of sequence
R(k), which we describe in the next section.

III. OPTIMIZED HARDWARE IMPLEMENTATION

The random feature of PGDBF plays an important role in
improving the decoder performance as presented in the previ-
ous section. However, a hardware overhead is unavoidable due
to the fact that a binary random generator is required on top
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Fig. 7. The global architecture of the PGDBF. The PGDBF follow precisely the data flow of GDBF with difference coming from the random generator and
the AND-gates.

of the original GDBF structure. We present in this section an
optimized hardware implementation of the PGDBF, with the
objective of keeping the coding gain at a minimum hardware
cost.

A. PGDBF Architecture

The global architecture of the PGDBF decoder is shown
in Fig. 7. The organization of the blocks and the data flow
follow precisely the organization of the GDBF decoder, with
the difference being in the additional block which produces
the random signals R(k).

Let us first briefly present how the decoder described in
Algorithm 1 operates on this hardware architecture. Since we
focus in this paper on the BSC channel, two register arrays
represented as two sequences of D-Flip Flops (D-FFs) are
required to store the noisy codeword y and the estimated
codeword at the current iteration v(k). At the initialization of
the decoder, the signal init triggers the copy of y into v(0).
Then, the CNUs compute the parity of their neighboring bits
in v(k), after properly driven by a first connection network. The
second connection network drives the CN values to the energy
computation blocks, for each VN. The maximum indicator
module is composed of a maximum finder component and
comparators which outputs I (k)

n = 1 whenever the correspond-
ing energy is equal to the maximum, and I (k)

n = 0 otherwise.
Indicator values I (k)

n are propagated to the AND gates, and
combined with the RS sequence. This series of AND gates
highlights the difference between PGDBF and GDBF. In the
GDBF decoder, all bits with I (k)

n = 1 are flipped, while in the
PGDBF algorithm, only the bits with I (k)

n = 1 and R(k)
n = 1

are flipped. New values of the bits stored in v(k) are used for
the next decoding iteration.

At each iteration, the syndrome check module performs
an OR operation on the CNs values to verify whether the
intermediate sequence v(k) is a codeword, in which case the
decoding process is halted. Another instance when the decod-
ing halted is when no codeword v(k) has been found, and a
predetermined maximum number of iterations I tmax has been
reached, in which case a decoding failure is declared. Note that
all components in the decoder architecture are combinational
circuits except the registers v(k) and y. Therefore, new values
of the bits in v(k) are updated after each clock cycle. In order to
optimize the proposed architecture, we focus on the following
two important issues. First, as identified in [16], the hardware
overhead induced by the RS is not negligible with a naive
implementation, and we propose in Section III-B different low
complexity methods to generate the sequences R(k). Second,
we optimize the architecture of the maximum indicator module
in order to maximize the decoding throughput, as explained
in Section III-D.

B. Cyclically Shifted Truncated Random Sequences

We showed in Section II-B that the performance gain in the
PGDBF algorithm comes from the introduction of the random
sequence R(k) which makes a perturbation in bit flips. In our
theoretical description of the PGDBF, for each and every code-
word, the sequences at different iterations (R(0), . . . , R(I tmax ))
are independent and identically distributed. However, a direct
and naive generation of the sequences R(k) with linear feed-
back shift register (LFSR) random generators is costly, and
requires many times more registers than the non-probabilistic
GDBF [16]. We propose in this section an approach to reduce
the hardware overhead required to generate the RS sequences.

