
On the Use of Hard-Decision LDPC Decoders on
MLC NAND Flash Memory

Khoa Le and Fakhreddine Ghaffari
ETIS, UMR-8051, Université Paris Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France.

{khoa.letrung, fakhreddine.ghaffari}@ensea.fr

Abstract—The soft-decision Low-Density Parity-Check
(LDPC) decoders are widely used in the multi-level per cell
(MLC) NAND flash memory to ensure the correctness of stored
data. However, to obtain the good error correction capability,
these soft-decision decoders require the soft-information, which
results a long on-chip memory sensing and dramatically
extends the memory read latency. In this paper, we explore the
possibility of using some recent introduced Bit Flipping (BF)
hard decision decoders, in replacing the soft-decision decoders,
to correct the retention errors appeared in the MLC NAND
flash memory. The applied BF decoders require only the hard
information read from that memory to decode and thus, by
avoiding soft-information sensing, the memory read latency
is improved. Furthermore, by using the characteristic of the
retention error where some information bits can be determined
as error-free, we propose the adaptation of the BF decoders
to be better adapted to MLC NAND flash memory. We show
that, the adapted BF decoders can correct more erroneous bits
thanks to these error-free values. The simulation results show
that, the adapted BF decoders running on the flash memory
provide a good error correction performance, being close to that
of the soft-decision decoders, with only the hard information
of the memory. In addition, it is shown that, the BF decoders
provide a higher decoding speed compared to the soft-decision
decoder.

I. INTRODUCTION

NAND flash memory have been used in practical appli-
cations thanks to its favorable features such as the high
data throughput, low-power consumption, compactness [1].
In order to increase the storage capacity of NAND flash
memory, multi-level cell technology have been developed
to store more than 1 bit per cell, e.g. 2 bits per cell in
[2], 3 bits per cell in [3] or 4 bits per cell in [4]. This
increasing storage density results to the fact that, the stored
data is more prone to error due to various underlying physical
factors [5], appearing at the type of retention error, cell-
to-cell interference (CCI) error etc. This MLC technology
significantly increases the bit error rate and a powerful error
correction code with soft-information has to be employed to
yield a good error correction performance. There are several
works on the use of the soft-decision LDPC codes for error
correction on MLC NAND flash memory [2][6][7]. There are
also several works on efficient hardware implementation of
LDPC decoding algorithm on that type of memory [8]. All
of these researches have demonstrated that, the soft-decision
LDPC decoders can achieve a noticeable error correction gain
over the conventional bose-chaudhuri-hocquenghem (BCH)
code. However, since the MLC NAND flash memory read

latency is proportional to the memory sensing precision, the
use of soft-information memory sensing causes significantly
increase of memory read latency.

Low-Density Parity-Check (LDPC) are the well-known
error correction code (ECC) applied in several communi-
cation standards such as IEEE 802.11n, 802.3an, 802.16a
etc. [9][10][11] and storage applications as in [12][13][14].
LDPC can be effectively decoded by the iterative decoding
algorithms which are the iterative process where messages
are iteratively passed between the computing units: Variable
Nodes (VNs) and Check Nodes (CNs). An LDPC decoder is
either the soft-information message passing decoder, i.e. Min
Sum (MS), Sum Product (SP) [15], or hard-decision decoder,
i.e. Bit Flipping (BF), Gallager-A,B [16]. The soft-decision
decoders require the soft-information from channel and during
the decoding process, the soft-information are passed between
the computing units. These soft-decision decoders provide
the outstanding error correction, approaching the capacity.
However, the decoder complexity is dramatically increased
while the decoding speed is relatively low, due to the intensive
computation. On the contrary, the hard decision decoders
have been recently attracted much attention due to the high
decoding throughput, low-complexity implementation and the
progressive improvement in error correction, approaching or
even surpassing the soft-decision decoders [17].

Recently, several BF decoders such as Gradient Descent
Bit Flipping (GDBF) [18], Probabilistic Gradient Descent Bit
Flipping (PGDBF) [19], Probabilistic Parallel Bit Flipping
(PPBF) [20] decoders, have been introduced, in which the
error correction performance is significantly improved, being
very close or even comparable to the performance of soft-
decision decoders. These decoders are shown to be very low-
complexity, which comes from the fact that, only binary
messages are iteratively passed between the computing units
simplifying the connection networks. Furthermore, the com-
puting units which process these binary messages are very
simple and therefore, enhance the decoding throughput. More
interestingly, these decoders require only the hard information
from the channel to start the decoding process.

