
Probabilistic Gradient Descent Bit-Flipping Decoders
for Flash Memory Channels

Fakhreddine Ghaffari∗, Bane Vasic†
∗ETIS, UMR-8051, Université Paris Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France,

fakhreddine.ghaffari@ensea.fr
†Dep. of Electrical and Computer Engineering, Uni. of Arizona, Tucson, AZ, 85719 USA, vasic@email.arizona.edu

Abstract—Low-density parity check (LDPC) codes are an
attractive error correction scheme for ensuring data integrity
in new generation of NAND flash memories. A quick assessment
of the iterative decoders for LDPC codes reveals a wide range of
varying complexities. The simple Bit-Flipping (BF) and binary-
message-passing algorithms such as the Gallager A/B algorithms
occupy one end of the spectrum, while Belief Propagation (BP)
and A Posteriori Probability (APP) decoders lie at the other
end. The gamut of existing decoders filling the intermediate
space can simply be understood as the implementation of BP
(and its variants, such as the min-sum algorithm) at differ-
ent levels of message precision. Decoders with low-precision
messages are desirable because of their low complexity and
power efficiency, but in such decoders it is highly nontrivial to
prevent performance degradation known to as error floor and
to guarantee fast convergence to a codeword. In this paper we
present our results on a new class of low-complexity iterative
decoders for flash memory channels. They involve two main
innovations: global computation and randomness. Our decoding
algorithm, Probabilistic Gradient Descent Bit-Flipping (PGDBF)
is motivated by the analogy between Tanner graphs and the
graphical models used in statistical mechanics, and prescribe a
rule for flipping a bit based on the so-called energy function and
a binary random sequence associated to that bit. Energy function
is computationally simple, but involves all the bits. We present the
PGDBF algorithm analysis, explain how it benefits from global
computation and randomness, and present the hardware synthesis
results as well as comparisons with the state-of-the-art decoders.

Keywords—Low-Density Parity-Check, Probabilistic Gradient
Descent Bit Flipping, NAND Flash Memory, high decoding
throughput, low-complexity FPGA implementation.

I. INTRODUCTION
NAND FLASH memories are used for storing informa-

tion. Nearly all external storage memories (MultiMedia Card
(MMC), Secure Digital (SD) card and Memory Stick (MS)
card) use this technology. However manufacturers of NAND
FLASH memories, generally, do not guarantee at 100% the
integrity of data stored in it but usually they propose a lower
error rate under a given limit. This limited reliability requires
the implementation of an error management system (ECC
- Error Correction Code, Bad Block Management, etc.) at
the application level. This is the case for example, for hard
disks SSDs (Solid State Drives). The LDPC based ECC are
an interesting error correction approach for increasing data
reliability in new generation of NAND flash memories. QC-
LDPC (Quasi-Cyclic-LDPC) are a particular code constructing
method of LDPC codes that are well-suited for the practical
implementations. QC-LDPC can be effectively decoded by
either soft-information message passing decoders, i.e. Min Sum
(MS), Sum Product (SP) [1], or hard-decision decoders, i.e. Bit
Flipping (BF), Gallager-A, B [2]. This paper focuses on the BF
decoder due to its low-complexity as well as its high possible

throughput. Additionally, recent BF optimizations proposed in
[3][4] demonstrated good error correction capability, approach-
ing the soft-decision decoders.

The PGDBF, proposed by Rasheed et al. in[3], is one
of the best BF decoders in term of error correction on Bi-
nary Symmetric Channel (BSC) channel. PGDBF continually
passes 1-bit messages between two groups of computing units:
Variable Nodes (VNs) and Check Nodes (CNs). The CN
computes the parity check function while the VN computes
a so-called energy value. The difference between PGDBF and
its deterministic version (the GDBF [5]) is that, all the VNs
having the maximum energy will be flipped in GDBF while
in PGDBF only a randomly selected subset is flipped. This
process is controlled by a value p0 (p0 < 1).

The outstanding decoding performance of PGDBF comes
at the price of the additional complexity needed to implement
the probabilistic signal generator, compared to GDBF. Indeed,
FPGA implementation results reported in [6] have shown a × 8
and a × 1.64 increase in registers and Look-Up Tables (LUTs)
respectively, compared to the non-probabilistic GDBF decoder.
ASIC results from [7] have shown a 5%− 14% cost increase
of PGDBF with respect to GDBF. Note that these results
have been obtained for the same QC-LDPC code. This high
cost in complexity is also accompanied with loss in decoding
throughput due to lower maximum frequency of the PGDBF
decoder compared with GDBF. Moreover the main constraint
for designing an LDPC code to be used for the error correction
in Nand Flash memory is to keep the highest possible code
rate. This constraint is intrinsic to this application in order to
optimize the memory space for storing useful bits (data) in
external embedded memories.

