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Abstract— The Gallager B (GaB), among the hard-decision
class of low-density-parity-check (LDPC) algorithms, is an ideal
candidate for designing high-throughput decoder hardware.
However, GaB suffers from poor error-correction performance.
We introduce a probabilistic GaB (PGaB) algorithm that disturbs
the decisions made during the decoding iterations randomly with
a probability value determined based on experimental studies.
We propose a heuristic that switches the decoding from GaB
to PGaB after certain number of iterations and show that our
heuristic reduces the average iteration count by up to 62%
compared with GaB. We evaluate the hardware performance
and resource requirement trends of PGaB over three quasicyclic
codes using the Xilinx Virtex-6 field programmable gate array.
We extend this analysis to performance comparison over our
implementations of gradient descent bit flipping (GDBF) and
probabilistic GDBF (PGDBF) algorithms for each code studied
in this paper. We achieve up to four orders of magnitude better
error correction performance than the GaB with less than 1%
loss in throughput performance. Our heuristic consistently results
with an improvement in maximum operational clock rate across
all codes compared with the GDBF and PGDBF.

Index Terms— High-performance LDPC decoders, FPGA
architectures, low complexity implementation, low-density
parity-check codes.

I. INTRODUCTION

LOW-DENSITY Parity Check (LDPC) codes offer per-
formance improvement and implementation cost saving

for long codeword lengths compared to Reed-Solomon (RS)
and Bose-Chaudhuri-Hocquenghem (BCH) codes as they are
theoretically proven to be asymptotically good family of
codes [1]. Therefore, for a sufficiently high codeword length,
LDPC will outperform a BCH or RS code of a comparable
rate. Binary LDPC codes are adopted in many applications and
standards [2], such as digital video broadcasting, 10GBase-T
Ethernet, WiMAX wireless communications, as well as data
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storage systems. LDPC codes have also been selected as the
data channel coding scheme for the 3GPP new radio access
technology of the fifth generation (5G) mobile communication
standard [3]. In the literature, we have seen soft-decision
and hard-decision decoders as two main classes of LDPC
decoding algorithms. Soft-decision decoders such as Belief
Propagation (BP), Min-Sum (MS) [4], and Offset MinSum [5]
offer high error correction performance with the cost of high
computation complexity. On the other hand, hard-decision
decoders such as Gallager B (GaB) [6], [7], Bit-Flipping
(BF) [8], Gradient Descent Bit-Flipping (GDBF) [9], have
much less hardware requirements than soft-decision decoders,
and achieve higher throughput with a trade-off in the error
correction performance. Message passing decoders of LDPC
codes have algorithmic complexity that is linear in codeword
length compared to the quadratic complexity of algebraic
decoding RS and BCH codes rely on. In addition, LDPC codes
handle soft channel outputs which is essential in numerous
applications even in optical communications and data storage
channels, especially in flash memories [10].

Among the hard-decision class of LDPC algorithms, hard-
ware realization of the GaB [7] has not been favorable due
to its poor decoding performance. On the other hand, GaB
is an ideal candidate for designing a high-throughput decoder
due to its simplicity of computations requiring combinational
circuits at the scale of only 2-bit multiplication operations.
In this study, our aim is to answer the question of whether
it is feasible or not to bridge the gap between GaB and
better performing hard-decision (bit flipping) based algorithms
in terms of decoding performance without sacrificing its
suitability for hardware implementation. For this, we intro-
duce a Probabilistic GaB (PGaB) algorithm by applying a
probabilistic stimulation function over the iterative decoding
process. We present the details of our incremental approach to
designing and implementing the PGaB hardware architecture.

In order to improve the GaB decoding performance, we first
analytically study the cases for which a message bit received
from the channel becomes the determining factor in GaB for a
decision made during the iterative decoding process. We then
introduce an algorithm that disturbs those decisions with
a predefined probability, which we refer to as pv . We exper-
imentally identify the pv that results with preferable decoder
performance.

In order to reduce the hardware cost and improve the
throughput of the implementation, we first show that, rather
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than using a complex and hardware demanding random num-
ber generator, using a less sophisticated random number gener-
ator based on the linear feedback shift register (LFSR), which
requires fewer hardware resources, is sufficient to improve the
decoding performance. We then propose a heuristic that allows
switching to PGaB only when GaB is not able to correct the
errors in predetermined number of iterations. We investigate
the impact of switching from GaB to PGaB at a specific
iteration, which we refer to as si . We experimentally identify
the si that results with preferable decoder performance, and
show that when si is set to fifteen, we also drastically reduce
the average iteration count by up to 62% compared to GaB.

After determining the pv and si values, for hardware
performance analysis, we implement GaB, PGaB, Gradient
Descent Bit Flipping (GDBF) [9], and Probability based
Gradient Descent Bit Flipping (PGDBF) [11] algorithms on
the Xilinx Virtex- 6 Field Programmable Gate Array (FPGA).
We conduct a detailed robustness analysis that involves eval-
uating the impact of a change in code rate and codeword
length over the FPGA based implementations of GaB, PGaB,
GDBF and PGDBF. We show that PGaB consistently results
with higher maximum operational clock rate over the GDBF
and PGDBF by up to a factor of 3.3×. To the best of
our knowledge, there is no prior work on the FPGA based
implementation of the GDBF and PGDBF on the LDPC codes
studied in this paper.

We finally compare the decoding performance of the PGaB
with GaB, GDBF, PGDBF, and MinSum based on frame error
rate (FER) for each code studied in this paper. We show
that GaB architecture delivers the best throughput while using
fewest FPGA resources, however performs the worst in terms
of decoding performance. The PGaB results with up to four
orders of magnitude decoding performance improvement over
the GaB, exceeding the performance of GDBF over the codes
studied in this paper, with a negligible loss (less than 1%) in
throughput performance compared to the GaB. We conclude
that the PGaB is able to bridge the gap between GaB and
complex decoding algorithms such as GDBF and PGDBF
without sacrificing the throughput advantage of the GaB by
consistently exceeding FER performance of the GDBF.

