
Microelectronics Reliability 137 (2022) 114667

Available online 18 September 2022
0026-2714/© 2022 Published by Elsevier Ltd.

Observation framework of errors in microprocessors with machine learning 
location inference of radiation-induced faults 

Sébastien Thomet a,b,*, Fakhreddine Ghaffari b, Serge De Paoli a, Jean-Marc Daveau a, 
Fady Abouzeid a, Olivier Romain b 

a STMicroelectronics, Crolles, France 
b ETIS Laboratory, CY University, Cergy, France   

A R T I C L E  I N F O   

Keywords: 
Single-event upsets 
Single-event functional interrupt 
Fail-reason capture 
Fault injection 
Hardware assertions 
Machine-learning 
Error diagnosis 
Beam testing 

A B S T R A C T   

This paper presents a non-intrusive failure reason capturing approach for processor-based system-on-a-chip (SoC) 
integrated as an intellectual property (IP). It provides diagnostic information about the origin of single-event 
upsets (SEU) in the context of technology qualification to radiations. Thanks to the combination of trace 
events buffering and error detection with triggering mechanisms, the module is able to capture an execution 
trace containing the error propagation, using only 1 KB of memory. The execution trace is supplemented by a 
configurable set of pipeline registers. For single-event functional interrupt (SEFI), we also propose a technique 
based on a machine-learning algorithm to find from which register the SEU comes from. The captured CPU trace 
is processed by a classification algorithm, trained on a fault-injection campaign database and providing an ac
curacy score up to 87 %.   

1. Introduction 

The growing demand in performance of processor-based systems for 
safety-critical application, constitutes a challenge for the qualification at 
mission profile. Spatial application domains require a specific hardening 
to prevent system failures due to radiation effects. Hardening by design 
techniques used in application specific integrated circuits (ASICs) 
involve silicon area, power overhead and frequency limitations, that 
have an impact on the performances [1,2]. Such devices suffer from 
several generation lag [3,4]. Software hardening techniques are very 
efficient to mitigate faults or to detect errors. Nevertheless, the perfor
mance degradation is significant, the execution flow may be much more 
sophisticated if it relies on the replication of procedure [5], of variables 
[6], or on every instruction added to control the flow [7]. As a result, 
regular architectures based on reconfigurable logic may become more 
sensitive with hardened software [8]. That is why, many approaches rely 
on hybrid techniques combining software hardening with either hard
ened designs for ASICs [2], redundant architectures for multi-cores 
systems on a chip [9,10] or hardware control flow checking [7,11–14]. 

Such designs require to be qualified using accelerated soft error rate 
(ASER) techniques in irradiation facilities providing particle beam that 
emulates a specific environment. This study addresses spatial 

applications requiring heavy ion beam experiments, which can be car
ried out in particle accelerator facilities, this includes RADEF-Finland 
[15] or CYCLONE-Belgium [16] for instance. We are focusing on single- 
event upsets, as in complex logic designs, a major part of the die area is 
covered by memory. 

To experiment such a complex system under beam, it requires to 
detect a failure and to have a sufficient hardware observability. This 
information may help to ensure that the setup is working as expected 
and errors come from the device under test (DUT) by radiation effects. 
Techniques related to the post‑silicon debug and the software validation 
[17,18] try to overcome the issue of error propagation in designs with 
limited observability. Design for debug (DFD) approaches, presented in 
[19–21], provides a very detailed logical monitoring over a circuit for 
either JTAG standard or from device dedicated pinouts. But such ap
proaches are design dependent and may be difficult to exploit with 
processors for the purpose of online error detection, indeed they are 
quite similar to core debug. Processors are working with a large data 
bandwidth, and as we can see in [22] addressing raw inputs/outputs 
with hash function, even with embedded online dedicated hardware to 
calculate signatures, the bandwidth stay terribly high. Therefore, several 
authors in literature propose to process the data online to check the flow 
[23–26]. 

* Correspponding author at: STMicroelectronics, Crolles, France. 
E-mail address: sebastien.thomet@gmail.com (S. Thomet).  

Contents lists available at ScienceDirect 

Microelectronics Reliability 

journal homepage: www.elsevier.com/locate/microrel 

https://doi.org/10.1016/j.microrel.2022.114667 
Received 21 December 2021; Received in revised form 27 May 2022; Accepted 19 July 2022   

mailto:sebastien.thomet@gmail.com
www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2022.114667
https://doi.org/10.1016/j.microrel.2022.114667
https://doi.org/10.1016/j.microrel.2022.114667
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2022.114667&domain=pdf


Microelectronics Reliability 137 (2022) 114667

2

In this paper, we propose a new approach based on the buffering of 
CPU trace supplemented by execution related information, and error 
detection mechanisms. It addresses the context of high reliability re
quirements for spatial processor-based applications exposed to radia
tions, which need hardened implementation and beam qualification. In 
our approach, both trace buffering and error detection features, com
bined with a triggering system, allow capturing a history of the last 
executed instructions. This history gives an insight of what was executed 
before a single-event upset (SEU) led to a crash. Such a diagnostic in
formation help to identify the source of the bit flip and how the running 
application has been affected. We propose to process the captured 
execution trace with a machine-learning (ML) algorithm to infer the 
location of the SEU in the design leading to a single-event functional 
interrupt (SEFI). We have developed an intellectual property (IP) 
embedded within a system-on-a-chip (SoC) that provides trace encoding 
and recording in a buffer, and error detection features based on program 
counter (PC) checks. 

The rest of this paper is organized as follows. The Section 2 gives an 
overview of the state-of-the-art techniques related to processor observ
ability. The Section 3 describes the test platform, the proposed IP 
including how it has been designed, integrated and validated. It also 
explains the use of ML classification algorithms for execution trace 
processing. The Section 4 presents the results of a fault injection 
campaign carried out in simulation and the accuracy scores of ML 
classification. Finally, the Section 5 concludes the paper, and we discuss 
what is planned to do with the upcoming test chip to validate our 
approach especially with beam testing in irradiation facilities. 

