
A Novel High-Throughput, Low-Complexity
Bit-Flipping Decoder for LDPC Codes
Khoa Le∗, Fakhreddine Ghaffari∗, David Declercq∗, Bane Vasic†, Chris Winstead‡

∗ETIS, UMR-8051, Université Paris Sein, Université de Cergy-Pontoise, ENSEA, CNRS, France,
{khoa.letrung, fakhreddine.ghaffari, declercq}@ensea.fr

†Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA, vasic@ece.arizona.edu
‡Department of Electrical and Computer Engineering, Utah State University, UT, USA, chris.winstead@usu.edu

Abstract—This paper presents a new high-throughput, low-
complexity Bit Flipping (BF) decoder for Low-Density Parity-
Check (LDPC) codes on the Binary Symmetric Channel (BSC),
called Probabilistic Parallel Bit Flipping (PPBF). The advantage
of PPBF comes from the fact that, no global operation is required
during the decoding process and from that, all of the compu-
tations could be parallelized and localized at the computing
units. Also in PPBF, the probabilistic feature in flipping the
Variable Node (VN) is incorporated for all satisfaction level of
its CN neighbors. This type of probabilistic incorporation makes
PPBF more dynamic to correct some error patterns which are
unsolvable by other BF decoders. PPBF offers a faster decoding
process with an equivalent error correction performance to the
Probabilistic Gradient Descent Bit Flipping (PGDBF) decoder,
which is better than all so-far introduced BF decoders in BSC
channel. A hardware implementation architecture of PPBF is also
presented in this paper with detailed circuits for the probabilistic
signal generator and processing units. The implementation of
PPBF on FPGA confirms that, the PPBF complexity is much
lower than that of the PGDBF and even lower than the one of
the deterministic Gradient Descent Bit Flipping (GDBF) decoder.
The good decoding performance along with the high throughput
and low complexity lead PPBF decoder to become a brilliant
candidate for the next generation of communication and storage
standards.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes have been
adopted to several communication standards such as IEEE
802.11n, 802.3an, 802.16a etc. [1][2][3] due to their near-
capacity error correction capability and their manageable com-
plexity implementation [4]. LDPC can be effectively decoded
by the either soft-information message passing decoders, i.e.
Min Sum (MS), Sum Product (SP) [4], or hard-decision
decoders, i.e. Bit Flipping (BF), Gallager-A,B [5]. The hard
decision decoders have been recently attracted much attention
due to the high decoding throughput, low-complexity imple-
mentation and the progressive improvement in error correction,
approaching or even surpassing the soft-decision decoders [6].
The LDPC decoding is an iterative process where messages
are iteratively passed between the computing units, Variable
Nodes (VNs) and Check Nodes (CNs). The low-complexity
of hard decision decoders comes from the fact that only 1-
bit messages are iteratively passed between VNs and CNs
which simplifies the connection networks. Furthermore, the
computing units which process these 1-bit messages, are very
simple and therefore, enhance the decoding throughput. In

this paper, we focus on this hard decision decoder to further
improve the decoding throughput and decoder complexity
while maintaining (or even improving) the performance of the
best BF decoder.

Several BF decoders have been proposed recently in lit-
erature where Gradient Descent Bit Flipping (GDBF) and
Probabilistic Gradient Descent Bit Flipping (PGDBF) could
be seen as the best algorithms, in term of error correction, on
BSC channel. GDBF is proposed by Wadayama et al. in 2010
[7]. In GDBF, CN unit computes the parity check (Exclusive-
OR operation) on all of its connected VNs, as in standard BF
decoder, while VN computes a function called inversion or
energy function derived from a gradient descent formulation.
A VN is flipped when its energy value is a minima compared
to all other energies. GDBF provides a very good error
correction and it is better than prior-introduced deterministic
BF decoders. PGDBF is a variant of GDBF, introduced by
Rasheed et al. in 2014 [8], applied on Binary Symmetric
Channel (BSC). PGDBF follows precisely the decoding steps
of GDBF and differs only from the VN flipping operations.
All the flipping candidates in GDBF are only flipped with
a probability of p0 (p0 < 1) in PGDBF. This probabilistic
behavior interestingly improves the decoding performance, far
better than the original GDBF and very close to MS [8].