The rest of the paper is organized as follows. In Section II,
we give an overview of the baseline GaB, along with the
GDBF and PGDBF decoding algorithms. In Section III,
we present our methodology for introducing the probabilistic
behavior to the GaB and determining the critical parameters
for the PGaB implementation. We discuss the hardware imple-
mentations for GaB, PGaB, GDBF, and PGDBF in Section IV.
After giving an overview of our simulation environment
in Section V, we evaluate the decoding performance and
hardware performance of PGaB in Section VI. We present
our robustness analysis of the PGaB over changes in code rate
and codeword length in Section VII. Finally, in Section VIII,
we present our conclusions and future work.

II. OVERVIEW OF DECODING ALGORITHMS

An LDPC code is defined by a sparse parity-check
matrix H [12], with size (M, N), where N > M . A codeword
is a vector x = (x1, x2, . . . , xN ) ∈ {0, 1}N , which satisfies

H xT = 0. We denote by r = {r1, r2, . . . , rN } ∈ {0, 1}N the
output of a Binary Symmetric Channel (BSC), in which the
bits of the transmitted codeword x have been flipped with
crossover probability α. The graphical representation of an
LDPC code is a bipartite graph called Tanner graph [13]
composed of two types of nodes including N number of Vari-
able Node Units (VNUs, vn , n = 1, . . . , N) and M number
of Check Node Units (CNUs, cm , m = 1, . . . , M). In the
Tanner graph, a VNU vn is connected to a CNU cm when
H (m, n) = 1. An example Tanner graph and its H matrix
are shown in 1. Let us also denote N (vn) the set of CNUs
connected to the VNU vn , with a connection degree dv =
|N (vn)|, and denote N (cm) the set of VNUs connected to the
CNU cm , with a connection degree dc = |N (cm)|. Based on
a decision function applied over the received messages from
each adjacent vertex, each CNU and VNU sends a message
back to its adjacent vertices. This iterative message processing
between nodes recover the original data, which may have been
exposed to channel noise.

A. Gallager B (GaB)

Binary messages are exchanged between CNUs and VNUs
during each iteration of the decoding process and new mes-
sages are computed in an extrinsic manner. A VNU excludes
the message received from a CNU, when the VNU is cal-
culating the message to be sent back to that specific CNU.
This is valid for the message calculation for the CNU as well.
Each message represents an estimation on the correctness of
the received word from the channel. Eventually, VNUs and
CNUs accumulate gradually more information with each new
iteration, which increasingly improves the codeword correction
capacity. The estimation of the codeword is called posteriori
decision information and is represented by d(i)

n,m . Let E(x)
represent a set of edges connected to a node x in the Tanner
graph. The v

(i)
n,m(e) denotes the extrinsic messages sent on

edge e from a VNU vn to a CNU cm at iteration i and the

c(i)
m,n(e) represents the extrinsic messages sent on edge e from

a CNU cm to a VNU vn at iteration i. The received word
from the channel at a VNU vn is denoted as rn . We express
the operation of VNU and CNU using equations 1 and 2
respectively.

v(i)
n,m(e) =

⎧
⎪⎨

⎪⎩

1, i f rn + (
∑

e′∈N (vn)\e c(i)
m,n(e′)) > bn

0, i f rn + (
∑

e′∈N (vn)\e c(i)
m,n(e′)) < bn

rn, otherwi se

(1)

where i is the iteration count, e′ is the set of extrinsic edges,
and bn is the threshold calculated as bn = �dv/2�.

c(i)
m,n(e) = (

∑

e′∈N (cm)\e
v(i)

n,m(e′))mod2 (2)

At each iteration, a new value of posteriori decision d(i)
n,m is

computed as follows

d(i)
n,m =

⎧
⎪⎨

⎪⎩

1, i f rn + (
∑

e∈N (vn) c(i)
m,n(e)) > bn

0, i f rn + (
∑

e∈N (vn) c(i)
m,n(e)) < bn

rn, otherwi se

(3)
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Fig. 1. Tanner graph (left) and its parity check matrix (right).

The VNU for GaB can be implemented using Majori ty
gates (based on and and or logic functions only), and does
not require complex operations such as the maximum finder
required by the GDBF and PGDBF, along with the additional
random number generator required by the PGDBF, which will
be described in the following subsection.

B. GDBF and PGDBF VNU Analysis

The Gradient Descent formulation of Bit Flipping (BF)
algorithm for the Binary Symmetric Channel (BSC) [9] sets
a threshold for each VNU unit to determine whether the
output of the VNU should be flipped or not based on an
energy objective function. Energy objective is an integer value
that varies between 0 and dv + 1 and results with fewer
number of flips in the successive iterations of the decoding
process. Due to the integer representation of energy function,
several VNUs may share the same maximum of energy value
resulting with several bits to be flipped in one iteration. This
may induce a negative impact on the convergence of the
algorithm [11]. The Probabilistic GDBF (PGDBF) has been
proposed to flip the outputs of only a random number of those
VNUs with the maximum energy value. Energy calculations
for the GDBF and PGDBF are governed by expressions similar
to equations 1 and 2 [9], but they involve finding the maximum
value across all VNUs in each iteration of the decoding process
as illustrated in Figure 2. This gradient descent algorithm
used in the PGDBF increases hardware complexity of PGDBF
On the other hand, the VNU for GaB can be implemented
using majority logic and xor gates and does not require
complex operations. Later we will show that the maximum
energy computation is the main bottleneck on the throughput
performance of GDBF and PGDBF implementations.