2. Background 

Observation in processor is an issue that has been addressed for a 
while. To tackle down complex logic debugging, or software develop
ment, many techniques are proposed with different levels of intrusive
ness proportionate to the suspected threats. Some of them are become 
standard debug infrastructures like CoreSight© [27] for ARM processor 
cores, trace and debug specifications for RISC-V cores [28], Nexus 5001 
Standard [29], etc. The MIPI Alliance consortium [30] proposes many 
protocols for the exportation of trace data flow outside the chip to 
perform online system monitoring and to challenge the lake of SoC 
physical connections. Such protocols may rely on any interface like 
Parallel Trace Interface, USB, microSD card, HDMI, DisplayPort, etc. 
Furthermore, Lauterbach [31] provides an external hardware support to 
debug and trace infrastructures embedded in SoCs. These of-the-shelf 
products and IPs provide a full debug access and an online trace 
exportation. Otherwise, some papers described thereafter present more 
specific techniques either to ensure a consistent system behavior or to 
export as information as possible for observability enhancement. 

Online error detection through the CoreSight trace infrastructure 
using a dual-core ARM Cortex-A9 implemented on Zynq7000 SoC family 
has been presented in [23–26]. Error detection combines the use of 
program trace macrocell (PTM) to track the PC with the instrumentation 
trace macrocell (ITM) to export calculation results. The proposed pro
gram trace data checker (PTDC) IP is implemented in the FPGA and 
monitor online the program execution during tests. PC values are 
monitored with a range checking and the ITM data are checked with 
assertions. Both PC ranges and data assertions are software driven. 
Authors provide results of proton irradiations [23,24], neutron irradi
ations [25], and LASER fault injection [26]. They tried to use the 
embedded trace buffer (ETB) from the CoreSight to catch last executed 
branches [24,25], but as the buffer is also exposed to the beam, results 
were often corrupted. Moreover they also mentioned a certain sensi
tivity of the trace infrastructure. 

The technique presented in [32] takes advantage of the unused trace 
infrastructure of SoCs to track the execution flow. Authors have imple
mented a control flow checker (CFC). It analyzes the value of the PC and 
IR registers that are supposed to be available on a debug port at each 

clock cycle. At each cycle, the CFC decodes the instruction and compacts 
the machines code to perform code signature calculation and jump 
verification. If a branch instruction is detected, the next PC value should 
be either the following one or the one corresponding to the jump. And at 
each branch instruction the code signature is checked. This approach 
proposes a dynamic signature table with automatic filling. The IP is 
basically composed of a memory table including gates for the final state 
machine. As beam experiments reveal the sensitivity of observation 
means, such design may be prone to false detection due to fault in the 
signature table. 

First Failure Data Capture (FFDC) presented in [33] is intended to be 
used in final products to provide relevant data to enable the support in 
case of operating system crashes. Diagnostic events are generated on 
exception faults and contain a snapshot of CPU registers. Events are 
ranked according to their priorities. A smart agent filters low priority 
event, to keep only high priority ones, in case of memory congestion. 
This aspect is explained as errors are often followed by many events that 
fill the buffers, erasing the relevant diagnostic information about the 
origin of the failure. Such approach to capture information about the 
failure by catching CPU registers is appropriate in the context of beam 
testing. The only difference is when an error occurs, the memory is 
reloaded and the SoC is reset. Such failure-capture technique has been 
reused in [25,26] to export information about the memory management. 

As most of the above techniques are dealing with processors running 
at hundreds of Megahertz, they must be embedded within the device. 
Therefore, during beam testing, they are also exposed to radiations. As 
we need a measurement tool allowing to identify the origin of an error 
and to calculate an error rate, it must be hardened. Making such struc
tures hardened involves using hardened-by-design cells or a hardened 
design with redundancy. This also involves more power consumption, a 
silicon area overhead, high timing constraints, and may affect the 
running frequency. For this reason, the observation framework must be 
designed as minimalist as possible. Non-intrusive existing trace archi
tecture is a fair tradeoff as it allows both SoC debug and fail-reason 
understanding. However, online trace exportation needs a specific 
connector between the DUT and an adapter connected to the host PC, 
like CoreSight, or Lauterbach. This adapter must be closed to the DUT 
and will also be exposed during beam testing. Furthermore, such in
frastructures are either proprietary, quite massive designs, or processor 
dependent. All in all, to tackle down observability needs in such context 
with high reliability, we propose a processor-agnostic IP which gathers 
watchpoints triggering events and online trace recording, with a pro
tected memory and a hardened implementation. 

3. Contribution 

The proposed approach consists in identifying the failure reason of 
the firmware running on the processor. In harsh environment, devices 
are prone to SEUs that may affects the application causing either 
insignificant calculation errors or functional interrupts. A SEFI in a CPU 
can be due to illegal instructions, incorrect jumps, unexpected infinite 
loops, watchdogs no longer refreshed, double errors in a memory cell 
not recoverable by its error correcting code (ECC), and so on. In the end, 
a failure is often handled by machine trap, either triggered by hardware 
or by a software interrupt. This doesn't always provide sufficient diag
nostic information to understand what has happened. 

To detect failures, we have implemented a hardware assertion block 
that covers errors which lead to make the execution flow to diverge or to 
leave the expected application. As commonly done in the literature, a 
circular buffer is used to record the CPU activity and provides to the user 
a backtrace upon a breakpoint reached in the application during debug 
sessions. The principle of this buffer is to keep in memory the most 
recent events and erase the oldest ones. Indeed, the size of the memory 
only allows to save a very restricted section of the program execution. In 
our IP, the trace is supplemented by values of results arising out of the 
arithmetic-logic unit (ALU), and values of the stack pointer (SP) address. 

S. Thomet et al.                                                                                                                                                                                                                                 



Microelectronics Reliability 137 (2022) 114667

3

The error detector is composed of a set of configurable hardware 
assertion checkers monitoring the PC and the data access addresses, as 
the CPU is based on a Harvard architecture. Triggers can be configured 
to make selected assertions either to stop the trace buffering, or to freeze 
the pipeline. Freezing the pipeline is a way of stopping the execution in 
order to recover further diagnostic information in case of a crash during 
experimentations in the SoC. 

In this manner, when an event is detected by one of the assertions, it 
often means that a SEFI occurs, as presented in the Table I. In normal 
operation mode, the probed registers are recorded continuously in the 
buffer. Therefore, within event captured, the execution trace buffer 
provides the CPU trace, including the probed architectural registers, 
composed of a thousand instructions before the SEFI. In a first time, this 
information enables to ensure the setup is working as expected. Then, 
they provide an insight in the error propagation through the design 
allowing to infer where the SEU comes from. The execution trace can be 
interpreted with regards to golden run or the disassembled code. We will 
also present a method to analyze traces with machine learning algo
rithm, including the training part on data from simulation-based fault 
injection campaigns. 