A drawback of GDBF and PGDBF is that, a global sorting
(the Maximum Finder - denoted as MF, in [9]) is required
to identify the minima (or maxima) among all VN energy
values. This global operation lengthens the critical path of
the decoders and limits the maximum achievable frequency,
especially when the codeword length is extended. Although the
decoding throughput of GDBF and PGDBF is very promising
as shown in [9],[10] the global operation is the main obstacle
in further improving the operating frequency and therefore,
the decoding throughput. Furthermore, the MF is the most
hardware exhaustive part in GDBF and PGDBF decoders [9].

This paper presents a new probabilistic parallel BF decoder
(PPBF) in which the global operation is not required. The
flipping decision in each VN of PPBF is made intrinsically in
the VN basing only on its neighbor CN values and the signal
from the probabilistic signal generator. The critical path is
shortened and the flipping is, therefore, parallelized, which
significantly enhances the decoding throughput. More inter-

2017 International Conference on Advanced Technologies for Communications

978-1-5386-2896-6/17/$31.00 ©2017 IEEE 126

estingly, by eliminating the global operation, PPBF becomes
a very low-complexity, even lower than deterministic GDBF
decoder, while providing a comparable decoding performance
to PGDBF.

The rest of the paper is organized as following. In Section II,
the notations of LDPC codes and LDPC decoding algorithms
are firstly introduced. The PPBF algorithm is then presented.
It is shown that, PPBF has the similar property of PGDBF
decoder in probabilistic flipping while not requiring the MF.
Another difference is that, PPBF applies the VN flip possibility
at all energy values rather than only the maximum one.
In Section III, an implementation architecture of PPBF is
presented with detailed circuit for the probabilistic signal
generator and processing units. In Section IV, we show for
the test case that, the PPBF requires only 1/2 the Look-Up-
Tables (LUTs) of a GDBF implementation in the literature
while the obtained maximum frequency is 183% higher. The
decoding performance is shown to be as good as the PGDBF
decoder. The same conclusion can be drawn for another longer
test code where the maximum frequency is around 161%
faster while reducing 33% LUTs compared to a PGDBF
implementation. The good decoding performance along with
the high throughput and low complexity lead PPBF decoder
to become a brilliant candidate for the next generation of
communication and storage standards. Section V concludes
the paper.

II. THE PROBABILISTIC PARALLEL BIT FLIPPING
DECODER

A. Notations

An LDPC code is defined by a sparse parity-check matrix H
(M,N), N > M . Each row represents a parity check function,
computed by a CN, on the VNs represented by the columns.
The VN vn (1 ≤ n ≤ N) is checked by the CN cm (1 ≤ m ≤
M) if the entry H(m,n) = 1 and they are called neighbors.
LDPC code can also be represented by a bipartite graph called
Tanner graph composing two groups of nodes, the CNs cm,
(1 ≤ m ≤ M) and the VNs vn, (1 ≤ n ≤ N). The VN vn
(1 ≤ n ≤ N) connects to the CN cm (0 ≤ m ≤ M) by
an edge in the Tanner graph if the entry H(m,n) = 1. We
denote the set of CNs connected to the VN vn as N (vn), (1 ≤
n ≤ N), and |N (vn)| is called VN degree. Similarly, N (cm),
(1 ≤ m ≤M) denotes all VNs connected CN m and |N (cm)|
is the CN degree. This paper works on the regular LDPC
code, i.e. |N (vn)| = dv and |N (cm)| = dc ∀n,m. A vector
x = {xn} = {0, 1}N , (1 ≤ n ≤ N) is called a codeword
if and only if HxT = 0. x is sent through a transmission
channel and we denote y = {yn}, (1 ≤ n ≤ N) as the
channel output. The decoder presented in this paper is applied
on the Binary Symmetric Channel (BSC) where each bit xn ∈
x is flipped with a probability α, called channel crossover
probability, when being transmitted, i.e., prob(yn = xn) =
1− α and prob(yn = 1− xn) = α, 1 ≤ n ≤ N .