III. PROBABILISTIC GAB ALGORITHM

During the decoding process, the interactions between
CNUs and VNUs may result in an oscillation phenomena
due to the nth order dependencies between CNUs and VNUs.
In such cases, the decoding process may get trapped in a
cyclic behavior. For example, in the Tanner graph [14] given
in Figure 1, c0 transmits message to v1 and v3. After receiving
their inputs from all CNUs, v1 and v3 send their messages back
to their designated CNUs. In this example, there is a third
order dependency between c0 and v0 based on the message
passing in the order of (c0 − v7 − c2 − v2 − c1 − v0). If we
count each CNU-VNU interaction as one iteration, then it
would take three iterations for the message of c0 to propagate
to v0. Similarly, there is also a second order dependency in

Fig. 2. General architecture of VNUs for (a) GaB, (b) PGaB, (c) GDBF, and
(d) PGDBF for dv = 4 and N = 1296. (e) Maximum finder unit for GDBF
and PGDBF decoders.

the order of (c0 − v1 − c1 − v0). During each iteration, CNUs
and VNUs update their states. The sequence of states observed
for a given VNU may show repeating pattern, which is called
a trapping set [15]. Trapping means that the decoder cannot
correct the error, and then it remains in the cyclic sequences
of states. One way to break this cyclic behavior is to disturb
the VNU when such a pattern is detected. One may introduce
large memory to keep track of the states, but that would not
be hardware friendly, since the trapping set size is unknown
and there can be many thousands of different trapping sets.
Therefore, we randomly disturb the state of each VNU to
be able to escape from the trapping set. Of course, one may
question that such disturbance could adversely affect the nor-
mal behavior of the VNU, but theoretical results indicate that
this side effect does not significantly increase the number of
iterations [16]–[18]. If the GaB decoder does not converge
within user-defined number of (k) iterations, then we apply
this probabilistic strategy (Probabilistic GaB) to escape from
trapping set. We modify Equation 1 by introducing a proba-
bility function p(i)

n as shown in Equation 4. The PGaB flow
is shown in Algorithm 1.

v(i)
n,m (e) =

⎧
⎪⎨

⎪⎩

1, i f p(i)
n ⊕ rn + (

∑
e′∈N (vn)\e c(i)

m,n(e′)) > bn

0, i f p(i)
n ⊕ rn + (

∑
e′∈N (vn)\e c(i)

m,n(e′)) < bn

rn, otherwi se

A. Determining How to Disturb the VNU

The truth table shown in Table I captures how we propose
to modify the VNU function with an example on calculating
only one of the output messages (v(i)

n,m(4)). In this example we
assume that the dv is four where each VNU has five inputs
including the received word (rn) and four CNU messages
(c(i)

m,n(1, 2, 3, 4)). Since in this example we are calculating the
message for the fourth output of the VNU, message (c(i)

m,n(4))
received from CNU is not used in the calculation.

In GaB algorithm, v(i)
n,m(e) is calculated by Equation 1 and is

illustrated in Table I. CNU messages (c(i)
m,n(1, 2, 3)) represent

whether the previous decision of VNU is correct or not.
We take a close look at the GaB VNU logic for the cases
where there is a tie over the three inputs (c(i)

m,n(1), c(i)
m,n(2),

c(i)
m,n(3)) and the received message (rn). In such cases, shown

with rows in bold in Table I, the VNU output is determined
by the rn input. We argue that when the decoder is stuck in
the trapping set, we should not use the rn as a determining
factor. Looking closely, when we express v

(i)
n,m (4) for the PGaB

(column 5) of Table 1, we see that function is equivalent to
c(i)

m,n(2).c(i)
m,n(3)+c(i)

m,n(1).c(i)
m,n(3)+c(i)

m,n(1).c(i)
m,n(2), and shows
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Algorithm 1 Probabilistic Gallager B

Initialization i = 0, v
(0)
n,m(e)e∈N (vn)←rn, n = 1, . . . , N .

d(0)
n,m ← rn, n = 1, . . . , N .

s = H v(0)T
mod 2

while s �= 0 and i ≤ imax do
Generate p(i)

n , n = 1, . . . , N , from B(pv).
for n = 1, . . . , N do

Compute
c(i+1)

m,n (e)e∈N (cm) using Equation 3
v

(i+1)
n,m (e)e∈N (vn) using Equation 4

d(i+1)
n,m using Equation 2

end for
s = H v(i+1)T

mod 2
i = i + 1

end while
Output: v(i)

TABLE I

TRUTH TABLE FOR PGAB ALGORITHM

that we ignore the received message for all input scenarios.
If we ignore the received messages completely, decoder will
fail. If we force all VNUs to rely on the received messages
from the channel for the tie cases, then for the trapping set
cases the decoder may not converge. The decoder cannot
ignore the received messages, however during the decoding
we do not know which VNU is in the trapping set. For this
we introduce a mechanism that selects a predefined percentage
of VNUs to ignore the received message and operate as the
PGaB column of Table I. We refer to predefined percentage
of VNUs as the pv term in our implementation. The subset of
VNUs that ignore the received message is randomly chosen
based on the pv value. In the following section we present
our experimental approach for determining the value of pv .
The probability function can be applied to the decoder in
various positions. For example, in the PGDBF decoder [19],
the probabilistic function is applied randomly during the final
output decision of a VNU to decide whether to flip the channel
value or not. In the Noisy GaB [20], the randomness effect

acts arbitrarily on both messages exchanged mutually between
VNU and CNU. The main objective of these these studies
is to distract the decoder by adding noise. Our approach to
utilization of randomness is different from these studies as
we attempt to use randomness in a more deterministic way.
Rather than disturbing the outcome of decisions made during
each iteration, we incorporate randomness directly into the
message computation only for the cases when a tie occurs
among the received messages of a VNU. Our Monte-Carlo
simulations show better decoding performance, for the studied
LDPC codes, when we introduce randomness as a tie-breaker
for the VNU function when computing only messages sent
from VNU to CNU.In the following subsection we present
our approach for determining the pv value.

