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Abstract—The Probabilistic Gradient Descent Bit-Flipping
(PGDBF) decoder has been proposed as a very promising hard-
decision Low-Density Parity-Check (LDPC) decoder with a large
gain in error correction. However, this impressive decoding gain
is reported to come along with a non-negligible extra complexity
due to the additional Perturbation Block (PB) required on top
of the Gradient Descent Bit-Flipping (GDBF) decoder. In this
paper, an efficient solution to implement this PB is introduced
which is shown to keep the decoding gain as good as the theo-
retical PGDBF decoder while requiring a very small hardware
overhead compared to the non-probabilistic GDBF. The proposed
architecture is designed basing on a statistical analysis conducted
to find the key features of the randomness needed to maintain
the decoding gain and to reveal the simplification directions. The
efficiency of our proposed method is confirmed by the synthesis
results of decoder implementations on ASIC with 65nm CMOS
technology and performance simulations.

Keywords—Low-Density Parity-Check, Bit-Flipping decoder,
random generator, low-complexity implementation.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes provide an out-
standing error correction capability and have been adopted
to several communication standards such as IEEE 802.11n,
802.16a... Their practical decoders are classified into two
groups: either soft-information decoders, i.e. Belief Propa-
gation (BP), Min-Sum (MS) [1], which are very good in
term of error correction but require an intensive computation
or hard-decision decoders, i.e. Bit-Flipping (BF), Gradient
Descent Bit-Flipping (GDBF), which are usually weak in error
correction but very low-complexity. The BF-based decoders
iteratively exchange only 1 bit information between their
processing units known as Variable Nodes (VNs) and Check
Nodes (CNs). These short messages therefore require very
simple computation blocks and this is the source of simplicity
of such decoders. However, this simplification leads to a
significant loss in performance inspiring several improvement
works [2],[3].

Gradient Descent Bit-Flipping algorithm was proposed by
Wadayama et al. [2] and it offers a decoding performance
superior to all known BF-based decoders applied on Additive
White Gaussian Noise (AWGN). In GDBF decoder, Check
Node (CN) unit computes the parity check on all VNs con-
nected to it while Variable Node (VN) computes a function
called inversion or energy function. GDBF provides a principle
of finding the best suitable Variable Node (VN) (or group of
VNs) to flip by deriving from a gradient descent formulation
and minimizing a pre-defined function. The value of a VN
is flipped when its energy function value (called hereafter as
energy value) is a minima compared to those of all other VNs.
Soon afterwards, authors in [3] introduced a variant of GDBF
called Probabilistic Gradient Descent Bit-Flipping (PGDBF)
by transforming GDBF to apply on Binary Symmetric Channel
(BSC) and by adding a probabilistic manner in flipping of the

VNs. PGDBF follows similarly the decoding steps of GDBF
and the difference comes only from the flipping step of VN.
All the VNs flipped in GDBF are actually flipped only with
a probability of p (p < 1) in PGDBF. This modification
surprisingly improved the decoding performance, far better
than the original GDBF and very close to MS [3].

The PGDBF improvement in error correction comes with
the cost of additional resources. Indeed, as reported in [4], a
straightforward implementation of PGDBF on FPGA would
multiply by 8 the number of registers and by 1.64 the Look-
Up-Tables (LUTs) compared to non-probabilistic GDBF due
to the implementation of the PB. Although the decoding gain
of PGDBF is significant, this extra resource is non-negligible
and need to be optimized. In this paper, an optimal solution
to implement the PB of PGDBF is proposed and is shown
to keep the decoding gain as the theoretical PGDBF while
requires a very small extra resource. The proposed method
is drawn through a statistical analysis on random sequence
features affecting to the decoding performance. An important
conclusion shown is that the binary random sequence triggered
to VNs is not need to be too strong as in the straightforward
implementation mentioned above. This random sequence can
be re-used from one iteration to another or one random bit
can even be triggered to multiple VNs while preserving the
performance as using the independent random sequence.