B. The Probabilistic Parallel Bit Flipping Decoder

The proposed Probabilistic Parallel Bit Flipping Decoder is
an A Posteriori Probability (APP) message passing decoding
which iteratively updates the VN values via the decoding
iterations. We denote cm (resp. vn) as CN (resp. VN) itself
while c(k)m (resp. v(k)n) shows value of the CN (resp. VN) at
iteration k.

The CN computation in PPBF is a parity check on all values
of its neighbor VNs, as in the standard BF. The CN computing
equation is formulated as in Equ. 1 where ⊕ is the bit-wise
Exclusive-OR (XOR) operation. The PPBF decoding process
is terminated when all CNs equations are satisfied, i.e. c(k)m =
0,∀m, or k reaches to the maximum value K allowed (k =
K).

c(k)m = ⊕
vn∈N (cm)

v(k)n (1)

E(k)
n = v(k)n ⊕ yn +

∑
cm∈N (vn)

c(k)m (2)

At the k iteration, each VN updates its value by the following
steps. First, the VN evaluates its energy function, denoted
by E

(k)
n , 1 ≤ n ≤ N , using Equ. 2. The energy value is a

sum of the neighbors CN values and the similarity between
the VN current value to its channel output (computed by
⊕ function). It is clear that, the energy value for any VN
varies between 0 to dv + 1, (0 ≤ E

(k)
n ≤ dv + 1) and that

the energy computation is similar to those of the GDBF and
PGDBF decoders in [8]. Second, in the flipping step, each
VN vn is flipped with a probability depending on its energy
values, i.e. VN vn is flipped with pe if E(k)

n = e where
pe ∈ p = {p0, p1, ..., pdv+1}, p0 = 0, pdv+1 = 1 and
0 < pe < 1 when 1 ≤ e ≤ dv . The updated values of VNs
are sent to the next decoding iteration. The PPBF decoding is
described in algorithm 1 where we denote R(k)

n = {0, 1} is a
random value and R = {Rn}, 1 ≤ n ≤ N .

Algorithm 1 Probabilistic Parallel Bit Flipping (PPBF)

Initialization k = 0, v
(0)
n ← yn, 1 ≤ n ≤ N .

Initialization p = {p0, p1, ..., pdv+1}, p0 = 0, pdv+1 = 1.
s = Hv(0)T mod 2
while s 6= 0 and k ≤ K do

Compute c
(k)
m , 1 ≤ m ≤M , using Eq. (1).

Compute E
(k)
n , 1 ≤ n ≤ N , using Eq. (2).

Generate R
(k)
n , 1 ≤ n ≤ N , from B(p), p = p

E
(k)
n

.
for 1 ≤ n ≤ N do

v
(k+1)
n = v

(k)
n ⊕R(k)

n

end for
s = Hv(k+1)T mod 2
k = k + 1

end while
Output: v(k)

It can be seen that, PPBF follows similarly the decoding
steps of PGDBF decoder and the differences are two folds.
First, PPBF does not require the maximum energy in making

2017 International Conference on Advanced Technologies for Communications

127

Figure 1. The statistical analysis of decoding failure of BF decoders on the
Tanner code: A. The failed type in error correction of GDBF decoder, B. The
remaining after re-decoding the error patterns in (A) by PPBF.

flip decision and therefore, no global sorting is needed. It
comes from the fact that, each VN flips its value basing only
on its own energy and the random signal input regardless
the energies of other VNs. Second, in the binary random
generating step, the probability of generated bit, R(k)

n , is
dynamically changed on the VN and the decoding iteration.
This probability is controlled by the VN enegy values in each
iteration while in PGDBF, it is fixed for all iterations and is
equal for all VNs.