In this paper, we investigate on the use of BF decoders, in
replacing the soft-decision decoders, to correct the retention
errors in the MLC NAND flash memory. We focus on the
GDBF and PGDBF on MLC NAND flash memory in terms of
error correction as well as the hardware efficiency such as the
decoding throughput and decoder complexity, by comparison

with the soft-decision decoders. We take benefit from the
fact that, the BF decoders require only hard information from
channel to avoid the long memory sensing, and from that, the
memory read latency is obviously reduced. Moreover, by using
the characterization of the retention errors in MLC NAND
flash memory, we can determine certain bits which are reliable.
We then adapt the BF decoders such that the reliable VNs
are kept unchanged in the VN processing units (VNUs) while
decoding only on other unreliable VNs. We show that, with the
additional information in determining the reliable VNs in MLC
NAND flash memory, the modified BF decoders can correct
more retention errors than the conventional counterparts.

The rest of the paper is organized as following. In Sec-
tion II, we recall the characteristic of the retention noise in
MLC NAND flash memory and characterize the principle to
determine the reliable bits when the retention errors occur.
The LDPC decoding principle and the deployed BF decoders
(the GDBF and PGDBF decoders) are also introduced. In
Section III, we present the adapted BF decoders (denoted as
A-GDBF and A-PGDBF) dedicated for MLC NAND flash
memory. In Section IV, we show for the test case that,
the BF decoders provide a comparable error correction to
that of the soft-decision decoders (the MS decoder) while
the average number of decoding clock cycles is only 1/4.
Although the advantages of avoiding soft-information sensing
is not quantified, the fact that the adapted BF decoders use
only the hard-decision information reduces obviously the read
latency of MLC NAND flash memory. Section V concludes
the paper.

II. THE MLC NAND FLASH MEMORY RETENTION ERROR
CHARACTERIZATION AND BF LDPC DECODERS RECALL

A. The characterization of retention errors in MLC NAND
flash memory

MLC NAND flash memory allows storing more information
in a single cell which is realized by the number of charges
trapped in the floating gate and the numerous voltage thresh-
olds to identify the storage states [2]. In each MLC NAND
flash memory cell, the voltage levels between two adjacent
storage states become closer, making it being more prone to
errors when being read. Fig. 1 shows the relation between the
stored data and its corresponding threshold voltage distribution
for a 2-bits per cell NAND flash memory. There are 4 states of
the stored data which are usually represented by the Gray code
to reduce the raw bit error probability. While the data is stored
in the memory cell, the programmed cell gradually loses its
charge in the floating gate (Fig. 1b). This leads eventually to a
change in logic states, causing the error known as the retention
error. The appearance of retention error depends on several
factors e.g. the number of Program/Erase (P/E), the storing
time. There are also other types of errors in MLC NAND
flash memory such as the cell-to-cell interference (CCI) or
programming error (which appears when the data is being
written). However, several works in literature showed that, the
retention error is the main source of error appearing in MLC
NAND flash memory [5]. We assume in this work that only

Desired distribution

Lo
gi

c
va

lu
es

0

11

10

vref1

00

vref2

01

vref3

 Distribution after
losing charges

N
um

be
r o

f c
ha

rg
es

R
et

en
tio

n
di

re
ct

io
n

vth vth

a. b.

Figure 1. The retention behavior in MLC NAND flash memory.

retention errors appear in the read data from MLC NAND
flash memory. Also, we limit the illustrations in this work to
only 2-bits per cell MLC NAND flash memory. When reading
data from an MLC NAND flash memory cell, the return data
is in the form as (most-significant-bit, least-significant-bit) or
(MSB,LSB). Further information on the MLC NAND flash
memory such as the organization, program/read process can
be found in [2][6][7].