The rest of the paper is presented as following. In Section
II, the PGDBF algorithm are described. We also present the
statistical analysis on the impact of random sequence to the
decoding performance, whose conclusions guide the PB opti-
mization. In Section III, the proposed PB with 2 initialization
methods is described. The global PGDBF decoder architecture
is also briefly presented in this section. We restrict ourselves
to forcus on the PB in this paper and leave many other
optimizations of the PGDBF decoder in its longer version [5].
In Section IV, we show for a test code, that the PGDBF with
our PB requires only 5.5% hardware overhead compared to
GDBF while preserving the theoretical PGDBF performance.
This very small complexity overhead along with a large gain
in decoding performance makes PGDBF algorithm as a very
competitive hard-decisions LDPC decoder for current and next
communication standard. Section V concludes the paper.

II. PROBABILISTIC GRADIENT DESCENT BIT FLIPPING

A. Notations
A binary LDPC code is defined by a sparse parity check

matrix H (M by N ) (M < N ). Each row represents a parity
check function computed by a CN and each column represents
a VN. The VN n (0 ≤ n ≤ N − 1) and the CN m (0 ≤
m ≤ M − 1) are called neighbors if the entry H(m,n) =
1. The neighbors set of the VN n is denoted as N (vn) and
similarly, the one of the CN m is denoted as N (cm). The size
of neighbor set is called node degree. We restrict ourselves
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to work only on the regular LDPC code, i.e. |N (cm)| = dc,
|N (vn)| = dv , ∀m,n. A binary vector x of size N is called a
codeword of LDPC code with H if H.xT = 0. This codeword
x is then transmitted through a Binary Symmetric Channel
(BSC) in which each bit of x is flipped with a probability α
called channel crossover probability. The output of the channel
is denoted as y. A Quasi-Cyclic LDPC code is the code that
H is composed by the Z by Z sub-matrices which are either
the cyclic-shift versions of a main diagonal or all-zero Z by
Z matrices (Z is called the circulant size) [1].

B. Probabilistic Gradient Descent Bit Flipping Decoder
A PGDBF decoding process is defined as an iterative

update of the VN values through the decoding iterations. We

denote vn (resp. cm) as VN (resp. CN) itself while v
(k)
n

(resp. c
(k)
m ) shows the node value at k-th iteration. The CN

computation in PGDBF is written in Equ. 1 where ⊕ is
the bit-wise Exclusive-OR operation. The PGDBF decoding
process is terminated when all CNs equations are satisfied, i.e.
c
(k)
m = 0, ∀m, or k reaches to the maximum value K allowed

(1 ≤ k ≤ K), otherwise, the PGDBF decoder continues to
decode. In the case of continuing to decode, the VNs follow
steps to update their values, described in Equ. 2 and 3. First,
each VN evaluates its energy value using Equ. 2. A VN energy
value is a sum of the neighbors CN values and the similarity
between the VN current value and its channel output, computed
by ⊕ function. This energy function is sent to a module called
Maximum Finder (MF) to sort out the maximum energy value
among N values as in Equ. 4. Second, in Equ. 3, the VN n-th
is flipped (XOR-ing with 1) if and only if the two following
conditions are satisfied concurrently: its energy value is equal
to the maximum energy indicated as 1 by the indicator function

(�(.)) and the value of R
(k)
n = 1 where R

(k)
n is the n-th random

bit in a random sequence R of length N at the k-th iteration

(R(k)), R(k) = {R(k)
n |0 ≤ n ≤ N − 1}, (Pr(R

(k)
n = 1) = p,

Pr(R
(k)
n = 0) = 1− p). The updated values of VNs are sent

to the next decoding iteration.

c(k)m = ψ
vn∈N (cm)

(v(k)n ) = ⊕
vn∈N (cm)

v(k)n (1)

E(k)
n = φ

cm∈N (vn)

(v(k)n , yn, c
(k)
m ) = v(k)n ⊕ yn +

∑

cm∈N (vn)

c(k)m

(2)
v(k+1)
n = v(k)n ⊕ (�(E(k)

n = E(k)
max) ∗R(k)

n ) (3)

E(k)
max = max

0≤n≤N−1
(E(k)

n ) (4)

The random sequence R(k) is produced by a PB block in which
each bit is, in principle, independent to others and the R(k)

is different from one iteration to another. The straightforward
implementation of PB as in [4] is, however, costly and it is
a bottleneck of the PGDBF decoder. We show in the next
section that the PB can be significantly simplified in order to
reduce the overhead resource, while preserving the decoding
performance as good as the theoretical PGDBF decoder.

