CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Algorithms for the partitioning of applications containing variable duration tasks on reconfigurable architectures

Fakhreddine GHAFFARI {Email: ghaffari@i3s.unice.fr}

Tunis, Tunisia, July 14-18, 2003

Outline

Research context and problem formulation
Partitioning of variable execution time
Experiments and results
Conclusion and perspective

EPICURE project flow

Problem formulation

Applications with **hard** real-time constraints: Execution time = **WCET**

Applications with **soft** real-time constraints: Execution time < **WCET**

Problem formulation

- Task execution time depends on:
 - Application dependent (amount, type of input data)
 - 2. Platform dependent (type of processing unit)
 - 3. Environment dependent factors (communication time)
- In the case of HW/SW partitioning: new implementation lines

Chosen model

- DFGs are suitable models for an image processing application
 - Granularity level: Coarse-grain
- Estimation: Execution time, communication

Target architecture

- Adaptable to many different types of applications
- Multiple tasks processing
- Important exchanges rate with memory
- Efficient solution in cost/performance
- General, flexible and reconfigurable
- FPGAs: assures accurate processing

Partitioning methodology

Application profiling

9

Result processing and conditioned DFG

Execution time as a function of the number of objects in an image

Construction of conditioned graph

Partitioning and execution scheme

Partitioning

Execution of the application

Example of application

Object list with : (x,y) co-ordinates of the center of gravity, surrounding envelop

12

Experimental results

Profiling results

- Choice of thresholds :
- > the value of the gradient
- number of possible configurations to consider

(total design time, memory space)

same thresholds for processor and FPGA

 Maximum execution time for all the threshold groups

Experimental results

Partitioning results

 Partitioning result of configuration 3 Partitioning result of configuration 6

Total communication time

Use of material resources

Conclusions

- Better exploitation of architectural hardware resources
- Profiling results give configurations which reduce the pessimism of the worst case

For certain data set we gain:

- An unused time and/or resources that can be exploit by optimizing other criteria such as the consumption
- A decrease of communication time

Perspectives