The first modification that we propose is to reduce the
register requirements by storing only S ≤ N random values
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Fig. 8. Generation of the random signals. (a) corresponds to the use of
truncated sequences, and (b) to the use of full sequences.

in a shorter sequence denoted as R(k)
t , and produce the RS

sequence R(k) with a hard-wired duplication network. The
duplication network can be restricted to a simple copy and
concatenate, as illustrated by the example in Fig. 8(a), or
can be implemented as a more complex connection network,
allocating S register outputs to N signals. When S = N , the
duplication network is a simple copy of the register outputs,
i.e., R(k) = R(k)

t as shown in Fig. 8(b).
Although the length S of the truncated sequence can take in

principle any value, in this paper we restrict the possible values
of S to integer multiples of the QC-LDPC circulant size Z .
We also enforce the duplication network to copy the register
outputs to distinct circulant blocks, such that two copies of the
same random bit do not belong to the same circulant block.
The duplication network comes at very little cost in hardware
implementation, and is simpler than the connection networks
of the GDBF decoder.

The second modification that we propose is to re-use the
same sequence of random bits for all the decoding iterations,
instead of generating a new random sequence at each iteration.
However, in order to preserve the performance gains of the
PGDBF, the sequences R(k)

t need to be distinct from one
iteration to another. Our solution is to simply rotate cyclically
the sequence by one position, as shown in Fig. 8, such that:

R(k+1)
t ((n + 1) mod S) = R(k)

t (n) n = 1, . . . , S (4)

With these two modifications, our objective is to reduce
to the maximum the hardware overhead induced by the RS
sequence generation, while maintaining the necessary ran-
domness of the PGDBF algorithm. Our proposed solution,
named Cyclically Shifted Truncated Sequences (CSTS), has
also the following two advantages with respect to the de-
sired statistical properties of the random sequence. First, the
initialization step starts with a random truncated sequence
R(0)

t having a given number n0 = p0 S of 1’s, the number
of 1’s in the complete sequence R(0) will be in the range
{�N/S	 n0, . . . , (�N/S	+1) n0}. This means that the value of
p0 fixed by the statistical analysis in Section II-B would be the
same for R(0)

t and R(0). Second, since we just cyclically shift
the sequences R(k)

t from one iteration to another, the number of
1’s is kept constant throughout the decoding iterations if N/S
is an integer, and almost constant if N/S is not an integer.

One of the drawbacks of our reduced complexity method
for generating the random signals is the induced correlation.
In the theoretical PGDBF, the assumption is that the sequences

Fig. 9. Decoding performance of CSTS-PGDBF as a function of the size S
of R(0)

t .

R(k) should be independent from each others. However, it
is obvious that by using the duplication from R(k)

t to R(k),
and by shifting the sequences from one iteration to another,
the independence assumption is no longer valid. It is also
clear that the sequences will be more correlated as S gets
smaller. However, we have verified through Monte Carlo
simulations that the induced correlation has actually very little
impact on the decoder performance. In Fig. 9, we show the
FER performance of the PGDBF with CSTS, and compare
it with the perfect PGDBF performance. The simulations are
performed on a rate R = 1/2 regular (dv = 4, dc = 8)
QC-LDPC code, with circulant size Z = 54 and length
N = 1296 and the BSC channel. The labels LFSR-CSTS
and IVRG-CSTS correspond to the two versions of the CSTS
decoders that we propose in this paper, described in details in
the next section. As we can see from these results, the use of
CSTS does not degrade the error correction performance, even
for small values of S. This behavior has been also observed
for other code rates and lengths.

C. Initialization of Truncated Sequence
for CSTS-PGDBF Decoders

In the previous section, we showed that once the initial
truncated sequence R(0)

t has been generated, our simplified
CSTS architecture can build efficiently the RS sequences
R(k), k = 0, . . . , I tmax , with no performance loss. In this
section we describe two solutions to initialize R(0)

t with S
random binary values, which will be compared in terms of
hardware resources in Section IV. The proposed solutions
are based on two random generating methods, namely linear
feedback shift register (LFSR) and intrinsic valued random
generator (IVRG). For simplicity, we drop the CSTS notation
in the algorithm names and will refer to them as LFSR-PGDBF
and IVRG-PGDBF.