In this paper, we introduce a new LDPC decoder algo-
rithm called FM-PGDBF for Flash Memory adapted PGDBF
decoder. It consists to adapt the well known PGDBF decoder
to be efficiently used for applications using NAND Flash
memory. To increase the throughput of our decoder we propose
to remove the most critical computation part consisting to
compute the maximum of energy among N computing units
(N is the size of the codeword). We replace this maximum
finder unit by an off-line prediction of the a energy maximum
for each decoding iteration. Our simulation results show that
this imprecision induced by errors in the offline prediction
of the maximum energy improves the decoding performances
of the PGDBF decoder by shaking it to escape most of
trapping sets. This new version of PGDBF implementations
are shown to not only reduce the decoder complexity but also
improve decoding performance with respect to the state-of-the-
art implementations.

The paper is organized as following. In Section II, the
PGDBF algorithm and the optimized implementation in the
literature are reviewed. Section III introduces the principle

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

of our Flash memory adapted PGDBF (FM-PGDBF) and
its hardware implementation. In Section IV, we show for
several test codes that, our FM-PGDBF provides a decoding
performance as good as the optimized PGDBF implementation
in literature while reducing 60% the hardware cost comparing
with GDBF. The adapted PGDBF for NAND Flash memory
provides a significant gain in error correction, around 2dB gain
over the traditional GDBF. Section V concludes the paper.

II. PGDBF DECODING AND ITS IMPLEMENTATION
A. Notations

An LDPC code is defined by a sparse parity-check matrix
H with size (M,N), where N > M . A codeword is a vector
x = (x1, x2, . . . , xN) ∈ {0, 1}N which satisfies HxT = 0.
We denote by y = {y1, y2, . . . , yN} ∈ {0, 1}N the output
of a Flash Memory channel. We simplify the Flash Memory
channel is as a BSC model in which the bits of the stored
codeword x have been flipped with crossover probability α
and leave the other complex characterizations such as the
unbalance flip i.e. the flip probability from 1 to 0 is different
from the flip probability from 0 to 1 as the future works.
The graphical representation of an LDPC code is a bipartite
graph called Tanner graph composed of two types of nodes,
the Variable Node Unit (VNUs) vn, n = 1, . . . , N and the
Check Node Unit (CNUs) cm, m = 1, . . . ,M . In the Tanner
graph, a VNU vn is connected to a CNU cm if H(m,n) = 1.
Let us also denote N (vn) the set of CNUs connected to the
VNU vn, with a connection degree dvn = |N (vn)|, and denote
N (cm) the set of VNUs connected to the CNU cm, with a
connection degree dcm = |N (cm)|. We will study in this paper
only regular dv = 3 and dv = 4 LDPC codes for Nand Flash
memory.

B. Gradient Descent Bit Flipping Concept
The GDBF algorithm has been introduced by Wadayama

et al. in [5]. This algorithm is derived from a gradient descent
formulation and it consists of finding the most suitable bits
to be flipped in order to maximize a pre-defined objective
function. The GDBF algorithm shows an error correction
capability superior than most known BF algorithms while still
maintaining a lower hardware complexity compared to the soft
decision decoders. In [3], the authors proposed to incorporate
a probabilistic feature in the flipping step, inspired from the
probabilistic BF algorithms of [8]. In the PGDBF decoder,
all the bits that satisfy the gradient descent condition are not
flipped by default, but instead, only a randomly chosen fraction
p of them are flipped. Curiously, this small modification of
the GDBF algorithm led to a large performance improvement,
with error correction capability approaching the soft-decision
message passing decoders [3]. An efficient hardware (HW)
implementation of the FM-PGDBF decoder is proposed in
this paper, which minimizes the resource overhead needed to
implement the random perturbations and replace the maximum
finder of the PGDBF by a predefined set of values computed
in off-line.