The charge trapped in the floating gate is gradually dimin-
ished forming the fact that, the retention error is always in
the type of one-direction state transitions. Indeed, it can be
seen in Fig. 1 that, the logic state 01 is realized at the highest
charge trapped. The loss of charge changes only that logic
state to the lower charge level states such as states 00 or 10
and there is no logic state that can form the state 01 when
the retention errors happen. This implies the fact that, the 01
read from MLC NAND flash memory cell is the error-free
(reliable) information. This observation have also introduced
in [21]. The work of [21] also showed more cases where
we can determine the reliability of the read data. Indeed, the
MSB when reading 00 from the cell is reliable because if the
retention error occurs, it changes from the state 01 to 00 and
only LSB is changed. With the same principle, the LSB of 10
and MSB of 11 are also the reliable data. Note that, we assume
in this work that, only single step retention error (where the
logic state is only changed to its closest adjacent state) appears
in MLC NAND flash memory. It is an acceptable assumption
since the multiple state jump is extremely rare thanks to
the observation in [5][22]. By using this characterization of
retention error, we propose to have a pre-processing on the
read data from the MLC NAND flash memory to determine
the reliable information before launching the LDPC decoding
process. This extra information will help the BF correct more

erroneous bits in the decoding process.

B. GDBF and PGDBF decoders

An LDPC code is defined by a sparse parity-check matrix H
(M,N), N > M . Each row represents a parity check function,
computed by a CN, on the VNs represented by the columns.
The VN vn (1 ≤ n ≤ N) is checked by the CN cm (1 ≤ m ≤
M) if the entry H(m,n) = 1 and they are called neighbors.
LDPC code can also be represented by a bipartite graph called
Tanner graph composing two groups of nodes, the CNs cm,
(1 ≤ m ≤ M) and the VNs vn, (1 ≤ n ≤ N). The VN vn
(1 ≤ n ≤ N) connects to the CN cm (0 ≤ m ≤ M) by
an edge in the Tanner graph if the entry H(m,n) = 1. We
denote the set of CNs connected to the VN vn as N (vn), (1 ≤
n ≤ N), and |N (vn)| is called VN degree. Similarly, N (cm),
(1 ≤ m ≤M) denotes all VNs connected CN m and |N (cm)|
is the CN degree. This paper works on the regular LDPC code,
i.e. |N (vn)| = dv and |N (cm)| = dc ∀n,m. When LDPC
ECC is applied in the MLC NAND flash memory, the user
data is encoded and stored in form of a codeword. A vector
x = {xn} = {0, 1}N , (1 ≤ n ≤ N) is called a codeword if
and only if HxT = 0. We denote y = {yn}, (1 ≤ n ≤ N) as
the read version of x from the memory. The retention error in
this work is modeled as a crossover behavior such that each bit
of x is flipped with a probability α, called raw Bit Error Rate
(BER), i.e., Pr(yn = xn) = 1−α and Pr(yn = 1− xn) = α,
1 ≤ n ≤ N . We use the superscript (k) along with the node
(VN and CN) notations to indicate that node value at the k
iteration.

The decoding process of BF decoders is an iterative process
where the binary messages are iteratively passed between the
VNs and CNs. The CN operation is the parity check operation
which is formulated in Equ. 1 where ⊕ is the Exclusive-OR
(XOR) operation. The decoding process will be terminated
if all the CN are satisfied i.e. c(k)m = 0,∀m, otherwise the
decoding process continues with the VN operations.

c(k)m = ⊕
vn∈N (cm)

v(k)n (1)

E(k)
n = v(k)n ⊕ yn +

∑
cm∈N (vn)

c(k)m (2)

In each VN operation, first of all, a so-called energy value is
computed using Equ. 2 basing on the all neighbor CN values,
the VN current value (v(k)n) and its value received from the
channel (yn). The maximum energy value, E(k)

max, is computed
by a Maximum Finder (MF). In GDBF decoder, the value of a
VN will be flipped if and only if its energy value is equal to the
maximum energy value. In PGDBF, a binary random generator
is implemented generating for each VN a random signal R(k)

n

where Pr(R
(k)
n = 1) = p and Pr(R

(k)
n = 0) = 1 − p and

p is a pre-defined signal. The value of each VN in PGDBF
is flipped if and only if its energy equals to the maximum
energy and R

(k)
n = 1. The GDBF and PGDBF provide the

good error correction performance while requiring only the
hard-information as shown in [19][23]. We present in the next

…
.

N R(k)

Connection network 2

N v(k)

yn

V1,1 V1

Connection network 1
…
.

…
.

…
.

…
.