B. Determining the pv Value
Before proceeding to the hardware implementation, we need

to determine Bernoulli distribution pv , which represents the
probability of p(i)

n taking the value of 1 (P(p(i)
n = 1)). This

will indicate the proportion of VNUs that will be disturbed in
the hardware architecture. In this case, setting pv to 0 would
mean no disturbance for all VNUs. We conduct experiments,
as shown in Figure 3, for four values of channel crossover
probability α (0.025, 0.02, 0.03, and 0.035) by sweeping the
pv between 0 and 1. We choose four α values in order to check
the consistency on the FER performance. In the figure, x-axis
shows the range of pv being 1 and y-axis shows the frame
error rate for the LDPC codeword length of 1296 with degrees
of VNU and CNU set to 4 and 8 respectively. As shown
in Figure 3, for the case of alpha 0.02, the simulation point
labeled with A indicates no stochastic behavior (GaB) where
pv is 0 and the point labeled with B shows the case where all
VNUs operate as PGaB where pv is 1.

Based on the plots in Figure 3, we conclude that disturb-
ing all VNUs results with an improvement over the GaB
(point B). We observe two trends in the figure that reveal
important insights for determining the pv . As the pv value
reduces to 0.4, the FER is almost insensitive to this change
for both α values. We also observe a flood region between
0.1 and 0.2 where FER performance is the best for both
α values. Based on this observation we set the pv value to 0.2
for the hardware implementation. This leads us to selecting
a random number generator (RNG) for generating the pv

with Bernoulli distribution. Random number generators have
been studied in terms of their quality and complexity in the
literature extensively [21]. For example, the Park-Miller [22]
algorithm is one of the high quality random number generators
that relies on linear congruential method, which would require
complex hardware components. Therefore this type of RNG
even though generates strong random numbers is not hardware
friendly. Our design choice favors simplicity with the objective
of a light-weight decoder architecture in terms of its hardware
resource requirement. We argue that, in our case there is no
need for a sophisticated RNG in the hardware implementation
that gives precise distribution for a given pv . This is because,
for all cases where pv is set to a non-zero value, we observe
improvement over the GaB and the preferable performance
occurs in a window ranging between 0.1 and 0.2. We use
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Fig. 3. Frame Error Rate versus pv (α = 0.02, 0.025, 0.03, and 0.035). LDPC
code (dv = 4, dc = 8, Z = 54), (N = 1296, M = 648) when switching
iteration si is set to 15.

this conclusion as basis for choosing a simpler and hardware
friendly linear feedback shift register (LFSR) based RNG.

C. Determining the si Value
In section III-A we discussed the way we introduce prob-

abilistic behavior to GaB to overcome trapping sets. Based
on our simulations, we observe that GaB when successfully
decodes a code, typically resolves the errors in less than ten
iterations. Therefore we believe that a hybrid implementation
that switches to PGaB only when GaB is not able to correct
the errors in predetermined number of iterations would be
a better approach than executing only PGaB in terms of
FER performance. We conduct two experiments to validate
our claim.

In the first experiment, we evaluate the impact of switching
from GaB to PGaB after a specific number of iterations (si ) for
three regular LDPC codes with (N , dv , dc, R) configurations
of (155, 3, 5, 0.5), (1296, 3, 6, 0.5) and (1296, 4, 8, 0.5).
We vary the switching point from 5 to 50 and show the
FER performance for different α values for each code shown
in Figure 4. In the same plot we also plot the average number
of iterations for three α values. For all experiments, we set
the maximum number of iterations to 300. We evaluate the
impact of change in codeword length on switching iteration
using codeword length of 155 and 1296; and the impact of
change in VNU and CNU degree using codes with connection
degree dv set to 3 and 4, and dc set to 5, 6, and 8. All of these
experiments indicate that setting the switching point between
15 and 20 iterations would be preferable for achieving better
FER performance. Since the average number of iterations for
three α values show an increasing trend as the switching
point moves from 5 to 50, we conclude that 15 is the ideal
point to make the switching from GaB to PGaB. A side
benefit of switching after 15 iterations is the reduced power
consumption since we dont use PGaB for all iterations and in
hardware implementation we turn on the the RNG unit only
after iteration count 15 has been reached.

In the second experiment, we set the switching point to 15
and pv value to 0.2, and evaluate the impact of disturb-
ing VNUs on average number of iterations. In Figure 5,
we compare average number of iterations for the baseline GaB,

Fig. 4. Frame Error Rate and Average iteration versus iteration number
to switch from GaB to PGaB (QC-LDPC codes with (N , dv , dc, R)
configurations of (155, 3, 5, 0.5), (1296, 3, 6, 0.5) and (1296, 4, 8, 0.5)).

Fig. 5. Comparison of average number of iterations for PGaB, GaB, PGaB
Hybrid (GaB for the first 15 iterations, and PGaB onwards) (dv = 4, dc = 8,
N = 1296, M = 648).

the PGaB, and the hybrid implementation that relies on the
execution of GaB for the first 15 iterations of the decoding
process and PGaB afterwards. In the figure, x-axis shows the
α range and y-axis shows the average number of iterations
for three simulations. Figure shows that when we start using
the PGaB after 15 iterations, the average number of itera-
tions is always better than the deterministic GaB. We reduce
the average iteration count by 40%, 56%, 62%, 54%,
and 26% compared to the GaB for the α values studied in this
experiment respectively. The PGaB only approach consistently
results with larger number of iterations compared to the GaB
only method. Disturbing the decoder starting with the first
iteration results with adding more noise and therefore leads to
increase in the average number of iterations. The hybrid PGaB
on the other hand reduces the average number of iterations
consistently with respect to the GaB only method. We believe
that disturbing the GaB decoder after 15 iterations helps
resolve some of the trapping set cases as shown theoretically
by Ivanis and Vasic [20], which contribute to the increase
in average number of iterations for the GaB only method.
Reducing the maximum iteration count has also direct impact
on the power consumed by the decoder. By reducing average
iteration number, we also increase the throughput of the
decoder. PGaB spends fewer iterations in average compared
to the GaB to correct the errors.
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Fig. 6. Overall decoder architecture (a) for PGaB, VNU architecture for dv4 (c) and LFSR-32bits based Random Number Generator (b).