C. Probabilistic Gradient Descent Bit Flipping Decoder
(PGDBF) and its adaptation to Flash memory

A BF decoder is defined as an iterative update of the
variable node values over the decoding iterations. We denote in
this paper by v(k)n the value of the VN vn at the k-th iteration.
We correspondingly denote by c(k)m the binary value of the CN

cm parity check node at iteration k, which indicates whether
the fact that the m-th parity-check equation is satisfied or
not. The BF decoding process is terminated when all CNs
values are satisfied or a maximum number of iteration Itmax

is reached. The CN calculation in BF algorithms can be written
as

c(k)m =
⊕

vn∈N (cm)

v(k)n ,

where
⊕

is the bit-wise exclusive-OR (XOR) operation.
For the n-th VN calculation, the update rule uses the

information on satisfiability of the neighboring CN N (vn) to
keep or flip the value of v(k)n . In the case of GDBF algorithms,
a function called inversion function or energy function is
defined for each VN, and is used to evaluate whether the value
v
(k)
n should be flipped or not. The original GDBF has been

proposed in communication for the Additive White Gaussian
Nosie (AWGN) channel [5] and the energy function was
defined as in (1), where γn is the Log-Likelihood Ratio (LLR)
received from AWGN channel.

Λ(k)
vn

= (1− 2 v(k)n)γn +
∑

cm∈N (vn)

(1− 2 c(k)m) (1)

For the GDBF on the AWGN channel, the energy function
is real valued, and has a unique minimum, corresponding to
the bit with lowest reliability. In [5], two modes for the bit-
flipping rule at iteration k are proposed: either only the bit
having smallest energy function is flipped (single flip), or a
group of bits having energy function lower than a predefined
threshold are flipped (multiple flips).

For the Binary Symmetric Channel (BSC), the energy
function can be modified with the following equation:

E(k)
vn

= v(k)n

⊕
yn +

∑
cm∈N (vn)

c(k)m (2)

In this case, the energy function is an integer, varies
from 0 to (dvn

+ 1), and the bits which have the maximum
value E

(k)
max = maxnE

(k)
vn are flipped. Due to the integer

representation of the energy function, many bits are most likely
to have the maximum energy, leading to the multiple flips
mode. Let us use an indicator variable to indicate the VNs
which have the maximum energy at iteration k, i.e. I(k)n = 1

if E(k)
vn = E

(k)
max, and I

(k)
n = 0 otherwise. The fact that the

number of bits to be flipped cannot be precisely controlled
induces a negative impact to the convergence of the GDBF,
as the analysis of [3] shows. To avoid this effect, the PGDBF
has been proposed with the following modification: instead of
flipping all the bits with maximum energy function value, only
a random fraction of those bits are flipped. The random fraction
is fixed to a pre-defined value p(k)n , which could be different
for each VN and each iteration. In this work, we restrict our
study to the case for which p(k)n are constant for all iterations
and all VNs, denoted p0 ∈ [0, 1] hereafter.

The PGDBF of [3] can be implemented using a sequence of
N random bits, generated following a Bernoulli distribution B
with parameter p0, with different realizations at each iteration.
We denote the random generator (RG) sequence at the k-
th iteration by R(k). In the GDBF algorithm, a VN v

(k)
n at

iteration k is flipped (is XOR-ed by ’1’) when its energy
function is a maximum (the indicator variable is I(k)n = 1)

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

while in PGDBF, a VN v
(k)
n is flipped if and only if the

two conditions I(k)n = 1 and R
(k)
n = 1, are both satisfied.

In the proposed FM-PGDBF a VN v
(k)
n is flipped when its

energy function is greater or equal to a predefined threshold
(maximum of energy) computed offline based on several
Monte Carlo Simulation results. We need to predict in offline
the maximum of energy for each decoding iteration. However
this number of iteration can be a great number (several
hundreds) and storing the whole sequence of thresholds is
memory consuming. We propose to shorten this sequence and
store only a fixed number of thresholds. Depending on the
construction of the code, the parameters of the decoder (dvn

and dcm), this size l of the predefined sequence of thresholds is
calibrated. Among iteration the decoder will use the sequence
of predefined threshold in a circular way, i.e when it reaches
the last value of the sequence it restarts from the beginning
and take the first value as the threshold of the next iteration.
The FM-PGDBF algorithm is presented in Algorithm 1.

Algorithm 1 FM-PGDBF algorithm
Generate THn, n = 1, . . . , l, in offline.
Initialization k = 0, v

(0)
n ← yn, n = 1, . . . , N .

s = Hv(0)T mod 2
while s 6= 0 and k ≤ Itmax do

Generate R
(k)
n , n = 1, . . . , N , from B(p0).