Despite the above differences, PPBF has the good property
known as oscillation breaking to improve error correction ca-
pability [11][12]. Indeed, the failure of GDBF decoder comes
from the fact that, during the decoding process, it falls into
the infinite oscillations (or loops) between the states, which
prevent converging to the correct codeword [9],[11]. The prob-
abilistic flip manner of PPBF helps break these oscillations and
converge. We conducted a statistical analysis on the failures
of GDBF decoder on the dv = 3, dc = 6, N = 155,M = 93
[13] (denoted by Tanner code) and plot results in Figure 1.
In Figure 1A, we classified all the failure cases of GDBF
by the `-iterations oscillation types, i.e. the position of bits
in error repeated after ` iterations. It can be seen that, the
2-iterations oscillation dominates other types in the GDBF
failure, especially in the low error region. We then re-decoded
the GDBF failure cases by PPBF and plot the result in Figure
1B. It is remarked that, the PPBF breaks the oscillation and
corrects almost the failure cases of GDBF, especially in low
error region. This above interesting property is the source of
PPBF error correction improvement.

The result of PPBF in the above statistic is even better than
the PGDBF decoder since there are some error patterns with
which PGDBF failed while PPBF could correct. These error
patterns also lead PGDBF to an infinite oscillations (loops)
and fail to converge to the correct codeword. We show one of
these error patterns in Figure 2 where there are 4 bits in error
allocated in a Trapping Set (5, 3) [9]. Figure 2A describes the

Figure 2. The 4-bits error pattern with which PGDBF failed to correct while
PPBF can correct. The correct VN (satisfied CNs) are denoted as white-
filled circles (squares), the uncorrect VN (unsatisfied CNs) are the black-filled
circles (squares).

error positions initially received from the channel with which
the VN v5 has maximum energy (E(0)

5 = 2) (other VNs have
energy of 1) and v5 becomes the only flip candidate. In the case
PGDBF flips v5, the error locations are in Figure 2B and in
this case, v5 is again the only flip candidate since it has energy
of 2 while others have either 1 or 0. PGDBF sticks between 2
states (Figure 2A and 2B) regardless the flip decision made.
PPBF, on contrary, corrects this error pattern because it not
only flips v5 with p2 but also other VN with p1 > 0 and from
this, it may escape from the oscillation and converge as in the
statistical result. We keep the further analysis in another work.

The vector p affects not only to the decoding performance
but also to the implementation and the average iterations. Due
to the lack of space, the optimization of p and theoretical anal-
ysis on the decoding performance gain are not introduced and
presented in another work. In this paper, we use the empirical
optimized value, p = {0, 0.01, 0.1, 0.9, 1} for the dv = 3
test codes, which provides a good decoding performance and
facilitates the hardware implementation, as shown in the next
section. One can also choose experimentally other values of
p and it may line on the following criterions. In principle, the
bit that has higher energy value should have higher probability
of flip. It is obvious to choose p0 = 0 since the VN having all
neighbor CN satisfied and being similar to the channel received
value, should not be flipped. The VN that has all neighbor CN
unsatisfied and disagrees to the channel received value, should
be flipped (p4 = 1). The VN that has energy of 1 should be
flipped with a small probability (close to 0) to avoid flip too
many correct VNs unintentionally since there may exist many
correct VNs having the energy of 1.

III. THE HARDWARE ARCHITECTURE FOR PPBF
DECODER

In this section, we present the hardware architecture for
the PPBF decoder. We illustrate for the dv = 3 LDPC code
implementation and the extension for other VN degrees is
straightforward.