1) Initialization With Linear Feedback Shift Register:
A conventional method to produce pseudo-random bits is
by making use of the LFSR. The outputs of the LFSR
registers define an integer number, which is compared to a
pre-determined threshold in order to finally produce a bit.
The value of the threshold is tuned so that the appearance
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probability of 1’s at the comparator output is equal to the
desired value, i.e., p0 in our case. For large enough LFSR
memory η, the correlation of the output bit sequence could be
made negligible [20]. We use an η = 32-LFSR pseudo-random
generator, to initialize the initial truncated sequence R(0)

t for
each noisy codeword. Note that the latency to produce the S
random values can be neglected since the LFSR can produce
those values while the previous noisy codeword is decoded.

One drawback of this approach corresponds to the event that
R(0)

t contains only binary ones, in which case all sequences
R(k) are also filled with binary ones, thus reducing the PGDBF
to deterministic GDBF. The probability of having R(0)

t = 1 is
equal to (p0)

S , which can be considered negligible only if it
is smaller than the target FER in the error-floor region. For
example, with p0 = 0.75 and S = 64, p(R(0)

t = 1) = 1e − 8.
The LFSR method therefore requires an extra control module
that tests if R(0)

t �= 0, or by forbidding too large values of p0
and too small values of S.

2) Initialization With the Intrinsic-Valued Random Gener-
ator: In [16], we have introduced a novel and specific way
for generating a sequence of random bits in an LDPC decoder
without relying on an actual random generator. Our Intrinsic-
Valued Random Generator (IVRG) approach was based on the
use of the CN values which are already computed at the output
of the CNU (see Fig. 7). The CNU blocks compute the parity-
check node values, and if the estimated codeword contains
errors, they typically contain a fraction of ones. We make use
of the CN values at the first iteration k = 0, which depend
on the noisy codeword generated by a random realization of
the BSC channel. As a result, the sequence of CN values
will appear as a random-like sequence that can be used to
initialize R(0)

t .
To simplify the discussion, let us consider the special case

of S = M , the number of parity-check equations in the
LDPC code, such that R(0)

t can be filled directly with the
complemented outputs of the CNUs at the first iteration, as
described in Fig. 10. With the IVRG approach, we need to
complement the CN values since the number of unsatisfied
check nodes is usually smaller than the number of satisfied
CNs, and we saw in the statistical analysis of Section II-B
that the interesting range of p0 is greater than 0.5.

Also, with the IVRG approach, the number of ones in
R(0)

t cannot be controlled and depends on the channel noise
realization. Let us denote by p(c(0) = 1) (respectively
p(c(0) = 0)), the probability that a CN c is unsatisfied
(respectively satisfied), at the initialization k = 0. Because
of the complement after the CN computation, the probability
of the binary ones in the RS sequence in the IVRG approach
is equal to p0 = p(c(0) = 0). For a BSC with crossover
probability α, we can approximate this probability by p0 =
p(c(0) = 0) 
 1

2 + 1
2 (1 − 2α)dc . For large values of α, as

in the waterfall region of the LDPC decoder, p0 converges to
1/2, and for small values of α, in the error-floor region, it
converges to p0 = 1, which corresponds to the GDBF.

Contrary to the LFSR method, the case where R(0)
t = 1 is

less problematic since it happens only when the decision at the
channel output is already a codeword, and then no decoding

Fig. 10. A block diagram of the Intrinsic-Valued Random Generator module
for S = M = N/2. The CNs values are copied into the R(0)

t at the first
iteration, then cyclically shifted at each iteration.

Fig. 11. The distribution of p0 for the IVRG-PGDBF and a (dv = 3, dc = 6,
N = 1296) QC-LDPC code, for α = 0.02 and α = 0.04.

iteration is required. Fig. 11 shows the distribution of p0 for a
(dv = 3, dc = 6, N = 1296) QC-LDPC code and two different
channel error probabilities α. It can seen that p0, although not
fixed to a constant value with the IVRG, falls in the range of
interest, predicted by the statistical analysis of Section II-B.