V1,1 V2 V1,1 V3

dc dc dc dc

V1,1 VN

 D Q

0

D Q XOR2

XOR1

N v(k)

N E(k)

1 v(k) 2 v(k) 3 v(k)
N v(k)

1 c(k) 2 c(k) 3 c(k)
M c(k)

Probabilistic
signal

generator
From

Channel
1

2

3

4

0

1

∑

N v(k+1)

c(k)
 V1

c(k)

 V2

c(k)

 V3

c(k)

 VN

c(k)
 V1

…
. c(k)

 V2

c(k)
 V3

c(k)

VN

:

3 R(k)

2 R(k)

1 R(k)

p2

p1

p3

…
. From

RG

…
.

1 2
M …

. Syndrome
Check

…
.

^

Raw data

MLC NAND flash
memory

 HD read and
pre-processing

 BF LDPC
Decoders

y

Decoded
codeword

I

x

Figure 2. The utilization of BF decoders on the MLC NAND flash memory
system.

section the adaptation of these decoders to work on the MLC
NAND flash memory.

III. ADAPTED BF (A-BF) DECODERS FOR MLC NAND
FLASH MEMORY

By understanding the retention error characteristic, we
present the adaptation of the BF decoders to MLC NAND flash
memory system. The MLC NAND flash memory system is
described in the Fig. 2. The adaptation includes the additional
pre-processing unit which provides the reliability signal for
each data bit read from memory. The second part of the
adaption is the modification in the decoding process basing
on the reliability information from the pre-processing module.

A. The pre-processing module

The target of designing the pre-processing block is to
identify the reliability of each bit in the data read from MLC
NAND flash memory and to use this information improving
the performance of the BF decoders. As presented above, 2
bits (MSB and LSB) are stored in the same cell and basing on
their values, the reliability can be determined. We denote the
reliability of the MSB as IMSB and that of the LSB as ILSB .
The value of these variables represents the reliability of the
bits (reliable bit is denoted by 1, otherwise, it is marked by
0). We show the values of IMSB and ILSB as the functions
of MSB and LSB in table I. It can be seen that, when the read
data is 01, both of MSB and LSB are reliable. In the other
cases, only one bit (either MSB or LSB) is reliable.

The pre-processing module is designed to identify the
reliability of a stored codeword and to produce a binary
vector I = (I1, I2, . . . , IN). Each element of I represents
the reliability of the corresponding bits (or VNs) in the read
data. In the MLC NAND flash memory layout, two bits (MSB
and LSB) in a cell may belong to the same codeword [22]
or they are in two different codewords. In the latter case,
pre-processing module needs the read of two consecutive
codewords (in N cells) in order to compute I for a codeword,
while in the former case, it needs the information in N/2 cells.
A computing block is designed to produce the values IMSB

MSBn
XOR

LSBn
In

LSB

In
MSB

Figure 3. The computing unit to identify the reliability of the read data from
one MLC NAND flash memory.

and ILSB on the value read (MSB and LSB). The detailed
circuit of this computation block is described in Fig. 3. In
general, the pre-processing module may be implemented with
only 1 computing block and used serially or many blocks are
implemented operating in parallel for accelerating the reading
speed. It can be seen that, the pre-processing unit is a simple
combinatory circuit and it would require a negligible hardware
overhead.

Table I
THE RELIABILITY DETERMINATION BASED ON THE DATA READ FROM A

MLC NAND FLASH CELL.

MSB LSB IMSB ILSB

0 1 1 1

0 0 1 0

1 0 0 1

1 1 1 0

B. The adapted BF decoders for MLC NAND flash memory

The pre-processing unit provides the reliability information
of each bit read from the MLC NAND flash memory. We
adapt the BF decoders to be used in this type of memory. We
have applied our strategy for the GDBF and PGDBF which
are named as A-GDBF and A-PGDBF, respectively. The A-
PGDBF decoding algorithm is described in Algorithm 1. It can
be seen that, the A-PGDBF follows similarly the decoding
step of the original PGDBF and the modification is on the
VN operation where a verification step is added. In the VN
processing of A-PGDBF, the flipping step is proceeded only
if that VN value is indicated as unreliable (In = 0). This
principle is also applied for the A-GDBF.