In the following section we will present our hardware
results and decoding performance based on the hybrid PGaB
implementation where we set pv value to 0.2 and the si to 15.
For the remainder of the paper we refer to the hybrid PGaB
as the PGaB.

IV. HARDWARE DESIGN

A. GaB and PGaB Hardware Design

We first show the generic architecture for GaB and PGaB
with VNUs, CNUs and the H Matri x based on a regular
QC-LDPC code for codeword length (N) in Figure 6(a). The
Compute Syndrome unit in the figure checks whether all of
the CNUs are satisfied or not.

We show the details of the VNU architecture for dv equals
to 4 in Figure 6(c). The colored arrows along with the and
and xor gates in the VNU architecture are used by the PGaB
implementation. When dv is set to 4, besides the control input
(ctrl), there are six 1-bit inputs for each VNU. The first two
inputs from top to bottom are 1-bit data received from the
channel (rn) and 1-bit random value (P(i)

n ) generated by the
LFSR based RNG. Remaining four inputs (c(i)

m,n(1), c(i)
m,n(2),

c(i)
m,n(3), c(i)

m,n(4)) are the 1-bit messages received from CNUs
(as dv = 4). There are four 4-input majority voter units
(labeled as 1-4) and one 5-input majority voter unit (labeled
as 0). The majority voter generates a 2-bit output representing
majority of 1s, majority of 0s, or tie cases. The select unit acts
as a selection of the majority output, which generates 1 for
the majority of 1s case, and 0 for the majority of 0s case.
In the case of a tie, the select unit passes the received word
to its output. In this generic architecture, if the dv changes
than the number of Majority Voters and the number of inputs
need to be adjusted properly. For example, when dv is set to
three, the input (c(i)

m,n(4)), output (v(i)
n,m(4)), and components

(Majority Voter 4 and Select for v
(i)
n,m(4) output) marked with

dotted lines are excluded from the VNU. We implement a
regular majority voter based on Table I. We do not show
the details of the Majority Voter architecture, since it is

straightforward to implement. The VNU operation is modified
with the red marked lines and glue logic to adopt its function
to PGaB. The control bit (ctrl) sets the first input of the xor
gate to 0 if the algorithm is GaB, in which the xor gate
passes the rn input to its output, otherwise the output becomes
a function of rn and the P(i)

n for implementing the PGaB.
A state machine controls switching between GaB and PGaB.
After iteration number 15, if the decoder does not converge,
the control bit (ctrl) is set to 1 by the state machine to switch
to PGaB. The controller allows us to use VNU architecture
of GaB to implement PGaB. Based on our conclusion about
the RNG type to utilize in Section III.B, we implement a
regular LFSR based RNG, shown in Figure 6(b) to feed
a 1-bit random value to each VNU. We implement 32-bit
LFSR to generate a 32-bit random number. The 32 bits Logic
Comparator compares 32-bit random number with the user
defined T hreshold value determined in Section III-B. Finally,
the output of the comparator, a one bit random number,
is stored in the shift register. If the codeword length is N,
then the RNG will take N number of cycles to generate the
bits needed by all the VNUs. This N cycle overhead is applied
only once during the first iteration of the decoding. During the
subsequent iterations between the CNUs and VNUs, we simply
generate one bit and use a shift register of size N to distribute
the values to each VNU.

We do not show the details of the CNU architecture, since
it is straightforward to implement. When dc is set to 8,
inputs are eight bit messages v

(i)
n,m(e), and eight bit decision

information (d(i)
n,m) received from the VNUs. The outputs

of a CNU are an eight bit message (c(i)
m,n(e)) and one bit

decision information (d(i)
m,s). The d(i)

m,s is the output of the
xor operation on the 8-bit input d(i)

n,m . Decision information
is sent to the ComputeSyndrome unit to decide whether the
decoder has converged or not. Message calculation is different
than decision information calculation as it is executed in an
extrinsic manner. The c(i)

m,n(e) is calculated by Equation 2.
For instance, c(i)

m,n(1) is determined by calculating the xor of
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Fig. 7. Architecture of GDBF and PGDBF for dv = 4, and N = 1296,
where dc is determined by the code rate.

Fig. 8. Architecture of VNU for GDBF and PGDBF for dv = 4, and
N = 1296.

messages v
(i)
n,m(2),..,v(i)

n,m(8) and excludes the v
(i)
n,m(1).

In summary, the CNU implementation requires one 8-bit xor
gate and eight 7-bit xor gates.

B. GDBF and PGDBF Hardware Design

In order to present a comprehensive analysis on the decod-
ing and hardware performance of PGaB, we implement two
hard-decision based algorithms (GDBF and PGDBF). In this
section, we present hardware implementations for these two
algorithms. High level architectures for the GDBF and PGDBF
decoders are shown in Figure 7 for a QC-LDPC code with
codeword length of 1296 bits (dv = 4, dc = 8). The only
difference between GDBF and PGDBF architectures is the
binary RNG indicated with the dotted lines in Figure 7. The
RNG generates 1296 binary 1-bit random numbers (P(i)

n ) to
distribute to each VNU. Detailed architecture for the VNU
is shown in Figure 8. The 1-bit received message (rn) from
the channel, the 1-bit decision estimations from the four CNUs
(dm,n(e)), and the 3-bit maximum energy value for the current
iteration (Max En) are common inputs for the VNU in GDBF
and PGDBF. The summation operation in the VNU calculates
the output energy value (En), which can be between zero
and five. Therefore bit-width for the En and Max En are set
to three bits. The Maximum Finder unit shown in Figure 7
computes the maximum of the En values received from each
VNU in the current iteration i labeled as Max En in the
figure. Each VNU uses the Max En and En to generate a
1-bit decision value (dn). In the same iteration, if the En of a
VNU is equal to the Max En , then the output message dn is
flipped. If the En is less than the Max En , then the dn is not
flipped. Additionally, for the PGDBF, a VNU receives a 1-bit
random value generated by the LFSR based RNG (P(i)

n ). The
dn is a new message for all CNUs connected to the VNU. This
iterative process continues till all CNUs are satisfied. A 1-bit
message is sent by CNU to Compute Syndrome unit indicating

TABLE II

HARDWARE RESOURCE UTILIZATION, THROUGHPUT AND CLOCK
RATE OF DECODING ALGORITHMS IMPLEMENTED FOR

TANNER CODE ON VIRTEX6 FPGA

whether a CNU it is satisfied or not. A state machine controls
the Compute Syndrome unit to make a decision on whether
the decoder has converged or not.