Our module is also providing an un-resettable bank of memory 
mapped registers where the application running on the SoC can log in
formation, typically operating system context switches, counters, 
execution reports, error codes, CPU status registers, etc. All resources of 
the modules are accessible via JTAG debug access. They are mapped on 
a dedicated debug bus and can be read or written at any time without 
any intrusiveness on the running firmware. 

Although our IP is processor agnostic, it has been interfaced with a 
RISC-V core by probing some of its registers. It has been integrated in a 
test chip in 28-nm fully-depleted silicon-on-insulator (FD-SOI) technol
ogy. As the physical properties of this technology ensure a significant 
hardening, the circuit is only prone to SEUs and not to MCUs. Clock and 
reset trees are hardened by design using low soft-error rate (SER) in
verters. The cross section is up to 3 times lower than flip-flops [34] and 
inverters represent only 7 % of the number of flip-flops in the processor. 
So, we assume that SETs events in the clock tree are highly unlikely, and 
we focus on SEUs in this study. Whereas unexpected resets are captured 
by the application. The implementation of the IP uses cells hardened by 
triple modular redundancy (TMR), for the configuration registers and 
the register bank, to ensure the reliability. The circular buffer uses error- 
correcting code (ECC) on each memory cell to ensure the consistency of 
the recorded trace, enabling single error correction and double error 
detection (SECDED). The data persistence in the buffer is very limited, as 
it is continuously refreshed. In case of a crash the data are recovered few 
seconds later from the SoC. Moreover, the SER remains low during beam 
testing to ensure a correct observability on errors. Considering the 
previous operating conditions, such a correction is enough to keep data 
safe in most of the case, especially to prevent double errors. As the 
primary application domain is spatial, especially geostationary orbit 
(GEO) applications, the efficiency of the module will be evaluated by 
exposing the test chip to one of the heavy-ion beam facilities mentioned 
in Section 1. 

3.1. Hardware module implementation 

The module is integrated in a SoC implemented a single test chip. 
This SoC is based on two 32-bits RISC-V SCR1 [35] Microcontroller cores 
designed by Syntacore. The SoC is clocked at 400 MHz, it is mainly 
composed of a high-speed system bus, 128 KB of ECC protected SRAM, 
and a low-speed peripheral bus with some IPs. In our test plan, cores are 
not intended to work together. Only one of them is partially imple
mented with cells hardened by TMR. The SoC is equipped with a debug 
unit based on JTAG access, that allows to access the system bus, a 
dedicated debug bus and the core debug unit. The observation module is 
mapped on the debug bus of the SoC. It is accessible both from JTAG port 
and from CPUs themselves, thanks to self-debug features. This allows the 
firmware to configure the IP at startup, and a JTAG remote controller to 
interact with it without any intrusiveness at system level. The trace 
buffer can be connected to one core at a time, the switching is operated 
by the interface. Fig. 1 illustrates the architecture diagram of the SoC 
and the mapping of the module. 

The JTAG link and some GPIOs configured as a parallel port are the 
only interfaces used during radiation tests. The JTAG link is also used to 
load the program in the memory and provides a peek/poke support to 
any resource of the SoC while system is running. The debug unit of the 
processor is also accessible through the JTAG port, but we do not yet use 
this capability when doing radiative tests. 

During a run, the firmware should periodically increment a counter 
in the module memory bank at each benchmark execution. The remote 
controller is polling this register to check the status. When the status 
becomes wrong or is no longer refreshed, a failure has occurred. Then 
the remote controller can dump the content of the circular buffer and the 
memory mapped registers for a temporal view of the error propagation. 
Richness of the analysis depends on probed registers. At first, a check of 
recorded values allows to identify critical errors, while further analysis 
permits to better understand the cause of the error. 

3.2. Dedicated software for beam testing 

A dedicated bare-metal application has been developed for the beam 
experiments. It includes a benchmark algorithm, the fast Fourier trans
form (FFT), fed by pre-recorded signals. If a single error is detected in the 
memory, it raises an interrupt to correct the data, and increment a 
counter which attests the user of the harshness environment. Whereas a 
double error detected means the end of the execution to avoid memory 
errors in the experiments. The whole unused memory is filled at startup 
with error capturing instructions (ECI) [36]. A software memory 
scrubbing is implemented to ensure that the memory which doesn't 
contain executable code is not corrupted. Cyclic-redundancy check 
(CRC) algorithm is used to verify the integrity of the code during the run 
with either pre-stored syndrome or a syndrome computed at startup as 
reference. In this manner, the configuration of the IP, the read-only code 
section and the FFT results are periodically verified thanks to CRC, as 
well as the memory with the scrubbing. The application is composed of 
three steps: 

• Initialization: Boot procedure, SoC initialization including IP 
configuration, CRC reference value calculation. 

• Benchmarking: Computation of FFT algorithm on pre-recorded 
signals followed by result checking with CRC. 

• Integrity checking: Verification of IP configuration, read-only 
code thanks to the CRC, and memory scrubbing. 

• Status update: Finally, the error code is updated with regards to 
the previous checks. 

Two versions of this application are proposed. One is dedicated for 
the simulation-based fault injection campaign and the other for the 
board using the DUT. In the campaign version, only the benchmark and 
the status update steps are processed one single time. Whereas, in the 
board version, the benchmark and the Integrity checking steps are 
executed in a loop until an error is detected. 

Table I 
Simulation-based classification results with observation IP coverage and capture 
rate.  

Test status Rate (%) Trigger coverage (%) Buffer capturing (%) 

PASSED  87.7  2.0  99.0 
FAILED  12.3  57.5  83.1 
Calculation  37.5  11.4  64.9 
Software trap  6.1  100  100 
Fault  27.0  100  90.0 
Exit  0.8  62.2  70.2 
Timeout  24.4  80.6  72.6  

S. Thomet et al.                                                                                                                                                                                                                                 



Microelectronics Reliability 137 (2022) 114667

4

When a handled error case is encountered, the memory bank of the IP 
is filled with CPU status registers, error code, and information related to 
the error (address and data of corrupted memory, unexpected inter
ruption type, etc.). Then, the CPU is halted to prevent diagnostic data 
corruption. Finally, the execution trace buffer and the memory bank is 
dumped from the JTAG remote controller. Here is the list of handled 
error cases: 

• Fault exception: Triggered by CPU error detection mechanisms 
(instruction address misaligned, instruction access fault, illegal in
struction, load/store address misaligned, load/store access fault, etc.) 