Compute E
(k)
vn , n = 1, . . . , N , using Eq. (2).

for n = 1, . . . , N do
if E(k)

vn >= THn and R(k)
n = 1 then

v
(k+1)
n = v

(k)
n ⊕ 1

end if
end for
s = Hv(k+1)T mod 2
k = k + 1

end while
Output: v(k)

III. HARDWARE ARCHITECTURES
The state-of-the-art implementations of PGDBF can be

found several works such as [6][7]. These implementations
follow the flooding scheduling where N Variable Node Pro-
cessing Units (VNUs) are implemented to process N VNs
in parallel. Similarly, M dc-XOR gates are implemented for
M CNs (each XOR gate is called the check node processing
unit - CNU). The maximal operating frequency of PGDBF
is limited by the length of the longest data path (and so-
called, the critical path) as fmax < 1/tD where tD is the
length of the critical path. The longest data path in PGDBF
implementation is shown by the dashed green path in Fig. 1.
This critical path starts from the output of D-FlipFlop storing
v
(k)
n to the updated VN value for the next iteration, (v(k+1)

n).
A noticeable part of this critical path comes from the global
maximum finder (MF), which globally computes the maximum
energy among N values. Many implementing methods of the
MF can be found in [9]. We illustrate the implementation of
MF in Fig. 1 by the binary tree of the compare-and-swap units
(CASUs) [10]. The CASU passes at its output the larger value
of the 2 input values. The latency of the MF module can be
formulated as tMF = tcdlog2(N)e where tc is the delay of a
single CASU module. This critical path may become longer

XOR2 XOR2 XOR2

XOR1

CNU

1 v(k)

1 R(k)
2 R(k)

N R(k)

…
.

2 E(k)

dv

1 E(k)
2 E(k)

1 v(k)

y1

 D Q

D Q

1

From Channel

 ∑

1 v(k+1)

…
.

…
.

dc

…
.

…
.

1 dv dv+1

 MF
1 3 2

3 E(k)
N E(k)

N

…
.

=?

1 E(k)

=? =?

N E(k)

…
.

…
.
…
.

:

:

 >

 > > > > > >

 > >

1
E(k)

2
E(k)

3
E(k) …

. N E(k)

max E(k)

max E(k)

…
.

…
.

M c(k)

…
.

…
.

1 dv
M …

.

…
.
…
.

:

:

:

:

:

…
.
…
.

…
.

Syndrome
Check

1 v(k+1) 2 v(k+1) N v(k+1)

…
.

2 v(k)
N v(k)

Figure 1. The implementation of PGDBF and its critical path.

…
.

1 v(k)

1 v(k)

1 R(k)

…
.

dv

1 E(k)

y1

D Q

D Q

1

From
Channel

 ∑

1 v(k+1)

…
.

…
.

dc

…
.

…
.

1 dv dv+1
M c(k)

1 dv
M …

. Syndrome
Check

1 v(k+1)

 >

TH1

 ∑
1 dv dv+1

…
.

…
.

2 v(k)

y2

D Q

D Q 2 v(k+1)

…
.

From neighbor
CNs

 ∑
1 dv dv+1

N v(k)

yN

D Q

D Q N v(k+1)

…
.

From neighbor
CNs

XOR1 XOR1 XOR1

XOR2

2 c(k)
1 c(k)

CNU CNU

2 v(k)

2 R(k)

2 E(k)

2 v(k+1)

 >

XOR2

N v(k)

N R(k)

N E(k)

N v(k+1)

 >

XOR2

TH2 THN

Figure 2. The proposed architecture for FM-PGDBF.

when longer code is used. This MF is also the large part of
PGDBF in term of complexity since it requires approximately∑dlog2(N)e

i=1 dN/2ie the CASUs.
The architecture of our FM-PGDBF, on contrary, can avoid

the negative effect of the MF, which help enhance the decoding
throughput and reduce decoder complexity. Indeed, as see in
Fig. 2 for each VN, a comparing module is implemented in the
place of the MF and equality comparator (Fig. 1). The critical
path is significantly reduced since the latency part of MF is
replaced by the one of the comparator which is obviously
smaller. It can be also seen that, all the hardware cost for
the MF can be avoidable in the MF-PGDBF implementation
which is expected to reduce the decoder complexity.

IV. SYNTHESIS RESULTS AND DECODING PERFORMANCE
The FM-PGDBF decoder implementations are imple-

mented and synthesized by using the Xilinx tool ISE 14.7 with
the target device Xilinx Virtex 6 (XC6VLX240T-1FF1156).
The FPGA synthesis results (number of registers, number of
Look-Up Tables) reported in this section have been obtained
after place route process. We implement our LDPC decoders
for various LDPC codes from a short to very long codeword

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Table I. HARDWARE RESOURCE USED TO IMPLEMENT GDBF, PGDBF AND FM-PGDBF DECODERS FOR DIFFERENT LDPC CODES FROM SHORT TO
VERY LONG CODEWORD LENGTHS AND DIFFERENT CODE RATE.