A. The probabilistic signal generator for PPBF decoder

A straightforward that one could apply to implement the
probabilistic signal generator (random generator - RG), is

2017 International Conference on Advanced Technologies for Communications

128

Figure 3. The proposed probabilistic signal generator for PPBF decoder.

to use the Linear Feedback Shift Register (LFSR) random
generator as in [10] where the energy value controls the LFSR
decision threshold. This method may be costly since each
VN requires an LFSR module. In this paper, we propose
to use a method called Cyclic Shift Truncated Sequence
(CSTS) introduced in [9]. In this optimization, a short register
sequence Rt with size |Rt| = S < N is allocated and stores
the randomly generated bits, being 1 with certain probability.
The register outputs of this short sequence are then randomly
triggered to the Probability Controlling Units (PCU) by a
cross-bar network as in Figure 3. Rt is cyclically shifted from
one iteration to another to make its outputs differently.
N PCU modules are designed for N VNs. Each PCU has

3 outputs internally named as p1, p2 and p3. These outputs
have the value of 1 with the probability correspondingly to
p1, p2 and p3 in p. We use the logic gates to control the
probability output as used in [10]. In this particular case for
dv = 3 where p1 = 0.01, p2 = 0.1 and p3 = 0.9, Rt stores the
p = 0.1 randomly generated sequence. Then, p2 = p = 0.1,
p3 = NOT (p) = 0.9, p1 = pANDp = 0.01 and are realized
by the logic gates as in Figure 3.

An issue emerging is that, the correlation may be significant
and may affect to the decoding performance when the size
S of Rt is small. We have conducted a statistic on the
decoding performance as a function of S as in [9] and the
same conclusion was drawn. That is, S could be small (for
the test code dv = 3, dc = 6, N = 1296,M = 648 LDPC
code [14] - denoted by dv3R050N1296, S = 216 is sufficient)
without performance loss.

B. The computing units of PPBF decoder

The proposed architecture to implement PPBF is presented
in Figure 4. The CN processing units (CNU) are simply the
dc-inputs XOR gates which have the VN messages, propagated
by the connection network 2, as the inputs. The CNU outputs
are transmitted by the connection network 2 to the VNU inputs
(cvn denotes the N (vn), 1 ≤ n ≤ N). In each variable
node processing unit (VNU), two registers to store the channel
output value (yn) and the intermediate value of the VN at the
iterations k-th, (v(k)n) are implemented. By taking the result of
the XOR1, the summation block computes the energy value
which plays as the selection input of the multiplexer module.
The inputs of the multiplexer are either the output of RG or a

fixed values 0 or 1. The XOR2 is in charge of flipping the bit
(v(k)n) whenever the multiplexer output is 1, and this value is
stored back to the register as the value for the next iteration.
PPBF decodes 1 iteration in 1 clock cycle.

IV. SYNTHESIS RESULTS AND DECODING PERFORMANCE

A. Synthesis results

We make the comparisons by implementing PPBF decoder
for a short code N = 155 (Tanner code) and a longer code
N = 1296 (dv3R050N1296 code) on FPGA Xilinx Virtex
6. The strategy is to look for minimum timing constraint to
which the synthesizer (the ISE 14.7) can pass (which indicates
the maximum achievable frequency that the decoders can
operate) after place-and-route synthesizing processing. The
results are reported in Table I for Tanner code and Table II
for dv3R050N1296 code. We denote θ as the target decoding
throughput and compute by the equation: θ = N∗Fmax

kave
where

Fmax is the maximum decoding frequency, kave denotes the
target average iterations. By defining kave, we roughly ignore
the effect of channel crossover probability α in computing θ.
kave is set by 10 for all throughput computations in this paper.