• Breakpoint: Called when an ECI is erroneously encountered. 
• Memory error: ECC unrecoverable memory error. (ECC simple 

error are corrected and counted). 
• Unexpected interrupt: Either hardware or software, information 

about the interruption cause are dumped in the memory bank. 
• Standard exit: Called if a software assertion detect an error and 

the execution can no longer continue. 
• Unexpected reset: More than one reset is not expected in the 

experiment. 
• Code section error: Read-only code section corrupted. 
• IP configuration error: IP configuration memory corrupted. 
Deadcode sections are also inserted within the benchmark to 

enhance the error detection capability in case of flow divergence inside 
the application. This technique is derived from obfuscation techniques 
[36]. A deadcode section is a macro composed of a series of Error 
Capturing Instructions (ECIs) started by a jump to a label placed at the 
end of the macro. Its means that ECIs are not supposed to be executed 
unless an error occurs. Breakpoint interrupt instruction is used as ECI, as 
it triggers an interrupt caught by a watchpoint. 

To achieve each functionality of software diagnosis, only a modifi
cation of the exception handler is required. It doesn't affect the perfor
mance. Nevertheless, the deadcode sections spread throughout the 

benchmark produce a significant number of jumps and reduce the per
formance up to 10 %. 

3.3. Failure reason capturing IP 

The Fig. 2 presents in detail the architecture of capturing IP, the 
probes implemented in the RISC-V core as well as the different blocs of 
the IP: Trace encoder, Error detector and interface. 

The failure reason is captured thanks to a circular buffer recording 
the CPU trace and the probed registers at processor clock speed. This 
buffer works as a FIFO buffer erasing the oldest data in case of memory 
congestion. The buffer is 1024-events depth protected by SECDED ECC, 
the size corresponds to 16 KBytes standard trace buffer. As a first 
implementation on a test chip, the buffer size is large. We propose an 
optimized size in the Section 4 with still high observation capabilities. 

The trace encoder is based on the RISC-V Trace specification [37]. It 
rebuilds the execution flow thanks to a final state machine and probes on 
PC, instruction register and signals in the pipeline. A jump filter can be 
activated to avoid tracing all instructions inside basic blocks. Resulting 
trace events are timestamped by counting clock cycles between each 
event. Trace events are supplemented by two 32-bits registers that can 
be chosen from a set of three probed pipeline registers. These registers 
have been chosen following the fault injection campaign results, 
described in III-D, in order to monitor resources that are most likely to 
handle the propagation of errors. 

The error detector is based on programmable assertions focusing on 
the monitoring of the PC being aware of the application program, and on 
the data access addresses to monitor the addressed IPs. It is composed of: 

• Watchpoints flag an error if the PC matches a given value enabling 
to catch every fault exception traps. 

• Checkpoints count when the PC matches a given value and flags an 
error when the counter reaches a given threshold, enabling to monitor 

Fig. 1. System on a chip architecture diagram.  

S. Thomet et al.                                                                                                                                                                                                                                 



Microelectronics Reliability 137 (2022) 114667

5

the number of accesses to functions. 
• PC range checkers in which are defined the value ranges, for the 

purpose of excluding initialization functions. If the PC is in this range, 
the assertion flags. 

• PC range checker scope composed of a selection of range checkers 
to defined a set of ranges of allowed values, it flags an error if the PC is 
outside this zone, in order to focus on the running application. 

• Data range checker scope monitors the addresses of the read/write 
data accesses the same way as for the PC, applicable to a Harvard-type 
CPU architecture. 

• Data range checker scope same as PC range checker scope, used to 
defined allowed address ranges to address certain IPs. 

• Watchdogs count the clock cycles and flag if the counter reaches a 
given threshold. 

The external trigger can be configured to make selected assertions 
to trigger actions like stop the trace recording or freeze the pipeline to 
get a snapshot of the error propagation and/or to dump further diag
nostic information in the SoC. 

3.4. IP development using simulation 

Fault injection campaigns carried out in simulation with SEU-like 
faults injected in the CPU allowed to get metrics about the coverage of 
the IP in terms of error detectability and capture capability. This type of 
phenomenon is chosen according to the technology of which the final 
test chip is made. Some failure modes are highlighted, linking an error 
detected by the IP with a fault injection point. Simulations are based on 
the Register Transfer Level (RTL) model of the SoC. 

A simulation campaign consists in running simulation runs including 
a bit flip at a random time. The locations of bit flips cover every flip-flop 
inside the target. To get better statistics, hundred faults were injected in 
each flip-flop. The fault injection time window only targets the bench
mark application that is run in a loop during beam experiments. 

The software executed is based on a bare-metal test harness that 
monitors calculation tasks. It is composed of a SoC initialization, 
including the configuration of the IP, then a benchmark is run. This 
benchmark has been adapted to check the result consistency at the end. 

Fig. 2. Functional diagram of the failure reason capturing IP.  

S. Thomet et al.                                                                                                                                                                                                                                 



Microelectronics Reliability 137 (2022) 114667

6

From a run, the following parameters are extracted: 
• Execution timing: completed on time, prematurely, delayed or 

timed out. 
• Software outputs: test succeeded, failed or execution handled by 

a machine trap resulting in a specific error code. 
• Error detectability: which probes allowed to detect the error. 
• Probe reactivity: time for the injected error to be propagated to 

the probes. 
These results have been exploited to choose best set of core probes 

that are the most likely to see the propagation of a fault in order to 
enhance the observability of the error pattern. 

From these results, the depth of the buffer can also be estimated as 
the fault injection time is known, and the fault injection campaign 
covers almost all failure scenarios. This way, dimensioning the buffer to 
be able to record the propagation of faults that leads to a detected error, 
returns to optimize its size. 

1) Core probes for error capturing: The first goal of the simulation 
campaign is aiming at determining the most relevant CPU resources to 
probe, taking into account the fault detection coverage and the delay of 
the propagation until the detection. While having a significant error 
coverage, selection of probes also considers the ability to identify the 
cause of a failure, that is why we focused on registers whose contents can 
be interpreted. 