Another feature of the IVRG initialization is that copying
the CN values in the R(0)

t registers can be done on-the-fly, and
does not induce any extra latency. Note finally that, although
the discussion in this section has been made for S = M =
N dv/dc, the IVRG technique is also applicable for any value
of S ≤ M .

D. Maximum Indicator Optimization

Another important module of the PGDBF decoder is the
maximum indicator (MI) module, which contains the critical
path of the global architecture (Fig. 7), and therefore limits the
achievable working frequency and decoding throughput [21].
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Fig. 12. Detailed circuits of implemented Energy Computation and Maximum Indicator blocks for dv = 3 LDPC codes. (a) Energy Computation block,
(b) Maximum Indicator block.

A rigorous survey on the maximum finder architectures can
be found in [21], in which the authors confirmed that the
implementation of finding the maximum value out of a list
of N numbers is always a trade-off between computation cost
and area/energy consumption. Since our goal is not only to
get an optimized decoder with respect to multiple objectives,
including hardware cost minimization, but also fast decoding
throughput, we decided to focus on the minimization of the
critical path for the MI module, even if it comes at the cost
of an increased hardware resource. We therefore leave aside
the solutions which minimize the area/consumption, such as
the Traditional Binary Tree (TBT) method, and focus on
the method which maximizes the decoding speed, i.e., the
Leading-zero Counting Topology (LCT) [21]. For simplicity,
we omit the iteration index (k) in this section.

The timing efficiency of LCT comes from the principle of
processing the bits of an operand independently from other
bits. In order to do this, the LCT method requires the operand
to be represented in a special format called one-hot format
with q = δ + 1 quantization bits, where δ is the maximum
value of the operand. In order to find the maximum in a set of
N values by LCT, a q-bits vector is produced by applying
N-inputs bit-wise OR operations on the N one-hot-format
values. The maximum value is then sorted out by using a
priority encoder on the results of these OR operations [21].
The complexity of LCT maximum finder comes from the
N-inputs OR gates, and a reduction of the number of
N-inputs OR gates would reduce significantly the complexity
of decoders. In our LCT-based MI for PGDBF (δ = dv + 1),
since Emax can never be equal to 0 except when y is already
a codeword or v(k) is converging to a codeword, we optimize
the implementation of the LCT and reduce its complexity
by representing the energy function values in a format with
the length of q − 1 bits (instead of q bits) such that En =
Eq−2

n ...E1
n E0

n , E j
n = 1 if En = j + 1, Ei

n = 0, ∀i > j and
Ei

n are don’t-care otherwise. By doing this, all the operation
of LCT is preserved while we can reduce by 1 N-inputs
OR-gate.

TABLE I

HARDWARE RESOURCE USED TO IMPLEMENT THE PGDBF DECODERS AS

A FUNCTION OF S. THE PERCENTAGES IN BRACKETS INDICATE THE
ADDITIONAL HARDWARE COMPARED TO THE GDBF

We further reduce by 1 the N-inputs OR-gates by applying
logic minimization. Indeed, we can easily ignore the case of
Emax = 1 and consider only the remaining possibilities (i.e.,
En = j , where j = 2, . . . , q − 1). The case of Emax = 1
will be automatically considered when all the other possibil-
ities are discarded. Thus, we reduce finally the number of
N-inputs OR-gate to only q − 2 (originally q). Fig. 12 shows
the detailed circuits for energy computation and MI blocks
of dv = 3 LDPC codes. The energy computation block
(Figure 12(a)) produces the energy value, En , for VN vn in
the required format by using the neighbor CN values and
XOR-ing results of vn to yn as its inputs. The MI block
(Figure 12(b)) requires only 3 N-inputs OR gates (instead
of 5) and block C2 realizes the logic minimization process
as mentioned above. The In, n = 1, . . . , N , is produced by
the circuit as in Fig. 12(b) (block C3). In the C3 circuit,
In = 1, n = 1 . . . N if and only if Ma j = 1 and E j

n = 1,
0 ≤ j ≤ q − 1, concurrently, otherwise In = 0.