It can be seen that, the reliability information of each VN
is used in the adapted decoders, changing the behaviors of
VNs, compared to the original decoders. Furthermore, this
information helps the adapted BF decoders correct more errors
in the read data than their original counterparts. We illustrate
an example where the original decoder (GDBF) fails to correct
the errors while the adapted decoder (the A-GDBF) can correct
in Fig. 4. It is shown that, the GDBF fails with only 3 error
VNs located on a trapping set (5,3) (in Fig. 4a) [23] (the white
circles (squares) represent the correct VNs (satisfied CNs)
while the black circles (squares) represent the erroneous VNs
(unsatisfied CNs), with the assumption that all zero codeword

is sent). GDBF fails to find the correct codeword because when
flipping the erroneous VNs (v1 and v3), it flips also the correct
VNs (v2 and v4) and oscillates between the two states as in
Fig. 4a and Fig. 4b. On the contrary, in A-GDBF decoder,
the erroneous VNs will be certainly flipped while the correct
VNs will be flipped only when they are unreliable. A-GDBF
can correct all the errors in Fig. 4a after 2 iterations (the error
configuration as in Fig. 4a→ Fig. 4c→ Fig. 4d) if the correct
VNs v2 and v4 are reliable. It can also correct all error VNs in
3 iterations by going Fig. 4a → Fig. 4e → Fig. 4c → Fig. 4d
if v2 is reliable while v4 is unreliable. A-GDBF fails to correct
the errors when both v2 and v4 are unreliable. Therefore,
while GDBF always fails, A-GDBF can correct 75% when
this error pattern appears. The advantage in error correction
of the adapted BF decoders is shown further in the simulation
results in the next section.

Algorithm 1 The Adapted-PGDBF decoding algorithm for
MLC NAND Flash memory

1: Initialization k = 0,v(0) = y
2: while k ≤ Itmax do
3: for 1 ≤ m ≤M do . CN processing
4: Compute c

(k)
m , using Equ. (1).

5: end for
6: if c(k) = 0 then . Check syndrome
7: exit while
8: end if
9: for 1 ≤ n ≤ N do . VN processing

10: Compute E
(k)
n , using Equ. (2).

11: end for
12: Sort E

(k)
max = maxn(E

(k)
n)

13: for 1 ≤ n ≤ N do
14: if In = 0 then . Added verification
15: Generate R

(k)
n from B(p).

16: if E(k)
n = E

(k)
max and R(k)

n = 1 then
17: v

(k+1)
n = v

(k)
n ⊕ 1

18: end if
19: end if
20: end for
21: k = k + 1
22: end while
23: Output: v(k)

IV. ERROR CORRECTION PERFORMANCE AND ANALYSIS

In this section, we present the simulated error correction
performance of adapted BF decoders on the MLC NAND
flash memory with the retention errors. Although the practical
LDPC code in the MLC NAND flash memory is usually with
very high code rate and the long codeword [8], we simulated
our BF decoders on a moderate code rate (R = 0.75), and
relative short (N = 1296) code to save the simulation time.
We assume that, the MSB and LSB in a MLC NAND flash
memory cell belong to 2 different codewords and we decode
only the codeword formed by the LSB bits. As shown above,

e.

v1

v5

v4

v2

v3
a.

v1

v5

v4

v2

v3
d.

v1

v5

v4

v2

v3
b.

v1

v5

v4

v2

v3
c.

v1

v5

v4

v2

v3

Figure 4. The error pattern with which the GDBF fails to correct the error
while the A-GDBF can.

the LSB codeword has higher probability to be erroneous than
the MSB codeword. We produce, therefore, the worst-case
decoding performance of our BF decoders. We also show the
decoding performance of the quantized MS decoder with 4
bits for LLR and 6 bits for the AP-LLR information [24]. The
MS decoder is implemented with the layered scheduling in
which a decoding iteration is composed by 4 layers.

It can be seen in the Fig. 5 in general that, the BF decoders
provide the good error protection ability for MLC NAND flash
memory. Indeed, the A-PGDBF provides an BER at 8.10−10

and A-GDBF is with 4.10−8 when the raw BER at 2.10−3.
The A-PGDBF is much better than the A-GDBF decoder in
term of error correction at the cost of hardware overhead
when being implemented, as observed in many works [23][25].
The reliability information of each bit helps the BF decoders
correct more retention errors. In fact, we introduce also in the
Fig. 5 the decoding performance of the BF decoders when
the bit reliability information are not used and denote them as
baseline. It is shown that, the A-GDBF loses around 5dB in
BER while A-PGDBF loses 2dB at raw BER 2.10−3. Also,
the A-GDBF seems to be affected on all values of α while
the A-PGDBF is affected on the error floor region only.