The fault injection campaign is preceded by a golden run that creates 
reference signals from the chosen model probes. For this matter, model 
probes are spread in the entire core to cover each CPU register as a future 
probe. During simulation runs with a fault injection, a comparison with 
a golden run highlights errors introduced by fault injection on the 
probes. The relevance of observation points in simulation is discussed in 
Section 4 to choose a set of probes to be recorded into the buffer. 
Considering a fixed buffer size, if there are more probes, fewer events 
can be stored. The buffer size is parameter that also needs to be 
optimized. 

2) Error detector configuration: The final goal of the simulation 
campaign is to estimate the efficiency of the detection capability, and a 
buffer size enough to capture a majority of errors aiming at optimizing 
its size. For this purpose, watchpoints are monitoring interrupts ex
pected to occur only in case of errors. Checkpoints are counting the 
number of accesses to some functions of the benchmark to ensure a 
coherent behavior of the application. PC checkers are configured to only 
allow benchmark application and exclude start-up configuring func
tions. And data-address checkers monitor accesses within the SoC 
excluding unused IPs. 

The external trigger is configured to make every assertion to stop the 
buffering. Fault exception handler and breakpoint handler are filled 
with a function to notify that an error has occurred by filling the custom 
register bank, and definitely stop the processor. Then the user can 
recover all diagnostic data without risk of corruption due to a running 
corrupted program. 

3.5. Execution trace analysis using machine-learning algorithms 

During the fault injection campaign, all the CPU flip-flops are tar
geted. Only information available from the DUT in real testing condition 
are recovered. Moreover, as memory is protected by ECC and periodic 
memory scrubbing, almost all SEUs come only from the CPU, the same 
ones simulated in the fault injection campaign. Thus, the error cases 
simulated are very similar to those obtained using beam testing. 

To be able to interpret all information on the error propagation 
recorded in the execution trace buffer, we propose to compare experi
mental error cases to simulated ones, in order to infer where SEU comes 
from in the design. For this study, injection points are either CPU 
architectural registers, or isolated flip-flops. Therefore, bits of registers 
are grouped to make a single injection point for the inference of the 
origin of the SEU which makes the CPU to crash. Hence, injection points 
form classes that a classification algorithm can process. Having a such 

exhaustive set of CPU failure modes with the campaign enables to train a 
machine-learning (ML) model to classify failure modes thanks to the 
execution trace according to the injection point. With regards to the 
classification accuracy of the model on the training data, it constitutes a 
reliable metric on the observation capability provided by the IP. 

1) Model training using fault injection data: The model training and the 
accuracy estimation of the model is performed with data from the fault 
injection campaigns carried out in the same conditions as the experi
mental setup. Failure modes captured by the IP are selected using the 
software error code and the status of the embedded error detector. We 
provide data from several hundreds of faults injected in all flip-flops that 
compose the CPU to make the training set. 

2) Error origin inference: During beam testing, failures provoked by 
SEUs are also captured following the same error cases handled by the IP 
and the software. Therefore, in using the captured execution trace and 
the information from the memory bank, the model is fed by consistent 
data in relation to the training to perform the classification. Finally, the 
model is able to infer from which register or isolated flip-flop the SEU 
that causes a SEFI. 

4. Results 

4.1. Error propagation and probe specifications 

The RISC-V CPU targeted for the SEU fault injection campaign is 
composed of 2827 flip-flops. To get relevant statistics, 1200 bit-flips 
have been injected per flip-flops for the campaign, that represents 3.4 
M of simulations. 

The Fig. 3 depicts the coverage rate and the reactivity of each probe. 
Indeed, every probe error detection is logged during simulation runs, so 
the coverage rate for a probe is the number of detections over the 
number of runs with at least one error detected. 

The reactivity depends on the time an SEU takes to propagate errors 
through the design to the probes. Reaction time is expressed in terms of a 
rate of the propagation delay to the runtime duration. This reaction time 
is represented on the Fig. 3 by the orange line with the scale on the right. 
The coverage is represented by the clustered column with the scale on 
the right. The probes are sorted in reactivity from highest to lowest. Both 
probes with red bars are used to generate the CPU trace and the three 
other probes with green bars can be stored in the buffer by selecting a set 
of two. 

The probe on the result register of the second ALU block (CPU.PIPE. 
i_pipe_exu.ialu_sum2_res) has a high reactivity and coverage because this 
block is used to calculate PC jumps. The one on the result register of the 
first ALU block (CPU.PIPE.i_pipe_exu.ialu_res) reflects every computation 
of the CPU, it also provides high coverage and reactivity. CSR registers 
provide a high reactivity but only cover few error cases corresponding to 
their functionalities. Finally, the probe on the SP (CPU.PIPE.i_pipe_mprf. 
mprf_int [2]) doesn't have as coverage or as reactivity as other probes but 
it reflects how the stack is behaving. 

1) Failure-mode coverage: The simulation outcomes have been clas
sified to identify the failure modes, illustrated in the Table I. In this 
study, a run with fault injection is considered as failed if the result is not 
correct, otherwise we consider that the fault has not affected the 
application or has been masked. The timeout limit is set to 300 % of the 
normal execution time. 

Description of simulation outcomes in the Table I: 
• Calculation: They are identified by the running benchmark and 

reported at the end of the test. As the circular buffer recording capability 
doesn't cover the benchmark execution time, in addition to be difficult to 
detect with our assertions, this case is difficult to capture. However 
advanced software data checking feature as [32] may detect these errors 
and trigger the module during execution. 

• Software trap: An ECI in a deadcode section or in unused memory 
area has been executed due to a flow divergence. 

• Fault: An error detected by the CPU that triggers an exception 

S. Thomet et al.                                                                                                                                                                                                                                 



MicroelectronicsReliability137(2022)114667

7

Fig. 3. Probes error coverage rate (%) and reactivity (number of cycles).  

S. Thom
et et al.                                                                                                                                                                                                                                 



Microelectronics Reliability 137 (2022) 114667

8

because the execution can no longer continue. 
• Exit: The standard function exit is called by the running appli

cation if an assertion is false. This case is very rare 
• Timeout: A case quite difficult to handle because the origin is 

often unknown. A typical case is an infinite loop, but the origin is often 
too far from the detection for the circular buffer recording capacity. 
Watchdogs can also detect this failure. 