In the first comparison, the hardware results of GDBF and
PGDBF in Table I are extracted from [10] in literature. It can
be seen that, the PPBF significantly reduces the hardware cost
even compared to GDBF. It requires only 50% of registers
and 46% of LUTs of GDBF implementation. It is a significant
gain since PPBF offers an equivalent decoding performance to
PGDBF (shown in next section) while the PGDBF implemen-
tation requires an additional 9.7% of registers and 12.1% of
LUTs of GDBF. As expected, the PPBF maximum frequency
is 85% higher than PGDBF (and GDBF) which leads to a
higher decoding throughput, 3.78 Gbps compared to 2.04 Gbps
of PGDBF.

Figure 5. The decoding performance of PPBF, on comparison to other BF
decoders and to MS on the Tanner code.

The synthesis results and decoding throughput when imple-
menting on the N = 1296 code is presented in Table II. Since
the hardware implementation results of GDBF and PGDBF in

2017 International Conference on Advanced Technologies for Communications

129

Figure 4. The proposed architecture for the realization of PPBF decoder for dv = 3 LDPC codes.

Table I
SYNTHESIS RESULTS AND DECODING THROUGHPUT OF PPBF ON COMPARISON TO OTHER BF DECODERS ON THE TANNER CODE.

1-bit Register Slice LUTs Fmax (MHz) Throughput (Gbps)

Non-Probabilistic GDBF [10] 946 (+0%) 2151 (+0%) 132 (+0%) 2.04 (+0%)

PGDBF with IVRG [10] 1038(+9.7%) 2412(+12.1%) 132 (+0%) 2.04 (+0%)

PPBF (S= 155) 476 (-50%) 991 (-54%) 244 (+85%) 3.78 (+85%)

Figure 6. The decoding performance of PPBF, on comparison to other BF
decoders and to MS on the dv3R050N1296 code.

[9] on FPGA were not introduced, we design these decoders
by following the descriptions in that paper, synthesize on the
FPGA and report the results on Table II. The same remarks
can be drawn as the previous comparison. The PPBF reduces

up to 23.9% of LUTs compared to GDBF while requires 8.3%
of registers overhead. This extra registers required are for the
RG implementation. The throughput improvement is around
60% compared to PGDBF, 15.8 Gbps compared of 9.85 Gbps
of PGDBF.

B. Decoding performance

The simulated decoding performance of decoders are shown
in Figure 5 for Tanner code and in Figure 6 for dv3R050N1296
code. In general, PPBF decoder is equivalent to the PGDBF
decoder. For the performance in Tanner code, it is strictly close
to PGDBF and far better than GDBF. Since PPBF can solve
some low-weight error patterns presented above, the advantage
of PPBF over PGDBF can be seen at the very low Frame Error
Rate (error floor). There is a negligible performance loss of
PPBF compared to PGDBF on dv3R050N129 code and both
of them are halfway towards the MS decoding performance.

V. CONCLUSION

We propose in this paper a new high-throughput, low-
complexity Bit Flipping decoder for Low-Density Parity-
Check (LDPC) codes on Binary Symmetric Channel (BSC),
called Probabilistic Parallel Bit Flipping (PPBF). PPBF is
more advantageous than Gradient Descent Bit Flipping and

2017 International Conference on Advanced Technologies for Communications

130

Table II
SYNTHESIS RESULTS AND DECODING THROUGHPUT OF PPBF ON COMPARISON TO OTHER BF DECODERS ON THE DV3R050N1296 CODE.

1-bit Register Slice LUTs Fmax (MHz) Throughput (Gbps)

Non-Probabilistic GDBF [9] 2608 (+0%) 9528 (+0%) 76 (+0%) 9.85 (+0%)

LFSR-PGDBF, S = 216 [9] 2858(+9.6%) 10839(+13.8%) 76 (+0%) 9.85 (+0%)

PPBF (S= 216) 2825 (+8.3%) 7250 (-23.9%) 122 (+60.5%) 15.81 (+60.5%)

Probabilistic GDBF in term of operating frequency and de-
coder complexity thanks to the elimination of the global
operation This elimination helps shorten the critical path and
reduce the decoder hardware cost. Furthermore, in PPBF, the
probabilistic VN flip is introduced for all level of energy values
rather than only on the maximum values as in PGDBF. PPBF
provides a very good error correction capability and in some
case, overcomes some error patterns with which other BF
decoders can not correct. The PPBF FPGA implementations
using the proposed architecture re-confirm that, PPBF is a very
low-complexity, high throughput decoder. PPBF is, therefore, a
competitive candidate for the next communication and storage
standards.

