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Noise-Aided Gradient Descent Bit-Flipping Decoders 
approaching Maximum Likelihood Decoding 

D. Declercq, C. Winstead, B. Vasic, F. Ghaffari, P. Ivanis and E. Boutillon 

Abstract-In the recent literature, the study of iterative LDPC decoders 
implemented on faulty-hardware has led to the counter-intuitive 
conclusion that noisy decoders could perform better than their noiseless 
version. This peculiar behavior has been observed in the finite codeword 

length regime, where the noise perturbating the decoder dynamics help 

to escape the attraction of fixed points such as trapping sets. 
In this paper, we will study two recently introduced LDPC decoders 
derived from noisy versions of the gradient descent bit-flipping decoder 
(GDBF). Although the GDBF is known to be a simple decoder with 
limited error correction capability compared to more powerful soft­
decision decoders, it has been shown that the introduction of a random 
perturbation in the decoder could greatly improve the performance 
results, approaching and even surpassing belief propagation or min-sum 
based decoders. 
For both decoders, we evaluate the probability of escaping from a 
Trapping set, and relate this probability to the parameters of the injected 
noise distribution, using a Markovian model of the decoder transitions 
in the state space of errors localized on isolated trapping sets. 
In a second part of the paper, we present a modified scheduling of our 
algorithms for the binary symmetric channel, which allows to approach 
maximum likelihood decoding (MLD) at the cost of a very large number 
of iterations. 

Index Terms-LDPC codes, noisy iterative decoding, probabilistic GDBF, 
noisy GDBF, MLD performance. 

I. INTRODUCTION 
Recently, there has been a growing interest in studying the robustness 
of LDPC iterative message passing decoders, with the objective 
of making these algorithms tolerant to faulty gates defects. The 
main objective which was pursued has been to measure and predict 
the performance loss of iterative decoding when the algorithms are 
implemented with faulty hardware [1, 2, 3, 4]. 
Contrary to the intuitive conclusion that faulty hardware errors, 
modeled as transient additional noise in the algorithm, would degrade 
the error correction performance, it was observed that the contribution 
of randomness in the decoder can indeed be beneficial instead of 
degrading the performance. This effect has been observed mainly in 
the error floor region, where deterministic decoders can be stuck by 
the presence of trapping sets (TS), while noisy versions of the same 
decoders could escape from the TS attraction. 
This observation has led to a new approach in LDPC decoder design. 
Indeed, the strength of an iterative message passing decoder has 
always been tackled at the local message updates, with the classical 
tradeoff between complexity and performance: error correction 
capability could be improved when more computational efforts are 
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allocated at the variable node and check node updates. However, there 
is another solution to improve error correction capabililty, without 
changing the decoder update equations, which is by introducing 
noisy versions of the update equations. As a consequence, powerful 
iterative decoders can be implemented from very simple noisy update 
rules, instead of relying on heavy computations. Capitalizing on the 
hardware noise to espace from local attractors is tightly linked to the 
concept of stochastic resonnance [], and has been also observed in 
other contexts, i.e. for neural networks [8]. 
We will discuss in this work the case of the simplest and least 
complex iterative decoders, based on modifications of the bit-flipping 
(BF) algorithm [5], and study to which extend the introduction of 
random components in the update equations can turn them into more 
powerful decoders, which could compete with higher complexity 
decoders such as belief propagation (BP) or min-sum (MS). 
Of particular interest is the gradient descent BF (GDBF) decoder [9], 
from which noisy versions have been derived in the recent literature 
[10, 11], showing strong evidence that randomness can greatly 
improve the performance of BF decoders. The noisy gradient descent 
BF (NGDBF) decoder [11], has been proposed specifically for the 
additive white Gaussian noise (AWGN) channel, and the probabilistic 
gradient descent BF decoder (PGDBF) has been proposed for the 
binary symmetric channel (BSC) in [10]. Through Monte Carlo 
simulations, it has been observed that the two noisy GDBF decoders 
perform much better than standard GDBF decoders, both in the 
waterfall and in the error floor regions, and that the extra noise 
can even make them compete with soft-decision message passing 
decoders. 
In this paper, we will study in more details those two algorithms, 
and propose modifications on the iterative scheduling that takes 
advantage of the introduced randomness to greatly improve decoding 
performance. Since it is clear that the main interest of the extra noise 
is to break the attraction of fixed point of the noiseless decoders, 
we will focus on the simplest cases of these attractors, namely the 
trapping sets of the LDPC codes. We will analyse the probability of 
a noisy decoder to escape the attraction of a TS, when the noiseless 
version of the decoder is stuck. This probability of escaping a TS 
can serve to optimize the parameters of the random perturbation 
distribution. Using the outcomes of this study, we will also equip 
the PGDBF with a modified scheduling in order to improve the 
decoding performance. We show by Monte Carlo simulations that the 
PGDBF using the modified scheduling can surpass the most powerful 
noiseless decoders (BP, MS), and approach MLD performance, when 
a large number of decoding iterations is considered. 