C. Statistical analysis on the random sequence of PGDBF
We conduct a statistical analysis by running the PGDBF

decoder with the following setting. At k = 0, we generate
a random binary sequence R(0) of length N with weight

ω(R(0)), i.e. ω(R(0)) =
∑N−1

n=0 (R
(0)
n ). During the decoding

process (k ≥ 1), we produce the new random sequence for

next iteration, R(k+1), basing on the current random sequence
R(k) by one of the following 2 ways: R(k+1) = Fr(R

(k))
or R(k+1) = Fc(R

(k)) where Fr(R
(k)) returns a random

shuffling version of R(k) and Fc(R
(k)) does a cyclic-shift

on R(k), i.e. R
(k)
(n+1)%N = R

(k)
n (% is modulus operation).

The regular QC-LDPC code with dv = 3, dc = 6, code
rate R = 0.5, Z = 54 and N = 1296 [7] is the test code
throughout this paper. The decoding performance shown in the
Fig. 1(a) as functions of ω(R(0)) and α, leads to 2 interesting
remarks. First, the two methods of producing a new random
sequence (Fr(.) and Fc(.)) have strictly similar performance.
Although the later method produces a less “random-like” and
more correlation between iterations compared to the former
one, its decoding performance is equivalent to other one.
Second, an optimization on the value of p is not essential to
decoding performance. Indeed, the curves flatten on a large
range of ω(R(0)) which means that any PB generating a
random sequence with weight between 800 to 1250 is sufficient
to have good decoding performance for this LDPC code.

We push further the analysis by using a shorter sequence
(denoted as R′, and |R′| = S, S < N ) and use Fg(.) to
produce a N -bits sequence such that: R(k) = Fg(R

′(k)),

where Fg(R
′(k)) =

⋃
(
�N

S �⋃
1
(R′(k)), R′(k)0,...,N%S−1) and

⋃
(.)

is the vector concatenation operation. From iteration k to
k + 1, we apply Fc(.) only on R′(k) to produce the new
sequence, R′(k+1) = Fc(R

′(k)). This method obviously makes
more correlation in the produced random sequence since some
VNs can share a common random bit at a decoding iteration
especially at the small value of S. Interestingly, the good
performance is still maintained when using the short sequence
R′ with size only S = 4Z (Fig. 1(b)). We can even use a
smaller value of S = Z = 54 with an acceptable performance
loss. We have verified all these conclusions with different
LDPC codes with different codeword lengths and rates.

III. THE PROPOSED HARDWARE ARCHITECTURE

A. The proposed perturbation architecture
1) Cyclic shift and concatenation of a short sequence R′:

As a realization of the statistic analysis setting, our proposed
PB architecture makes use a band of registers R′, with size
S < N , to store a generated random bits. A hard connection
network is implemented to produce R from R′, i.e. R(k) =
Fg(R

′(k)), and fully apply to N VNs as described in Fig. 2.
In order to make the R(k) be different from an iterations to
another, a cyclic shift operation is operated on R′ after each
iteration (R′(k+1) = Fc(R

′(k))). By using the short sequence
R′ and the simple cyclic shift, the proposed PB significantly
reduces the decoder complexity presented in the next section.

2) Two initializing methods for the short sequence R′:
When the registers band R′ and the hard connection network
are allocated, the registers in R′ are needed to be initialized so
that the total number of 1’s in the projected sequence R falls
into the interest range shown in Section II-C. We introduce
in this section two initializing methods which satisfy this
requirement with different decoding behavior.

In the first method, we make use of the conventional
pseudo-random generating method, known as Linear Feedback
Shift Register (LFSR), to initialize R′(0). The LFSR forms
at its output an integer which is compared to a pre-defined
threshold to produce a bit. By changing this threshold value,



(a) Decoding performance of PGDBF
decoder with 2 methods of producing
the random binary sequences.