The hardware implementations for the GDBF and PGDBF
have been studied based on the Tanner code (N = 155,
M = 93, dv = 3, dc = 5) in [23]. We first implement these
two algorithms based on the same code and compare their
hardware resource usage and throughput performance with the
published results (indicated as * in the table) on the Xilinx
Virtex6 FPGA using Table II. With this comparison, our aim
is to show that our implementations form a credible baseline
for our extensive performance evaluations in the following
section across GaB, PGaB, GDBF and PGDBF over various
code lengths and code rates. We include MinSum in the
table just to highlight the hardware efficiency of the hard-
decision based algorithms with respect to this best performing
soft-decision decoder. As shown in the table, we reduce
the 1-bit register usage significantly by 92% compared to
the PGDBF*. We also reduce the Slice LUT usage by 24%
and 49% with our implementations of the GDBF and PGDBF
respectively. The study by Le et al. [23] reveals limited amount
of information about the hardware implementation approach
for the GDBF* and PGDBF*. We believe that there are two
factors contributing to significant reduction on resource usage
for our implementations. First, our CNU implementation does
not require any register, as we implement it as a combinatorial
logic and each CNU sends its output message dm,n(e) back
to the VNU without having to store it. Secondly, we take
advantage of a resource efficient implementation of maximum
finder logic as shown by [24] based on parallel tree structure
for calculating the Max En . Earlier we claimed that maximum
finder unit was a critical factor on throughput performance of
the GDBF. When we replaced the “Maximum Finder” logic
with a hard coded maximum value in our version of the
GDBF implementation, we observed a reduction in logic block
resource usage by 14.7% and an increase in the maximum
clock rate by a factor of 2.99× for this hypothetical imple-
mentation. Nevertheless, with our implementation by reducing
the resource usage for GDBF and PGDBF significantly with a
slight improvement in the maximum clock rate, we are setting
a tighter constraint on measuring the hardware performance
in terms of resource usage and throughput for the PGaB
implementation.

V. SIMULATION ENVIRONMENT
Our simulation environment includes the GaB, PGaB,

GDBF, and PGDBF implementations in C programming
language. The simulation flow is shown in Algorithm 2.
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Algorithm 2 Simulation Flow for Generating FER Plots
Input : Decoding Algori thm (GaB, PGaB,

GDBF, PGDBF), Codeword length of
1296 (code rate 0.5 and 0.75) and
Codeword length o f 2212 (code rate
0.857) and Crossover Probabili ty (α)

Output : FER plot of each algorithm over α
1 foreach Decoding Algori thm do
2 foreach Code do

FrameCounter = 0;
3 foreach α do

# α ∈ [0.001, 0.07] f or N = 1296, rate 0.5
# α ∈ [0.02, 0.03] f or N = 1296, rate 0.75
# α ∈ [0.005, 0.6] f or N = 2212, rate 0.857
ErrorCount = 0;

4 while (ErrorCount < 100) do
Generate a random codeword (Frame);
FrameCounter = FrameCounter + 1;
Add noise to Frame using α;
V alue = Decoding Algori thm();
# V alue f rom Compute Syndrome
if (V alue == 0) then

ErrorCount = ErrorCount + 1;
if ErrorCount == 100 then

F E R = 100/FrameCounter;
Mark F E R f or α on F E R plot;

We evaluate the impact of change in code rate on performance
using codeword length of 1296 [25] with rates of 0.5 and 0.75;
and the impact of change in codeword length using codeword
length of 2212 [26]. For all algorithms, the dv is equal
to 4. For the FER analysis we include the FER performance
of the flooding scheduling MinSum (MS) [4] and Offset
MinSum (OMS) based decoders even though they belong to a
different class of decoder algorithm, where CNUs and VNUs
exchange messages of multi-bit granularity, as opposed to the
bit flip class of algorithms with single-bit granularity that are
considered in this paper. We include MS and OMS just to
set the stage on where the hard-decision (bit flipping) based
algorithms stand with respect to these best performing soft
decision decoders. The MS and OMS used in this work are the
quantized decoders with 4 bits for passed messages and 6 bits
for A posteriori Log Likelihood Ratios (AP-LLR). We set the
number of iterations to 20, the channel gain factor to 2, and
the offset factor to 1 for OMS. We design and implement
each decoder for each code (total of 12 architectures) on the
Xilinx Virtex-6 FPGA (vc6vlx240t-2ff1156) and conduct post
placement and routing analysis over hardware cost in terms of
logic and register usage, and hardware performance in terms of
maximum clock rate, and throughput. For each algorithm, FER
curves are plotted as a function of the cross-over probability
(α) over the BSC channel based on the simulation flow shown
in Algorithm 2. Similar to other studies ( [4], [23]), we cal-
culate the system throughput using Equation 4. All designs
have been implemented in VHDL. Functional verification is

conducted by validating iteration by iteration post-routing
CNU and VNU values against the C equivalent bit accurate
implementation. We implemented the PGaB hardware archi-
tecture after completing a preliminary analysis and confirming
the decoding performance of the PGaB based on the FER
plots generated using the C simulation. We measured the total
simulation time for PGaB on codeword length of 1296 (code
rate 0.5) as 116 days on the Intel Xeon (2.33GHz, 8GB RAM)
processor. The same simulation takes slightly over 5 minutes
on our FPGA based testbed. Therefore, for certain cross-over
probability values, since the simulation times for the C code
are extremely long, we used the FPGA based simulations to
generate the points on the FER plots. For example, in the
case of cross-over probability value of 0.01, we reached up to
processing 1010 codewords with PGaB to generate the point
that represents the 10−8 frame error rate.