IV. SYNTHESIS RESULTS AND DECODING PERFORMANCE

A. PGDBF Synthesis Results

In this section, we report the ASIC results at post-synthesis
level, of the proposed PGDBF implementations. The synthesis
has been done targeting a 65 nm CMOS technology, using
Synopsys tools.

For the first synthesis comparison, our goal is to demonstrate
the area gains that one can achieve using the CSTS-PGDBF
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TABLE II

FREQUENCY AND THROUGHPUT COMPARISON BETWEEN GDBF DECODER, PGDBF DECODERS,
AND MS DECODERS [22], [23]. QC-LDPC (dv , dc) = (3, 6), R = 1/2, N = 1296, Z = 54

TABLE III

FREQUENCY AND THROUGHPUT COMPARISON BETWEEN GDBF, PGDBF DECODERS AND MS DECODER FROM [24].
QC-LDPC (dv , dc) = (4, 34), R = 0.88, N = 9520, Z = 140

approach, i.e., using short size S for the random sequence

R(0)
t . The results are reported in Table I for a QC-LDPC code,

with parameters (dv , dc) = (3, 6), R = 1/2, N = 1296 and
circulant size Z = 54 (denoted as dv3R050N1296). In this
Table, we have constrained the implementations to run at the
same clock frequency, by setting the timing constraint identical
for all decoders, fixed to 8 ns. We choose this strategy to
measure precisely the impact of S on the hardware cost, even
if the working frequency is not maximized. We indicate in
brackets the additional cost in percentage compared to the
deterministic GDBF implementation. As a first remark, we can
see that the LFSR-based and the IVRG-based implementations
have similar costs. So, both solutions for the implementation
of the RS sequence are equally competitive with respect to
the hardware resource usage. As expected, the overhead is
roughly proportional to the size of the RS memory S, and
becomes very small (6% – 7%) for small values of S ≤ 4 Z .
As we demonstrate in the next section, this small value of
S is sufficient to obtain important error correction gains. We
have verified that similar conclusions could be made for LDPC
codes with different parameters, with various lengths, rates and
values of dv .

In the second synthesis comparison, we report working
frequency and throughput in Tables II and III. Table II shows
the results for the GDBF, PGDBF and two MS decoders taken
from the literature [22], [23]. The code used for the GDBF,
PGDBF and [22] is the (dv , dc) = (3, 6), R = 1/2, N = 1296,
Z = 54 LDPC code, while [23] considers the IEEE 802.11n
standard codes with various lengths and rates. In Table III,
a large length and high rate LDPC code is considered, and
our decoders are compared with the MS implementation
of [24].

For the GDBF and the PGDBF decoders, we performed
the synthesis with the objective of optimizing the timing
constraint, which results in the maximum frequency at which
the decoder can operate.

We furthermore considered the following two scenarios:
one scenario when the RS sequence is applied from the
beginning of the decoding, and the other scenario when the
deterministic GDBF is used for the first 10 iterations, and the
RS sequence used for the remaining iterations. The reason of
this later scenario is twofold. First, our statistical analysis from
Fig. 3 showed that using the random sequences during the first
iterations could be detrimental to the decoding performance,
and that it is better to trigger the random feature of the PGDBF
after a small number of iterations. Second, many of the noisy
codewords do not require the strength of the PGDBF, and a
simple GDBF could already correct them in a few iterations.
Since the GDBF converges faster than the PGDBF, the average
throughput is larger if we use GDBF, instead of the PGDBF,
for the first 10 iterations. To support this claim, we plotted on
Fig. 13 the average number of iterations as a function of α, for
the dv = 3, dc = 6, N = 1296, QC-LDPC code. It can be seen
that when we start using the PGDBF after 10 iterations, the
average number of iterations is always lower or equal than
the deterministic GDBF. We will use this scenario for the
average throughput computations. The average throughput (θ )

of the decoders is computed as θ = fmax∗N
I tave∗Nc

where fmax is

the maximum working frequency provided by the synthesizer,
I tave is the average number of iterations and Nc is the number
of clock cycles needed for one decoding iteration.