Registers
dv= 3 dv= 4

R040N155 R050N1296 R075N1296 R050N1296 R075N1296 R0857N2212 R0868N9520
GDBF 329 (+0%) 2613 (+0%) 2614 (+0%) 2613 (+0%) 2614 (+0%) 4445 (+0%) 19063 (+0%)

PGDBF (S= M/2) 410 (+24.6%) 2971 (+13.7%) 2810 (+7.5%) 2971 (+13.7%) 2810 (+7.5%) 4637 (+4.3%) 19657 (+3.1%)
PGDBF (S= M/3) 394 (+19.8%) 2863 (+9.6%) 2756 (+5.4%) 2863 (+9.6%) 2756 (+5.4%) 4585 (+3.1%) 19471 (+2.1%)

FM-PGDBF 410 (+24.6%) 2971 (+13.7%) 2810 (+7.5%) 2971 (+13.7%) 2810 (+7.5%) 4637 (+4.3%) 19657 (+3.1%)
Look-Up-Tables (LUTs)

GDBF 1735 (+0%) 12331 (+0%) 13426 (+0%) 13228 (+0%) 12809 (+0%) 22045 (+0%) 94978 (+0%)
PGDBF (S= M/2) 1757 (+1.3%) 13650 (+10.7%) 14755 (+9.8%) 13973 (+5.6%) 13553 (+5.8%) 22326 (+1.3%) 95002 (+0%)
PGDBF (S= M/3) 1757 (+1.3%) 13650 (+10.7%) 14752 (+9.8%) 13976 (+5.7%) 13553 (+5.8%) 22322 (+1.3%) 95010 (+0%)

FM-PGDBF 702 (-59.5%) 5460 (-55.7%) 5902 (-56%) 5589 (-57.7%) 5421 (-57.7%) 8930 (-59.5%) 38000 (-60%)

lengths and different code rate, i.e. the smallest LDPC code
is Tanner code with length N = 155 and rate 0.4 (denoted as
R040N155) and the longest is LDPC code for flash memory
with N = 9520 and rate 0.868(denoted as R0868N9520).
We can compare the FM-PGDBF complexity with the non-
probabilistic GDBF and PGDBF implementation architecture
found in [7].

Note that, since the FPGA results are not available in
that paper, we have obtained them by re-implementing these
decoders and synthesizing them on FPGA. The synthesis
results are presented in table I along with those of PGDBF
and non-probabilistic GDBF which are shown as a baseline
in comparison. All absolute values of registers and LUTs are
presented followed by the their normalized values with respect
to the GDBF.

The synthesis results show that, FM-PGDBF helps reduce
significantly the complexity of PGDBF implementations as
expected. Indeed, FM-PGDBF requires only 40% of the GDBF
LUTs to be efficiently implemented. It is reasonable that the
FM-PGDBF requires slightly more registers than GDBF i.e.
+25% for low rate and +3% for high rate codes since it still
needs the implementation of the random generator. This extra
cost in term of registers is exactly the same as PGDBF decoder
(s=M/2) since both are using the same probabilistic generator
implementation. By reading vertically data column presented
in table I, the hardware resources needed for all tested LDPC
codes follow exactly our previous analysis. Interestingly, the
high code rate and long codeword, the overhead LUTs required
by PGDBF decoders are negligible i.e. for dv4R0868N9520,
PGDBF requires 0.03% more LUTs while FM-PGDBF needs
even −60%, for dv4R0857N2212, these numbers are around
1.3% for PGDBF decoders and −59% for FM-PGDBF. We
compute the decoding throughput for dv3R050N1296 code
as θ = N∗fmax

Itave∗nc
where Itave denotes the average number of

iterations, fmax is the maximum decoding frequency, and nc
is the number of clock cycles required for a decoding iteration.
nc = 1 for all GDBF-based decoders while nc = 6 for
the MS. At α = 0.01, FM-PGDBF obtains 11.2Gbps while
is it 6480 Mbps for GDBF and 5355.37 Mbps for PGDBF
(s= M/2). The PGDBF decoding throughput is, in general,
inferior to the one of GDBF decoder. It is due to the fact that,
the probabilistic behavior slows the decoding speed leading
to higher average iteration numbers. However with our new
proposed FM-PGDBF we overcome this problem and we even
double the throughput of the decoder compared with PGDBF.