SystemT hroughput

= CodeLength × MaxClock Rate

AvgI teration × Cycles Per I teration
(4)

VI. PERFORMANCE ANALYSIS

Figure 9 shows the FER performance comparison between
the GaB, PGaB, GDBF and PGDBF algorithms as a function
of the cross-over probability over the binary symmetric chan-
nel (BSC) on LDPC code with the rate 0.5. This chart shows
that, with the probabilistic execution, we are able to bridge
the gap between the GaB and the better performing decoding
algorithms through PGaB. Another remarkable conclusion is
our ability to perform better than the GDBF with the PGaB.
The gap between PGaB and GaB in the error floor region
where α is 0.01 quantifies the dramatic improvement (up to
four orders of magnitude) achieved by disturbing randomly
the state of the decoder.

In Table III, we present the resource usage, maximum clock
rate, and throughput for the GaB and PGaB based on their
FPGA implementations with 0.5 code rate. The percentage
sign (%) in Table III indicates the change in resource usage,
FMax, and Throughput for PGaB, GDBF, and PGDBF with
respect to the GaB implementation. It takes 2 clock cycles
to complete one iteration of the decoder, one cycle for VNU
and one cycle for CNU. Average number of iterations and
throughput of the decoder vary at different FERs. Throughput
values in Table III are calculated based on the average number
of iterations set to 2.5. With the probabilistic execution,
the improvement in the error floor over the GaB comes with a
negligible amount (0.85%) of loss in throughput performance.
Even though modification to GaB involved including a RNG
and an additional input to each VNU, the clock rate difference
between the two designs is negligible. However, the decoding
performance improvement is achieved with an increase on
register and slice LUT usage by 17% and 24% respectively.
Register overhead of the PGaB implementation includes the
1296 bits to store the 1-bit random number for each VNU
and the 32-bit shift register to implement the random number
generator. The increase in resource usage is a reasonable trade-
off for improving the decoding performance. The maximum
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TABLE III

RESOURCE USAGE, MAXIMUM CLOCK RATE AND THROUGHPUT OF GaB, PGaB, GDBF, AND PGDBF BASED ON THE FPGA IMPLEMENTATIONS FOR
QC-LDPC (N, dv , R) = (1296, 4, 0.5), QC-LDPC (N, dv , R) = (1296, 4, 0.75), AND QC-LDPC (N, dv , R) = (2212, 4, 0.857).

(HARDWARE IMPLEMENTATION RESULTS FOR GaB AND PGaB FOR QC-LDPC (N, dv , R) = (1296, 4, 0.5) AND QC-LDPC
(N, dv , R) = (1296, 4, 0.75), APPEAR IN [6]) (% INDICATES THE DIFFERENCE WITH RESPECT TO GaB)

Fig. 9. GaB, PGaB, GDBF, PGDBF, MS, OMS FER comparison: FER
vs. probability of error introduced to each bit of the 1296-bit codeword with
dv = 4, dc = 8, M = 648, and Rate = 0.5 (presented in [6]).

clock rate for the PGaB is 3.3 times better than GDBF and
PGDBF for this code rate. Since our optimized versions of
the GDBF and PGDBF implementations do not use registers
for the CNUs, PGaB has larger register foot print. However,
the slice LUT (logic block) usage is comparable with PGDBF.

VII. ROBUSTNESS ANALYSIS

In the following series of experiments we evaluate the
impact of changes in code rate and codeword length on
decoding performance and hardware cost over the four algo-
rithms, and demonstrate that PGaB consistently outperforms
the GDBF and PGDBF in terms of throughput. Code rate
indicates the ratio of data to the length of the codeword
that includes the data and parity bits. The higher the code
rate, the higher the probability of noise over the communi-
cation medium effecting the data portion of the codeword.
This increases the stress on the decoding algorithm on cor-
recting errors. As the bandwidth for communications sys-
tems increase, the packet lengths (codewords) become longer.
Therefore ability to process longer codewords encoded with
higher code rates are important criteria for evaluating the
efficiency of a decoding algorithm. Furthermore, a change in
code rate or codeword length involves modification to the
decoder hardware architecture and imposes routability and
critical path delay constraints from FPGA implementation
point of view. In this section, we summarize the hardware
modifications, present performance analysis, and correlate
resource requirement and throughput trends with respect to
changes in code rate and codeword length.

A. Effect of Code Rate

In this experiment, we change the code rate from 0.5 to
0.75 when the codeword length remains as 1296 bits and
the degree of a VNU is four. From hardware implementation
perspective, the number of VNUs depend on the codeword
length, whereas the number of CNUs and the number of
connections per CNU (degree of CNU) depend on the code
rate. With fewer number of CNUs, the number of connections
per CNU increases. As the code rate increases from 0.5 to
0.75, based on Table III, we observe that the register and Slice
LUT resources reduce for the PGaB and GaB. Reduction in
the CNU count is the primary reason for reduction in the total
logic block usage and register. The maximum clock rate for
the new PGaB design is 113 MHz, which is 22% slower. We
believe that the degree of the CNU is the primary reason for
this performance loss.