As seen in Table II, the hardware cost of the MS decoders
is a lot larger than the BF-based decoders, and requires 7 to
10 times more area than the PGDBF. Our implementation of
PGDBF allows to perform one iteration in Nc = 1 clock cycle,
which results in a very important throughput gain of GDBF
and PGDBF decoders over MS. We compared the average
throughput of the decoders under two settings. For the same
target performance, i.e., at FER= 1e−5, the PGDBFs have
a throughput 4 times larger than the MS of [22], and only
67% lower than the deterministic GDBF. The second setting
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Fig. 13. Average number of iterations for GDBF, PGDBF and MS decoders
on the dv3R050N1296 regular LDPC code. For PGDBF decoders, S = 4Z
and p0 = 0.7 in LFSR-PGDBF.

corresponds to all decoders working at the same level of
channel noise, i.e., α = 0.01. In this case, the PGDBFs have
a larger throughput than GDBF and a gain of two orders of
magnitude in FER. Compared to MS, the PGDBF have poorer
performance (FER= 5e−6 compared to FER= 1e−7), but with
2 times faster throughput. The conclusions are confirmed when
comparing with the MS architecture of [23], in which the
authors report an architecture for which the area is 10 times
larger than our PGDBF solutions, and with a throughput
smaller than the one in [22].

Another demonstration of the advantages of our PGDBF
implementations is presented in Table III, in which we con-
sidered LDPC code parameters that are especially interesting
for storage applications. The code used for GDBF and PGDBF
decoders is a QC-LDPC with parameters (dv , dc) = (4, 34),
R = 0.88, N = 9520, Z = 140. The average number of itera-
tions is considered for the GDBF and PGDBF decoders, while
we only have access to the maximum number of iterations for
the MS architecture of [24]. For this long, high rate code, and
S = M , the area overhead of our PGDBF compared to GDBF
is slightly smaller than for the shorter code of Table II, which
means that our implementations are more and more efficient
as the code rate and codeword length increase. Compared with
the MS implementation of [24], we can see that our PGDBF
implementations occupy 3 times less area, while having a
throughput at least 4 times faster than the MS (taking into
account the difference between I tmax and I tave).

Overall, we can conclude that only with a few percents of
hardware overhead compared to the classical GDBF, our pro-
posed implementations of the PGDBF represent an interesting
and competitive solution for very high throughput decoders.

B. PGDBF Performance

In this section, we illustrate the difference in decoding
performance of PGDBF decoders in comparison with MS and
GDBF decoders, on the BSC channel. The MS decoder is
a layered version with 6 quantization bits for the APP-LLR
and 4 quantization bits for the extrinsic messages, with a
maximum of I tmax = 20 decoding iterations. We consider
two regular LDPC codes for the simulations: a QC-LDPC

Fig. 14. Decoding performance of GDBF, LFSR-PGDBF, IVRG-PGDBF and
MS decoders on the LDPC code dv = 3, dc = 6, N = 1296 (dv3R050N1296).

code with parameters dv = 3, dc = 6, rate 0.5, N = 1296
(dv3R050N1296), and a QC-LDPC code with dv = 4, dc = 8,
rate 0.5, N = 1296 (dv4R050N1296). For the GDBF and
the PGDBF, the maximum number of iterations is set to
I tmax = 300.

In Fig. 14, we show the result of testing different imple-
mentations of the PGDBF decoder, i.e., the IVRG-PGDBF
and the LFSR-PGDBF with different RS probabilities p0,
on the dv3R050N1296 code. We have also simulated the
LFSR-PGDBF with varying values of the RS probabilities p(k)

0
along the iterations, under the following setting: p0 = 0.9
for the first 100 iterations, p0 = 0.7 if 100 < k ≤ 200,
and p0 = 0.5 if 200 < k ≤ 300. We labeled this
decoder V-LFSR-PGDBF. It can be seen that all PGDBF
decoders have roughly the same performance, as well as the
V-LFSR-PGDBF, which confirms that a wide range of value
of p0 achieve approximately the same coding gain, and also
that LFSR and IVRG versions are both competitive in terms
of performance.