ACKNOWLEDGMENT

This work was funded by the french ANR under grant
number ANR-15-CE25-0006-01 (NAND project).

REFERENCES

[1] “Wireless lan medium access control and physical layer specications:
Enhancements for higher throughput, p802.11n/d3.07,” IEEE-802.11n,
Mar. 2008.

[2] “Local and metropolitan area networks - part 16, ieee std 802.16a-2003,”
IEEE-802.16.

[3] “Ieee standard for information technology - corrigendum 2: Ieee std
802.3an-2006 10gbase-t correction,” IEEE Std 802.3-2005/Cor 2-2007
(Corrigendum to IEEE Std 802.3-2005), Aug. 2007.

[4] D. Declercq, M. Fossorier, and E. Biglieri, “Channel coding: Theory,
algorithms, and applications,” Academic Press Library in Mobile and
Wireless Communications, Elsevier, ISBN: 978-0-12-396499-1, 2014.

[5] R. G. Gallager, “Low density parity check codes,” MIT Press, Cam-
bridge, 1963, Research Monograph series, 1963.

[6] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent
bit-flip decoding for ldpc codes,” IEEE Transactions on Communica-
tions, vol. 62, no. 10, pp. 3385–3400, Oct 2014.

[7] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, “Gradient descent bit flipping algorithms for decoding ldpc
codes,” IEEE Transactions on Communications, vol. 58, no. 6, pp. 1610–
1614, June 2010.

[8] O. A. Rasheed, P. Ivanis, and B. Vasić, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder,” IEEE Communications Letters,
vol. 18, no. 9, pp. 1487–1490, Sept 2014.

[9] K. Le, F. Ghaffari, D. Declercq, and B. Vasić, “Efficient hardware
implementation of probabilistic gradient descent bit-flipping,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 4,
pp. 906–917, April 2017.

[10] K. Le, D. Declercq, F. Ghaffari, C. Spagnol, E. Popovici, P. Ivanis,
and B. Vası́c, “Efficient realization of probabilistic gradient descent bit
flipping decoders,” in 2015 IEEE International Symposium on Circuits
and Systems (ISCAS), May 2015, pp. 1494–1497.

[11] D. Declercq, C. Winstead, B. Vasic, F. Ghaffari, P. Ivanis, and E. Boutil-
lon, “Noise-aided gradient descent bit-flipping decoders approaching
maximum likelihood decoding,” in 2016 9th International Symposium
on Turbo Codes and Iterative Information Processing (ISTC), Sept 2016,
pp. 300–304.

[12] B. Vasić, P. Ivanis, and D. Declercq, “Approaching maximum likelihood
performance of ldpc codes by stochastic resonance in noisy iterative
decoders,” in Information Theory and Applications Workshop, Feb. 2016.

[13] M. Tanner, D. Srkdhara, and T. Fuja, “A class of group-structured ldpc
codes,” in Proc. 5th Int. Symp. Commun. Theory App., July 2001.

[14] T. T. Nguyen-Ly, T. Gupta, M. Pezzin, V. Savin, D. Declercq, and
S. Cotofana, “Flexible, cost-efficient, high-throughput architecture for
layered ldpc decoders with fully-parallel processing units,” in 2016
Euromicro Conference on Digital System Design (DSD), Aug 2016, pp.
230–237.

2017 International Conference on Advanced Technologies for Communications

131