Each signal that is generated by the CNU for GaB and PGaB
implementations are stored in a register. On the other hand,
in our GDBF and PGDBF implementations, the CNU does not
include any register. Given that the number of connections per
VNU remains the same, even though the code rate changes,
there is no additional register demand. Therefore the number
of registers used by these implementations remain the same.
We observe less than one percent reduction in Slice LUTs
for the GDBF and PGDBF implementations with code rate
of 0.75 over code rate of 0.5. This results with slight change in
maximum clock rate and throughput performance. In overall,
the PGaB implementation results with a maximum clock rate
that is around 2.6 times better than GDBF and PGDBF.
In Figure 10, we compare the FER performance of the GaB
and PGaB for the code rate 0.75. The PGaB consistently
outperforms the GaB decoder especially in the error-floor
region (more than two orders of magnitude at crossover
probability of 2 × 10−3). The PGaB catches the GDBF at α
value of 0.04 and performs better than GDBF beyond this
point. Considering the FER performance in the error floor
region shown in Figure 10, and the negligible loss (0.004%) in
throughput performance, we conclude that PGaB decoding and
throughput performance is consistent across two code rates.

B. Effect of Codeword Length

Next, we implement the GaB, PGaB, GDBF, and PGDBF
for the QC-LDPC code constructed by [26], which has a length
of 2212 bits and (dv = 4, dc = 28) with a higher code rate
of 0.857. Each CNU has a degree of 28 for all four hardware
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Fig. 10. GaB, PGaB, GDBF, PGDBF, MS, OMS FER comparison: FER
vs. probability of error introduced to each bit of the 1296-bit codeword with
dv = 4, dc = 16, M = 324, and Rate = 0.75 (presented in [6]).

implementations. Note that the total number of inputs per CNU
for the GaB and PGaB implementations are 56 as illustrated
in Figure 6.

As shown in Table III, resource usage for all design
increases significantly compared to the implementations based
on the codeword length of 1296 primarily due to the increase
in the VNU count. The size of LDPC code affects the
complexity of interconnection network [27]. This is reflected
in the maximum clock rate for the PGaB implementation,
which drops from 113.7MHz to 59.4MHz. However, the rate
of the throughput loss is much smaller (by 10.8%), because,
throughput is linearly proportional to the length of the code-
word as shown in Equation 4 independent from the design.
The longer codeword compensates for the reduction in clock
rate. In overall for the longer codeword we observe that PGaB
achieves higher clock rate and throughout performance with
respect to the GDBF and PGDBF.

The slice count for an implementation is widely used as the
area metric by FPGA researchers. In Table IV, we show the
throughput-to-area ratio (TAR) based on slice count for each
algorithm for each code rate. The PGaB consistently results
with better TAR performance than both GDBF and PGDBF.
Even though GaB and PGaB throughput performances are
similar for each code rate, due to higher resource usage of
the PGaB, the TAR performance is worse than the GaB.
In Table IV, we also compare the normalized throughput (Tp)
that is calculated based on fixing the α value for each code rate
studied in this paper and using the average number of iterations
for that α value. As seen in Table IV, average number of
iterations for the PGaB implementation is consistently lower
than GaB, GDBF and PGDBF implementations for each code
rate. In Table III, 3 we notice that GaB resulted with better
throughput than the PGaB implementation. However when we
take the actual iteration number into account we observe that
the PGaB achieves better throughput than the GaB and the
throughput gap between PGaB implementation with respect
to GDBF and PGDBF further improves.

Figure 11 shows the FER performance comparison between
the GaB, PGaB, GDBF, and PGDBF decoders as a function
of the cross-over probability on QC-LDPC (N, dv , dc, R) =
(2212, 4, 28, 0.857) code with rate of 0.857. We conclude

Fig. 11. GaB, PGaB, GDBF, PGDBF, MS, OMS: FER vs. crossover
probability for the QC-LDPC code (dv = 4, dc = 28, N = 2212, M = 312,
and Rate = 0.857).

TABLE IV

THROUGHPUT-TO-AREA RATIO (TAR) AND NORMALIZED THROUGHPUT
(Tp ) FOR GaB, PGaB, GDBF, AND PGDBF WHEN THE

CROSSOVER PROBABILITY IS FIXED

that for longer codewords the PGaB can surpass the GaB by
more than one order of magnitude at crossover probability of
2 × 10−4 without sacrificing the throughput advantage of
the GaB. We observe that, as the code rate increases and as the
codeword length increases, the gap between GaB and PGaB
on the FER plots shrinks. This trend is expected, since each
case stresses the decoder. The important observation here is
the superiority of the PGaB for all scenarios considered in this
study in terms of decoding performance without sacrificing the
throughput performance of the GaB.

VIII. CONCLUSION AND FUTURE WORK

In this paper we quantified the hardware cost and
performance of the GaB with probabilistic execution
(PGaB decoder). We showed that without a performance
loss in throughput, we improved the decoding performance
of the GaB significantly and bridged the gap between GaB
and other hard decision bit flipping decoding algorithms.
Our simulation results showed that the PGaB now even has
a better decoding performance than GDBF. In our current
designs, we are generating a 1296-bit random number register.
We will investigate ways to reduce this register footprint by
sharing 1-bit register among a cluster of VNUs. This would
reduce the size of the shift register on the datapath and have
considerable impact on resource usage. Our evaluations rely
on implementation of a new architecture for each codeword
and core rate combination. Ability to switch the context from
one implementation to another at runtime would allow us to
evaluate multi-rate LDPC codes. For future work we plan
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to expand the capabilities of our FPGA based simulation
testbed with partial reconfiguration and run time configuration
to conduct a run-time flexible analysis.
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Bane Vasić (M’91–F’12) is currently a Professor of
electrical and computer engineering and mathemat-
ics with the University of Arizona and the Director
of the Error Correction Laboratory. He is a da Vinci
Fellow. He is a past Chair of the IEEE Data Storage
Technical Committee.

He is a Co-Founder of Codelucida, a startup com-
pany developing advanced error correction solutions
for communications and data storage. He is an
inventor of the soft error-event decoding algorithm
and the key architect of a detector/decoder for Bell

Labs data storage read channel chips, which were regarded as the best in
industry.