(b) PGDBF decoder with a short se-
quence R′(k) with size of S, compared
to theoretical PGDBF decoder.

(c) The comparison on decoding per-
formance. BF-based decoders with
K = 300 and MS with K = 20.

(d) The average number of iteration.

Fig. 1: Figures of the statistical analysis and decoding performance.

AREA (μm2)

S = Z = 54 S = 4Z = 216 S = 8Z = 432 S = 12Z = 648 S = 24Z = 1296
GDBF 53692 (+0%)

LFSR-PGDBF 55837 (+4.00%) 57342 (+6.80%) 58840 (+9.59%) 60360 (+12.42%) 64897 (+20.87%)

IVRG-PGDBF 55586 (+3.53%) 57295 (+6.71%) 59042 (+9.96%) 60815 (+13.27%) N/A

TABLE I: Decoder complexity comparison.

the appearance probability of bit 1’s (or 0’s) is controlled.
We use the 32-bits LFSR to make the generated correlation
negligible [9]. One LFSR module is implemented and serially
produces S random bits to initialize the registers of R′. The
PGDBF decoder using the LFSR module to initialize R′ is
denoted as LFSR-PGDBF.

In the second method, we have introduced a specific way
to generate a random sequence without using a real random
generator (RG) [4]. Our method, called as Intrinsic-Valued
Random Generator (IVRG), showed that CN values computed
at the first iteration is already a random sequence. Typically,
there is a fraction of bits 1’s in the CN sequence (at the first
iteration) when errors appear in the received codeword. The
probability of a CN to be unsatisfied (be 1’s) can be formulated
as a function of α [4] and we found that, by complementing
this sequence, the number of 1’s always falls into the interest
range shown in Section II-C. In order to initialize R′, a hard
connection, formed by a complement gate, is implemented
connecting the output of a CN to the input of a register in
sequence R′. At the first iteration, a signal triggers to store
into the registers the complement of connected CN outputs,
forming R′(0) and decoder is ready to decode. Since one CN
output connects to one register in R′, IVRG method can be
applied for any value of S ≤ M and we denote the PGDBF
with IVRG initialization as IVRG-PGDBF.

B. Implemented PGDBF Architecture
The other parts of PGDBF decoder are implemented as in

Fig. 3. The CN operation is realized by a dc-inputs XOR gate.
Each VN unit requires 2 1-bit registers to store its channel
output bit and intermediate value. Since the energy compu-
tation (the sum module) as well as the equality comparator
and flipping gate (XOR gate) are implemented as combinatory
circuit, the intermediate-value register is updated at each clock
cycle. Because of that, our PGDBF decoder requires only 1

Fig. 2: The proposed perturbation architecture for PGDBF
decoder.

Fig. 3: The hardware architecture of implemented PGDBF.

clock cycle for 1 decoding iteration. We make use of Leading-
Zero Counting Topology (LCT) [6] method to implement the
Maximum Finder to shorten the critical path and maximize the
decoding throughput. This MF receives the computed energies,

E
(k)
n , from N VNs and is in charge of finding E

(k)
max to send

back at the E
(k)
max-input of each VN. Due to the lack of space,

we do not show the details of the optimized MF as well as
other PGDBF optimizations in this paper and put them in a
longer version [5].

IV. SYNTHESIS RESULTS AND DECODING PERFORMANCE

A. Synthesis results
The designed BF decoders are synthesized on 65nm CMOS

technology using Synopsys tools. We compare our imple-
mented PGDBF decoders with the non-probabilistic GDBF and
also with MS decoder benchmarks [7], [8] in literature. The
MS implementation in [7] is for the same LDPC code (dv = 3,
dc = 6, code rate R = 0.5, Z = 54 and N = 1296) while
[8] considers the IEEE 802.11n standard codes with various
lengths and rates.

We first highlight the effect of the size S of R′ on the
decoder complexity by keeping the timing constraint of all BF
decoders identical (8ns) in synthesis process, assuming that
all BF decoder are working on the same clock frequency. The
results are reported in Table I. It can be seen that the hardware
overhead of PGDBF is proportional to S and the 2 initial-
izing methods are equivalent in term of hardware resource.
Interestingly, the extra hardware for PGDBF decoder with
S = 4Z, which is shown in the next section to be sufficient to
have decoding performance similar to the theoretical PGDBF
decoder, is only 6.71% for IVRG-PGDBF and 6.8% for LFSR-
PGDBF. The hardware overhead can even be negligible (only
3.97%) by using S = Z at a cost of small performance lost.