Table I also highlights the ability of the observation IP to detect er
rors and capture the fault propagation in the design through the core 
probes recorded within the buffer. An error is considered as captured if 
the recording, once stopped due to a violated assertion, covers a period 
including the first divergence propagated to a probe. Whereas the origin 
is not always captured, 100 % of the back traces recorded differ from the 
golden run, thus contains information related to the cause of the crash. 
Such results constitute the first approach to find an efficient tradeoff of 
the buffer size. 

By achieving such capture rates may imply that the buffer size can be 
optimized. In many cases the recording is deeper than necessary to 
capture the fault propagation until its origin. The Fig. 4 shows the 
capture rate while reducing the buffer depth. As shown on the chart, 
timeout and calculation error types are the most difficult to detect and to 
capture. The fault error type is also difficult to capture as it may also 
result of an error propagation or a corrupted data in the register file. 
Whereas software traps shall almost all due to a jump directly corrupted 
by the SEU. 

To illustrate the efficiency of the assertions, the Table II depicts the 
coverage of each assertion which has detected an error and stopped the 
buffering during the fault run. 

The Table II reports that PC scope checking assertions are ahead in 
terms of coverage compared to other assertions, although data-address 
checking assertions have also a significant coverage in case of calcula
tion errors or timeout. Checkpoints are more dedicated to the behavior 
of the application while counting the number of accesses to functions, 
that is why it gets the best coverage in case of calculation errors and test 
passed. Watchpoints do not appear in this table as the PC scope overlap 
the detection reasons. As legal interruptions are not used in our soft
ware, they are not allowed by the PC scope. 

4.2. Backtrace analysis 

The data captured in the buffer are collected at the end of each 
simulation to enable the investigation of quite exhaustive failure cases 
and form the fault dictionary database. This database is used as a 
training set for the ML model. Through the model accuracy estimation, 
performed on a part of the training set, it provides an observation metric 
towards the IP implementation. 

1) ML model comparison: The Table III present an accuracy compar
ison of different models. The environment used for this study is the 
Scikit-Learn [38] library in Python. 

This table shows that the models Bagging Classifier, Extra-Trees 
Classifier and K-Nearest Neighbors Classifier are the most suitable to 
process the data as they provide the best mean accuracy on each class. 

For the following results the Bagging classifier is used. 
2) IP parameter optimization: The Fig. 5 highlights the effects of key 

parameters in order to propose a resource-optimized implementation of 
the IP with specific settings from which the IP can provide the best 
performances. On this figure, the accuracy of the model is represented 
according to the three different set of probes. 

First, we can see that the probe sets with which the model performs 
better are SP-ALU_RES and ALU_RES-ALU2_RES. Indeed, according to the 
Fig. 3 the probe ALU_RES provide a high error coverage rate with a low 
mean propagation delay. 

Then, we can see that the accuracy of the model is stable until a 
buffer size of 64 events. That means that the buffer can be reduced to 1 
KB without affecting the observability on captured events due to SEU, 
while providing an accuracy of 87 %. 

5. Conclusion and future work 

In this work, we present a technique to address microprocessor errors 
due to radiation induced SEU faults. It helps the investigation of the 
failure cause in providing detailed diagnostic information from a soft
ware and a hardware perspective, without any intrusiveness towards the 
application. We also use machine-learning classification algorithm to 
take advantage of both collected data from experiments and a fault 
dictionary from simulation-based fault injection. This correlation en
ables the algorithm to find the CPU register where the SEU fault comes 
from, in case of single-event functional interrupt. Such approach is 

Fig. 4. Capture rate (%) in reducing the buffer depth.  

Table II 
Assertions efficiency (in %).  

Test status Checkpoints PC out of scope Data out of scope 

PASSED  1.9  22.4  75.6 
FAILED  30.4  37.3  31.8 
Calculation  68.1  6.7  25.2 
Software trap  0.0  99.1  0.9 
Fault  4.1  49.6  46.3 
Exit  63.2  33.3  3.5 
Timeout  67.0  7.6  24.0  

Table III 
ML-model accuracy comparison.  

ML classification model Accuracy score 

Bagging Classifier 87 % 
C-Support Vector Classifier 74 % 
Linear classifier (SGD training) 70 % 
AdaBoost Classifier 25 % 
Extra-Trees Classifier 84 % 
Gradient Boosting Classifier 80 % 
K-Nearest Neighbors Classifier 82 %  

Fig. 5. Bagging classifier model accuracy (%) in reducing the buffer depth.  

S. Thomet et al.                                                                                                                                                                                                                                 



Microelectronics Reliability 137 (2022) 114667

9

intended to be used in the context beam testing and device qualification 
to help the analysis of irradiation campaign data in an efficient way to 
find potential design weaknesses. 

The approach is based on a hardware IP embedded within a SoC, 
running at the processor frequency, recording continuously its activity. 
To achieve this functionality, the module combines a trace encoder and 
an error detector to capture the fault propagation. When an error occurs, 
the recording is stopped, and the processor halted to keep internal state 
for further diagnostic. Thereby, it provides a back trace supplemented by 
CPU architectural register as diagnostic information in case of a crash. 
The trace is recorded in an embedded circular buffer protected by 
SECDEC ECC with an optimized size in relation to the application and 
the processor. The error detector is based on configurable assertions that 
consist in program counter and data access address range checkers, 
supported by software traps, to detect flow divergence. 

This module is processor agnostic, it is designed to be scalable in 
terms of buffer size and register probe locations. It has been interfaced to 
a RISC-V core by probing several key registers and signals, whose 
location was chosen according to a fault propagation study. In such a 
configuration, we were able to achieve an accuracy score up to 87 %, 
with a buffer size of 1 KB. The software requires to handle error cases 
with dedicated exception handlers and implements software traps to 
capture legal erroneous jumps. 

The developed SoC is implemented in 28 nm Fully-Depleted Silicon- 
On-Insulator (FDSOI) hardened technology in a test chip embedding a 
dual RISC-V core. One of them has been partially implemented with cells 
hardened by TMR and will be used as a reference for the machine- 
learning SEU location inference. 

The chip has been manufactured and will be soon operable with our 
testbench. To evaluate the approach and validate the setup, we plan to 
perform Electromagnetic Fault Injection (EMFI) and X-rays irradiations 
at ID09 beamline of ESRF-France [39]. The ID09 beamline provide a 
high-energy pulsed X-rays beam of 5 μm in diameter, that allows to scan 
the SoC and target specific zone to generate SEUs. 