The simulated decoding performance of the decoders are
shown in Fig. 3. FM-PGDBF provides an equivalent decod-
ing performance of the PGDBF with slightly earlier error

10-3 10-2 10-1

Crossover probability, ,

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
am

e
Er

ro
r R

at
e

(F
ER

)

FM-PGDBF, 300 Iterations
BF, 300 Iterations
GDBF, 300 Iterations
PGDBF, 300 Iterations
MS, 20 Iterations
OMS, 20 Iterations

Figure 3. Comparison of decoders performance on a quasi-cyclic (dv =
4, dc = 8) LDPC code, with codeword length N = 1296.

floor. The simulation result re-confirms the superiority of
FM-PGDBF over the GDBF with around 2dB gain in FER
(α = 0.02). We can notice here the interesting decoding
performances of our proposed FM-PGDBF decoder in the
waterfall region of the curve. Note that, operating at the
Itmax = 300 in BF decoders is only in the worst case. PGDBF
decoder is advantageous in term of decoding throughput as
seen in [7]. Also, the comparison on the number of average
iteration can be found in that paper. OMS decoder is the best in
term of decoding performance with the cost of high complexity
and low decoding throughput.V. CONCLUSION

We propose in this paper an efficient hardware architecture
to implement PGDBF decoder on QC-LDPC codes, called
Flash Memory adapted PGDBF. The Flash Memory adapted
PGDBF uses a predefined list of maximum values for the
energy function instead of computing it in run-time.

The simulation performance and FPGA synthesis results
confirm that the Flash Memory adapted PGDBF decoders have
lower complexity, higher throughput and good performance
with respect to other implementations in literature.

ACKNOWLEDGMENT
This work was supported by the National Science Foun-

dation under Grant ECCS-1500170 and CCF- 1314147, the
Indo-US Science and Technology Forum (IUSSTF) through
the Joint Networked Center for Data Storage Research (JC-
16-2014-US), and the French ANR project NAND under grant
agreement ANR-15CE25- 0006-01

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

REFERENCES
[1] D. Declercq, M. Fossorier, and E. Biglieri, “Channel coding: Theory,

algorithms, and applications,” Academic Press Library in Mobile and
Wireless Communications, Elsevier, ISBN: 978-0-12-396499-1, 2014.

[2] R. G. Gallager, “Low density parity check codes,” MIT Press, Cam-
bridge, 1963, Research Monograph series, 1963.

[3] O. A. Rasheed, P. Ivanis, and B. Vasić, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder,” IEEE Communications Letters,
vol. 18, no. 9, pp. 1487–1490, Sept 2014.

[4] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent
bit-flip decoding for ldpc codes,” IEEE Transactions on Communica-
tions, vol. 62, no. 10, pp. 3385–3400, Oct 2014.

[5] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, “Gradient descent bit flipping algorithms for decoding ldpc
codes,” IEEE Transactions on Communications, vol. 58, no. 6, pp.
1610–1614, June 2010.

[6] K. Le, D. Declercq, F. Ghaffari, C. Spagnol, E. Popovici, P. Ivanis,
and B. Vası́c, “Efficient realization of probabilistic gradient descent bit
flipping decoders,” in 2015 IEEE International Symposium on Circuits
and Systems (ISCAS), May 2015, pp. 1494–1497.

[7] K. Le, F. Ghaffari, D. Declercq, and B. Vasić, “Efficient hardware
implementation of probabilistic gradient descent bit-flipping,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 4,
pp. 906–917, April 2017.

[8] N. Miladinovic and M. Fossorier, “A improved bit-flipping decoding
of low-density parity-check codes,” IEEE Transactions on Information
Theory, vol. 51, no. 4, pp. 1594–1606, Apr. 2005, cCF-0963726
(Medium Decoders), CCF-1314147 (TDMR), ECCS-1500170 (FSO),
i-RISC, Fulbright.

[9] B. Yuce, H. F. Ugurdag, S. Goren, and G. Dundar, “Fast and efficient
circuit topologies forfinding the maximum of n k-bit numbers,” IEEE
Transactions on Computers, vol. 63, no. 8, pp. 1868–1881, Aug 2014.

[10] J. Jung and I. C. Park, “Multi-bit flipping decoding of ldpc codes for
nand storage systems,” IEEE Communications Letters, vol. PP, no. 99,
pp. 1–1, 2017.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