For the second comparison, we search for the maximum
frequency (fmax) at which the decoders can operate and



compute correspondingly the decoding throughput θ as θ =
N∗fmax

kave∗nc
where kave denotes the average number of iterations,

fmax is the maximum decoding frequency, and nc is the
number of clock cycles required for one decoding iteration.
The corresponding area is also reported in the table (Table II).
It can be seen that the PGDBF decoders require differently
on the extra hardware. The LFSR-PGDBF requires 14.5%
additional hardware compared to GDBF while IVRG-PGDBF
needs only 5.5% at the same maximum operating frequency.
The MS, as expected, is very much higher in complexity
compared to BF decoders. The MS decoder in [7] is more
than 7 times complexity compared to LFSR-PGDBF while in
[8], it needs even more than 10 times. We make comparison
on the decoding throughput in two scenarios. The fist scenario
is for the same target performance, i.e. FER = 1e−5, the
IVRG-PGDBF decoder is 3 times faster than MS of [7] and
it is 75.5/144 � 52% of GDBF. Note that, GDBF requires
a very low level of noise (α = 0.005) while other decoders
are much higher (α = 0.014 of LFSR-PGDBF and α = 0.025
of MS). The second setting is that all decoders operate at the
same level of noise, i.e. α = 0.01. The PGDBF decoders again
offer a very competitive throughput with 2 times faster than
MS and comparable to GDBF (87 compared to 97 Gbps). The
PGDBF decoders are, of course, weaker in error correcting,
FER = 5e−6, compared to FER = 1e−7 of MS but are
a lot stronger than GDBF (FER = 3e−4). The advantage
in throughput of PGDBF decoders over MS is confirmed by
comparison with the MS implemented in [8]. The IVRG-
PGDBF is more advantageous compared to LFSR-PGDBF in
term of decoding throughput (around 10%) which comes from
the lower average number of iterations as seen in Figure 1(d).

The PGDBF decoding throughput are, in general, inferior
to the one of GDBF decoder. We further optimize the number
of average iteration of PGDBF by applying the randomness
only after a subsequent iterations, i.e. decoding by GDBF
algorithm for 1 ≤ k ≤ 10 and PGDBF algorithm with
10 < k ≤ K. This modification comes from the fact that
some error patterns can be easily corrected by GDBF in few
iterations without the strength of PGDBF (which decelerates
the converging speed). The average number of iteration is
significantly reduced and even better than GDBF decoder as
shown in Figure 1(d). This results the better throughput of
PGDBF, for example, with the modification at α = 0.01,
kave = 4.68, θIV RG−PGDBF = θLFSR−PGDBF = 104.65
Gbps while θGDBF = 97.63 Gbps.

B. Decoding performance
The simulated decoding performance of decoders are

shown in Fig. 1(c). In general, PGDBF decoder is the best BF
decoder and approaching to a soft decision decoder (MS). We
observe that with S ≥ 4Z, decoding performance of PGDBF

decoder is identical to the theoretical PGDBF. A small loss
appears when S = Z at the gain in complexity as mentioned
previously. MS decoder, as expected, is the best in performance
as seen in the Fig. 1(c).

V. CONCLUSION

We propose in this paper a simplified, low-complexity
PB structures for the PGDBF decoder. Our PB is based on
the use of a short register sequence and duplicated to apply
to all VNs. Two initializing methods are introduced which
form 2 types of PGDBF decoders named as LFSR-PGDBF
and IVRG-PGDBF. The simulated performance and ASIC
implementations confirm that PGDBF decoder has a very low-
complexity, high throughput and good performance and it is
a competitive candidate for current and next communication
standard.
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MS [7] 1296 1/2 720000 250 6 2.34 (@α = 0.025) 23.08 1.29 (FER = 1e−7) 41.86
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