As the technology is addressing spatial applications, the test chip is 
going to be irradiated with heavy-ion particles, this will allow validating 
the observation module in real situation and identify potential weak
nesses of the SoC. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The authors wish to thank the Syntacore designers for providing the 
SCR1 core as an open-source and free to use RISC-V core. 

References 

[1] Norbert Seifert, Sh.ah. Jahinuzzaman, Jyothi Velamala, Ricardo Ascazubi, 
Nikunj Patel, Balkaran Gill, Joseph Basile, Jeffrey Hicks, Soft error rate 
improvements in 14-nm technology featuring second-generation 3d tri-gate 
transistors, IEEE Trans. Nucl. Sci. 62 (6) (2015) 2570–2577. 

[2] Vinay Vashishtha, Lawrence T. Clark, Srivatsan Chellappa, Anudeep 
R. Gogulamudi, Aditya Gujja, Chad Farnsworth, A soft-error hardened process 
portable embedded microprocessor, in: 2015 IEEE Custom Integrated Circuits 
Conference (CICC), 2015, pp. 1–4. 

[3] R. Ginosar, Survey of Processors for Space, European Space Agency, (Special 
Publication) ESA SP, 2012, 701, 01. 

[4] M. Pignol, Dmt and dt2: two fault-tolerant architectures developed by cnes for cots- 
based spacecraft supercomputers, in: 12th IEEE International On-Line Testing 
Symposium (IOLTS’06), 2006, p. 10, pp.–. 

[5] N. Oh, E.J. McCluskey, Error detection by selective procedure call duplication for 
low energy consumption, IEEE Trans. Reliab. 51 (4) (2002) 392–402. 

[6] George A. Reis, Jonathan Chang, David I. August, Automatic instruction-level 
software-only recovery, IEEE Micro 27 (1) (2007) 36–47. 

[7] José Rodrigo Azambuja, Samuel Pagliarini, Mauricio Altieri, Fernanda 
Lima Kastensmidt, Michael Hubner, Jürgen Becker, Gilles Foucard, Raoul Velazco, 
A fault tolerant approach to detect transient faults in microprocessors based on a 
non-intrusive reconfigurable hardware, IEEE Trans. Nucl. Sci. 59 (4) (2012) 
1117–1124. 

[8] Corrado De Sio, Sarah Azimi, Andrea Portaluri, Luca Sterpone, Seu evaluation of 
hardened-by-replication software in risc- v soft processor, in: 2021 IEEE 
International Symposium on Defect and Fault Tolerance in VLSI and 
Nanotechnology Systems (DFT), 2021, pp. 1–6. 

[9] M. Grosso, M.Sonza Reorda, M. Portela-Garcia, M. Garcia-Valderas, C. Lopez-Ongil, 
L. Entrena, An on-line fault detection technique based on embedded debug 
features, in: 2010 IEEE 16th International On-Line Testing Symposium, 2010, 
pp. 167–172. 

[10] M. Portela-Garcia, M. Grosso, M. Gallardo-Campos, M.Sonza Reorda, L. Entrena, 
M. Garcia-Valderas, C. Lopez-Ongil, On the use of embedded debug features for 
permanent and transient fault resilience in microprocessors, Microprocess. 
Microsyst. 36 (5) (2012) 334–343. Special Issue on Design of Circuits and 
Integrated Systems. 

[11] José Rodrigo Azambuja, Mauricio Altieri, Jürgen Becker, Fernanda 
Lima Kastensmidt, Heta: Hybrid error-detection technique using assertions, IEEE 
Trans. Nucl. Sci. 60 (4) (2013) 2805–2812. Accessed: 2021-11. 

[12] Luis Parra, Almudena Lindoso, Marta Portela, Luis Entrena, Felipe Restrepo-Calle, 
Sergio Cuenca-Asensi, Antonio Martínez-Alvarez, Efficient mitigation of data and 
control flow errors in microprocessors, IEEE Trans. Nucl. Sci. 61 (4) (2014) 
1590–1596. 

[13] L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B. Du, M. Sonza Reorda, 
L. Sterpone, A new hybrid nonintrusive error-detection technique using dual 
control-flow monitoring, IEEE Trans. Nucl. Sci. 61 (6) (2014) 3236–3243. 

[14] A. Lindoso, L. Entrena, M. García-Valderas, L. Parra, A hybrid fault-tolerant leon3 
soft core processor implemented in low-end sram fpga, IEEE Trans. Nucl. Sci. 64 (1) 
(2017) 374–381. 

[15] Radiation effects facility (radef) - university of jyväskylä - finland. www.jyu.fi/scie 
nce/en/physics/research/infrastructures/accelerator-laboratory/radiation-effects 
-facility. 

[16] Cyclotron of louvain-la-neuve (cyclone) - uclouvain - belgium. uclouvain.be/en/ 
research-institutes/irmp/crc/applications-technologiques.html. 

[17] Jong Chul Lee, Andrew S. Gardner, Roman Lysecky, Hardware observability 
framework for minimally intrusive online monitoring of embedded systems, in: 
2011 18th IEEE International Conference and Workshops on Engineering of 
Computer-Based Systems, 2011, pp. 52–60. 

[18] K. Peterson, Y. Savaria, Assertion-based on-line verification and debug 
environment for complex hardware systems, in: 04 IEEE International Symposium 
on Circuits and Systems (IEEE Cat. No.04CH37512) volume 2, 2004, pp. II–685. 

[19] M. Abramovici, A reconfigurable design-for-debug infrastructure for socs, in: 2006 
43rd ACM/IEEE Design Automation Conference, July 2006, pp. 7–12. 

[20] V. Easwaran, et al., A unique non-intrusive approach to non-ate based cul-de-sac 
soc debug, in: 2014 27th IEEE International System-on-Chip Conference (SOCC), 
2014, pp. 336–339. 

[21] H.F. Ko, Combining scan and trace buffers for enhancing real-time observability in 
post-silicon debugging, in: 2010 15th IEEE European Test Symposium, May 2010, 
pp. 62–67. 

[22] J.M. Mogollón, J. Nápoles, H. Guzmán-Miranda, M.A. Aguirre, Real time seu 
detection and diagnosis for safety or mission-critical ics using hash library-based 
fault dictionaries, in: 2011 12th European Conference on Radiation and Its Effects 
on Components and Systems, 2011, pp. 705–710. 