The PGDBF decoders perform halfway between the GDBF
and the MS decoder. For the IVRG-PGDBF, the gain compared
to GDBF decoder comes at only 6% chip area overhead and no
throughput degradation as shown in Table II. The performance
loss compared to MS was expected, and could be acceptable
for applications that are very demanding in energy/throughput.

Figs. 15 and 16 show the decoding performance of PGDBF
decoders for increasing values of the random sequence
length S, for the dv4R050N1296 code. As expected, the
greater value of S, the better decoding performance and S =
12 Z is sufficient to reach the performance of the theoretical
PGDBF. The IVRG-PGDBF with S = 12Z performs even
better compared to the theoretical PGDBF at small α. For
example FER = 2e−6 for the IVRG-PGDBF compared to
FER = 4e−6 for the theoretical PGDBF, at α = 0.026.
This interesting behavior can be explained by the fact that
IVRG-PGDBF has the feature of adapting the number of
ones in the R(0)

t sequence to the channel noise realization,
by producing more ones when the channel contains many
errors, and less ones when it contains only a few errors. This
feature of the IVRG-PGDBF can be interpreted as a PGDBF
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Fig. 15. Effect of the RS length S on the decoding performance of
LFSR-PGDBF decoders (p0 = 0.9) for the dv4R050N1296 code.

Fig. 16. Effect of the RS length S on the decoding performance of
IVRG-PGDBF decoders for the dv4R050N1296 code.

Fig. 17. Decoding performance of GDBF, PGDBF (I tmax = 300) and MS
(I tmax = 20) decoders on a QC-LDPC code with dv = 4, Rate = 0.88,
Z = 140, M = 1120 and N = 9520.

with adaptive p0 parameter, the adaptation coming from the
channel quality. Another interesting result is that the PGDBF
decoders approach closely the performance of the MS decoder
especially in the waterfall region. This means that for dv = 4
codes, the PGDBF solution is even more competitive than for
dv = 3 codes.

Finally, we present on Fig. 17 the performance of our
decoders for the (dv , dc) = (4, 34), R = 0.88, N = 9520,

Z = 140 of Table III. For this code, the PGDBF is especially
very good as it closes to the MS results in the waterfall region,
and starts showing an error floor at F E R < 10e−5. This
very good performance results compared to the deterministic
GDBF come at only 3.5% extra hardware cost, as indicated
in Table III.

V. CONCLUSION

In this paper, we proposed an efficient hardware architec-
ture to implement the PGDBF algorithm proposed recently
as a promising hard-decision type iterative decoder with a
performance approaching the MS decoder. We have focused
on minimizing the resource overhead needed to implement the
random perturbations of the PGDBF and on the optimization
of the maximum indicator unit. Our random perturbation
block is based on the use of a short random sequence that
is duplicated to fully apply the PGDBF decoding rules. We
also propose two different methods to initialize the short
RS, LFSR-based and IVRG-based, with equivalent hardware
overheads but with different behaviors on different LDPC
codes. We showed, by implementing the LFSR-PGDBF and
IVRG-PGDBF decoders on ASIC, that the proposed random
perturbations require a very small extra complexity compared
to the GDBF. We further improve the decoding throughput of
our BF decoders by optimizing the Maximum Indicator using
the LCT maximum finder in order to shorten the critical path.
Compared to the MS decoder, the proposed PGDBF imple-
mentation offer 5 to 7 times faster throughput and requires
7 to 10 times less chip area, at the cost of a performance
degradation, which is in all our simulations smaller than
all the known hard decision decoders. These advantages in
throughput and area make our PGDBF decoders a competitive
hard-decision LDPC decoding solution for current and future
standards.
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