In general, the MS is better than all BF decoders in error
correction at the cost of hardware complexity [23] and the
decoding throughput. We show in Fig. 6 the comparison on the
average number of clock cycles needed to decode a codeword,
as a function of α. Due to the lack of space, we do not show
the detail of the BF and MS hardware architectures (which can
be found in [23] and [24]). The MS decoders requires 2 clock
cycles to decode 1 layer (it does 4 layers in an iteration) while

0.0010.01
10−10

10−9

10−8

10−7

10−6

10−5

10−4

Raw BER, α

B
it
E
rr
or

R
a
te

(B
E
R
)

A-GDBF

baseline GDBF

A-PGDBF

baseline PGDBF

MS

Figure 5. The decoding performance of the BF decoders on MLC NAND
flash memory.

0.0010.01

2

4

6

8

10

12

14

16

Raw BER, α

A
ve
ra
ge

n
u
m
b
er

of
cl
o
ck

cy
cl
es

A-GDBF

baseline GDBF

A-PGDBF

baseline PGDBF

MS

Figure 6. The average clock cycles required to decode 1 codeword.

the BF decoders requires 1 clock cycle to finish 1 iteration.
The difference in the average number of clock cycles can
be interpreted to the difference in decoding throughput if the
decoders operate at the same frequency. It can be seen in the
Fig. 6 that, the BF decoders provide a much higher decoder
speed than that of the MS decoder. At raw BER 2.10−3, the BF
decoders is 4 times faster than the MS decoder. Note further
that, the BF decoders require only the hard information from
MLC NAND flash memory while the soft-decision decoders
need the soft-information. Although we do not quantify in
detail this advantage, it will obviously improve the reading
latency when the BF decoders are used in MLC NAND flash
memory.

V. CONCLUSION

We propose in this paper an investigation in using the recent
introduced BF hard-decision LDPC decoders (the GDBF and
PGDBF decoders), in replacing the soft-decision, to correct the
retention error in MLC NAND flash memory. The motivation

comes from the fact that, BF decoders require only the hard-
information from the channel to proceed the decoding process,
and from that, the long soft-information sensing can be omit-
ted. Furthermore, by using the characteristic of retention error,
we have adapted these BF decoders in such a way that they can
correct more errors in MLC NAND flash memory. The adapted
BF decoders show an admirable error correction improvement,
being very close or even comparable to soft-decision decoders.
The advantage of using BF decoders are also confirmed by the
very small number of clock cycles needed for decoding a code-
word which is interpreted to the high decoding throughput.
The promising results in terms of error correction capability,
decoding throughput and complexity lead the BF decoders to
become the good ECC candidates in the new generation MLC
NAND flash memory.

ACKNOWLEDGMENT

This work was funded by the french ANR under grant
number ANR-15-CE25-0006-01 (NAND project).

REFERENCES

[1] R. S. Liu, M. Y. Chuang, C. L. Yang, C. H. Li, K. C. Ho, and H. P.
Li, “Improving read performance of nand flash ssds by exploiting error
locality,” IEEE Transactions on Computers, vol. 65, no. 4, pp. 1090–
1102, April 2016.

[2] H. Sun, W. Zhao, M. Lv, G. Dong, N. Zheng, and T. Zhang, “Exploiting
intracell bit-error characteristics to improve min-sum ldpc decoding for
mlc nand flash-based storage in mobile device,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 24, no. 8, pp. 2654–
2664, Aug 2016.

[3] Y. L. et al., “A 16 gb 3-bit per cell (x3) nand flash memory on 56 nm
technology with 8 mb/s write rate,” IEEE Journal of Solid-State Circuits,
vol. 44, no. 1, pp. 195–207, Jan 2009.

[4] N. S. et al., “A 70 nm 16 gb 16-level-cell nand flash memory,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 4, pp. 929–937, April 2008.

[5] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in mlc
nand flash memory: Measurement, characterization, and analysis,” in
2012 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2012, pp. 521–526.

[6] G. Dong, N. Xie, and T. Zhang, “Enabling nand flash memory use soft-
decision error correction codes at minimal read latency overhead,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 9,
pp. 2412–2421, Sept 2013.