[23] A. Lindoso, L. Entrena, M. Garcia-Valderas, S. Philippe, Y. Morilla, P. Martin- 
Holgado, M. Peñ-Fernandez, Ptm-based hybrid error-detection architecture for arm 
microprocessors, Microelectron. Reliab. 88-90 (2018) 925–930, 29th European 
Symposium on Reliability of Electron Devices, Failure Physics and Analysis (ESREF 
2018). 

[24] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y. Morilla, 
P. Martín-Holgado, Online error detection through trace infrastructure in arm 
microprocessors, IEEE Trans. Nucl. Sci. 66 (7) (2019) 1457–1464. 

[25] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, The use of 
microprocessor trace infrastructures for radiation-induced fault diagnosis, IEEE 
Trans. Nucl. Sci. 67 (1) (2020) 126–134. 

[26] M. Peña-Fernández, A. Lindoso, L. Entrena, I. Lopes, V. Pouget, Microprocessor 
error diagnosis by trace monitoring under laser testing, IEEE Trans. Nucl. Sci. 68 
(8) (2021) 1651–1659. 

[27] Coresight debug and trace - arm. https://developer.arm.com/ip-produ 
cts/system-ip/coresight-debug-and-trace. Accessed: 2021-11. 

[28] Risc-v specifications - risc-v international. https://riscv.org/technical/specificati 
ons/. Accessed: 2021-11. 

[29] Global embedded processor debug interface - nexus 5001 forum standard. 
https://nexus5001.org/nexus-5001-forum-standard/. Accessed: 2021-11. 

[30] Debug and trace applications - mipi alliance. https://www.mipi.org/specifications 
/debug. Accessed: 2021-11. 

[31] Microprocessor development tools - lauterbach. https://www.lauterbach.com/fr 
ames.html?home.html. Accessed: 2021-11. 

[32] B. Du, et al., Online test of control flow errors: a new debug interface-based 
approach, IEEE Trans. Comput. 65 (6) (2016) 1846–1855. 

[33] Hai Tao Sun, First failure data capture in embedded system, in: 2007 IEEE 
International Conference on Electro/Information Technology, 2007, pp. 183–187. 

[34] Taiki Uemura, Byungjin Chung, Jeongmin Jo, Hai Jiang, Yongsung Ji, Tae- 
Young Jeong, Rakesh Ranjan, Youngin Park, Kiil Hong, Seungbae Lee, 
Hwasung Rhee, Sangwoo Pae, Euncheol Lee, Jaehee Choi, Shota Ohnishi, 

S. Thomet et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453193042
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453193042
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453193042
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453193042
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180446102988
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180446102988
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180446102988
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180446102988
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180446317897
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180446317897
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180449580094
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180449580094
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180449580094
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453199891
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453199891
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453210421
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453210421
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180450223574
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180450223574
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180450223574
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180450223574
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180450223574
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180446488787
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180446488787
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180446488787
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180446488787
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447001437
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447001437
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447001437
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447001437
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180450505514
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180450505514
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180450505514
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180450505514
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180450505514
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180451118493
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180451118493
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180451118493
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453218492
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453218492
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453218492
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453218492
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447013707
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447013707
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447013707
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453230311
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453230311
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453230311
http://www.jyu.fi/science/en/physics/research/infrastructures/accelerator-laboratory/radiation-effects-facility
http://www.jyu.fi/science/en/physics/research/infrastructures/accelerator-laboratory/radiation-effects-facility
http://www.jyu.fi/science/en/physics/research/infrastructures/accelerator-laboratory/radiation-effects-facility
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447137687
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447137687
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447137687
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447137687
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180451429133
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180451429133
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180451429133
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180451552053
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180451552053
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447226427
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447226427
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447226427
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180452058663
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180452058663
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180452058663
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447290347
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447290347
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447290347
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180447290347
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180452533272
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180452533272
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180452533272
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180452533272
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180452533272
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453235322
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453235322
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453235322
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453240002
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453240002
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453240002
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453244591
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453244591
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453244591
https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace
https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://nexus5001.org/nexus-5001-forum-standard/
https://www.mipi.org/specifications/debug
https://www.mipi.org/specifications/debug
https://www.lauterbach.com/frames.html?home.html
https://www.lauterbach.com/frames.html?home.html
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453304761
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453304761
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180448308676
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180448308676
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180448548385
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180448548385
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180448548385


Microelectronics Reliability 137 (2022) 114667

10

Ken Machida, Investigating of ser in 28 nm fdsoi-planar and comparing with ser in 
bulk-finfet, in: 2020 IEEE International Reliability Physics Symposium (IRPS), 
2020, pp. 1–5. 

[35] Scr1 microcontroller core - syntacore, in: https://syntacore.com/page/products/p 
rocessor-ip/scr1. Accessed: 2020-11. 

[36] G. Miremadi, Two software techniques for on-line error detection, in: 1992 FTCS - 
The Twenty-Second International Symposium on Fault-Tolerant Computing, IEEE 
Computer Society, Los Alamitos, CA, USA, jul 1992, pp. 328–335. 

[37] Panesar Gajinder, Efficient trace for risc-v, version 1.1.2-draft. Technical Report 
be029f6479b0326c3fdff41927f83ac45f9bdc85, Mentor Graphics, a Siemens 
Business, Dec 2020. 

[38] scikit-learn - machine learning in python. https://scikit-learn.org/stable/. 
Accessed: 2020-11. 

[39] Europeam synchrotron radiation facility (esrf) id09 beamline - grenoble - france. 
https://www.esrf.fr/home/UsersAndScience/Experiments/CBS/ID09.html. 

S. Thomet et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180448548385
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180448548385
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180448548385
https://syntacore.com/page/products/processor-ip/scr1
https://syntacore.com/page/products/processor-ip/scr1
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180449269775
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180449269775
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180449269775
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453077682
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453077682
http://refhub.elsevier.com/S0026-2714(22)00191-3/rf202208180453077682
https://scikit-learn.org/stable/
https://www.esrf.fr/home/UsersAndScience/Experiments/CBS/ID09.html

	Observation framework of errors in microprocessors with machine learning location inference of radiation-induced faults
	1 Introduction
	2 Background
	3 Contribution
	3.1 Hardware module implementation
	3.2 Dedicated software for beam testing
	3.3 Failure reason capturing IP
	3.4 IP development using simulation
	3.5 Execution trace analysis using machine-learning algorithms

	4 Results
	4.1 Error propagation and probe specifications
	4.2 Backtrace analysis

	5 Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	References