[7] D. h. Lee and W. Sung, “Estimation of nand flash memory threshold
voltage distribution for optimum soft-decision error correction,” IEEE
Transactions on Signal Processing, vol. 61, no. 2, pp. 440–449, Jan
2013.

[8] J. Kim and W. Sung, “Rate-0.96 ldpc decoding vlsi for soft-decision
error correction of nand flash memory,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 5, pp. 1004–1015,
May 2014.

[9] “Wireless lan medium access control and physical layer specifications:
Enhancements for higher throughput, p802.11n/d3.07,” IEEE-802.11n,
Mar. 2008.

[10] “Local and metropolitan area networks - part 16, ieee std 802.16a-2003,”
IEEE-802.16.

[11] “Ieee standard for information technology - corrigendum 2: Ieee std
802.3an-2006 10gbase-t correction,” IEEE Std 802.3-2005/Cor 2-2007
(Corrigendum to IEEE Std 802.3-2005), Aug. 2007.

[12] S. Jeon and B. V. K. V. Kumar, “Performance and complexity of 32 k-bit
binary ldpc codes for magnetic recording channels,” IEEE Transactions
on Magnetics, vol. 46, no. 6, pp. 2244–2247, June 2010.

[13] K. C. Ho, C. L. Chen, Y. C. Liao, H. C. Chang, and C. Y. Lee,
“A 3.46 gb/s (9141,8224) ldpc-based ecc scheme and on-line channel
estimation for solid-state drive applications,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2015, pp. 1450–1453.

[14] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in nand flash memory,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 58, no. 2, pp. 429–439, Feb 2011.

[15] D. Declercq, M. Fossorier, and E. Biglieri, “Channel coding: Theory,
algorithms, and applications,” Academic Press Library in Mobile and
Wireless Communications, Elsevier, ISBN: 978-0-12-396499-1, 2014.

[16] R. G. Gallager, “Low density parity check codes,” MIT Press, Cam-
bridge, 1963, Research Monograph series, 1963.

[17] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent
bit-flip decoding for ldpc codes,” IEEE Transactions on Communica-
tions, vol. 62, no. 10, pp. 3385–3400, Oct 2014.

[18] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, “Gradient descent bit flipping algorithms for decoding ldpc
codes,” IEEE Transactions on Communications, vol. 58, no. 6, pp. 1610–
1614, June 2010.

[19] O. A. Rasheed, P. Ivanis, and B. Vasić, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder,” IEEE Communications Letters,
vol. 18, no. 9, pp. 1487–1490, Sept 2014.

[20] K. Le, F. Ghaffari, D. Declercq, B. Vasic, and C. Winstead, “A novel
high-throughput, low-complexity bit-flipping decoder for ldpc codes,” in
2017 International Conference on Advanced Technologies for Commu-
nications (ATC), Oct 2017, pp. 126–131.

[21] L. Qiao, H. Wu, D. Wei, and S. Wang, “A joint decoding strategy
of non-binary ldpc codes based on retention error characteristics for
mlc nand flash memories,” in 2016 Sixth International Conference on
Instrumentation Measurement, Computer, Communication and Control
(IMCCC), July 2016, pp. 183–188.

[22] M. Zhang, F. Wu, X. He, P. Huang, S. Wang, and C. Xie, “Real: A
retention error aware ldpc decoding scheme to improve nand flash read
performance,” in 2016 32nd Symposium on Mass Storage Systems and
Technologies (MSST), May 2016, pp. 1–13.

[23] K. Le, F. Ghaffari, D. Declercq, and B. Vasić, “Efficient hardware
implementation of probabilistic gradient descent bit-flipping,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 4,
pp. 906–917, April 2017.

[24] T. Nguyen-Ly, K. Le, F. Ghaffari, A. Amaricai, O. Boncalo, V. Savin,
and D. Declercq, “Fpga design of high throughput ldpc decoder based
on imprecise offset min-sum decoding,” in 2015 IEEE 13th International
New Circuits and Systems Conference (NEWCAS), June 2015, pp. 1–4.

[25] K. Le, D. Declercq, F. Ghaffari, L. Kessal, O. Boncalo, and V. Savin,
“Variable-node-shift based architecture for probabilistic gradient descent
bit flipping on qc-ldpc codes,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. PP, no. 99, pp. 1–13, 2017.