II. NOISE-AIDED GRADIENT DESCENT BIT-FLIPPING DECODERS 
A. Basic Notations for LDPC codes and BF Decoders 

An LDPC code is defined by a sparse parity-check matrix H 
with size (M, N), where N > M. A codeword is a vector 
x = ( Xl, X2, . . .  XN) E {O, l}N which satisfies H. XT = O. We 
denote by Y = {YI, Y2, . . .  , YN} the output of a noisy channel, 
in which the bits of the transmitted codeword are perturbed by an 
additive memoryless noise. In this paper, we will consider the binary 
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symmetric channel, and the additive white Gaussian noise channel. 
The graphical representation of an LDPC code is a bipartite graph 
called Tanner graph composed of 2 types of nodes, the VNs Vn, 
n = 1 ... N and the CNs Cm, m = 1 . . .  M. In the Tanner graph, a 
VN Vn is connected to a CN Cm if H (m, n) = 1. Let us also denote 
N(vn) the set of CNs connected to the VN Vn, with connection 
degree dvn = IN(vn)l, and denote N(cm) the set of VNs connected 
to the CN Cm, with connection degree dcm = IN(cm)l. 
The vector of variable node values at t-th iteration vel) 
(vii) , v�l) , ... ,vW), is referred to as a decoder state in l-th iteration. 
If vel) = x, we say that the decoder has converged to the codeword x 
in l-th iteration. A BF decoder is defined as a iterative update of the 
variable node values over the decoding iterations. We denote in this 
paper by v�l) the value of the variable node at the l-th iteration. We 
correspondingly denote by c;.;( the binary value of the parity checks at 
iteration I. For each variable node Vn, we also associate an intrinsic 
channel value L(Yn)(I) which serves in the variable nodes update 
equations at each iteration t. The definition of L(Yn)(I) depends on 
the channel model. For the BSC channel, we have 

[BSC] 

with EEl is the modul0-2 addition, while for the AWGN channel, it is 
defined from the log-likelihood ratio: 

L(Yn)(I) = (1- 2v�») log (PTob(Ynlvn = 0) ) 
PTob(Ynlvn = 1) 

[AWGN] 

The value L(Yn)(I) can also be used at the initialization step, in 
which case the first values of the VNs v�O) are simple copies of 
L(Yn)(O) , with the convention that v�O) = ° 'in. 

In all variants of BF algorithms, the CN calculation can be written 
as 

(1) 

In the case of GDBF algorithms, an energy function E�� is defined 
for each VN based on the neighboring CN, and used to evaluate 
whether the value v�) should be flipped or not. The definition of the 
energy function depends on the channel model. 

E(l) = L(y )(1) + Vn n 

where w is a real valued weighting factor. 

[BSC] (2) 

[AWGN] (3) 

With definition (3), the real valued energy function is minimized for 
the bits having the lowest reliability. In [9], two modes for the bit­
flipping rule at iteration I are proposed: either only the bit having 
lowest energy function is flipped (single flip), or a group of bits 
having energy function less than a predefined threshold e are flipped 
(multiple flips). 
For the BSC channel, the energy function is an integer and varies 
from ° to dvn + 1. Let bel) denotes the maximum energy at the 
l-th iteration, i.e., bel) = max (E��). The bits which have the 

l<n<N 
maximum energy value are flIpped. Due to the integer representation 
of energy function, many bits are likely to have the same maximum 
energy function, leading to the multiple flips mode. The fact that the 
number of bits to be flipped cannot be precisely controled induces a 
negative impact on the convergence of the GDBF algorithm for the 
BSC channel. 
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Let us further introduce the notion of flipping set F(l) , which 
represents the set of indices for the bits that are flipped at iteration 
t. 

F(l) = {n E {I, N} ; E�� = b(l) } [BSC] (4) 

F(l) = {n E {I, N} ; E�� � e } [AWGN] (5) 

Using the flipping set notations, the GDBF algorithms for both 
the BSC and the AWGN channel can be described concisely as in 
algorithm 1. The algorithm is stopped when all the PCs are satisfied, 
or the maximum number of iterations L is reached. 

Algorithm 1 Gradient Descent Bit-Flipping : [iteration I] 

[Step 1] Compute CNs values 
c;.;(, 'im = 1, . . .  , M, using (1), 

[Step 2] Compute Energy functions at VNs 
E��, using (2)-(3), 

[Step 3] Compute the flipping sets 
F(l) , using (4)-(5), 

[Step 4] Bit flipping 
\.I E -dl) (1+1) _ m vn � Vn - Vn 
'in tf. F(l) V�+I) = v�) 

B. Noise Aided GDBF decoders 
The principle behind the noise-aided GDBF proposed in the literature 
[10, 11] is to perturb the dynamics of the decoder by using 
randomly modified flipping sets j:(l) . In this paper, we name those 
modifications noise aided GDBF decoders (NA-GDBF). 
In [10], the proposed modification is mainly analysed on the BSC 
channel. Based on the observation that flipping all bits that have 
the maximum energy could lead to a very large number of decoder 
failures (see section III for an example), the authors have proposed 
to flip only a smaller proportion of those bits, chosen at random in 
F(l) . The main parameter of the modification in the PGDBF is Po, 
the probability that a bit flip with maximum energy is indeed realized. 
The randomly modified flipping set j:P��BF is defined as: 

:;::(1) _ {n E r(l) . E(l) < P } J" PGDBF - J ,  n 0 [PGDBF] (6) 

where E�) is a realization of a uniform random variable over the 
interval [0,1]. The PGDBF modification could be applied to both the 
BSC and the AWGN channel using either equation (4) or (5), since 
the effect is simply to diminish the number of indices to be flipped. 
In [11], the authors have proposed to perturb the dynamic of the 
GDBF using a random shift of the threshold e by a value E(l) drawn 
at each iteration from a Gaussian distribution N(O, O"� ) . The variance 
of the random shift depends on the AWGN channel variance 0": O"p = 
TJ 0". As a consequence, the randomly modified flipping set j:�2DBF 
becomes: 

-(l) { [ ] (I) (I) } FNGDBF n E 1, N ; Evn � e + E [NGDBF] (7) 

Finally, the NA-GDBF are simply implemented by replacing the 
flipping sets F(l) in algorithm 1 by the randomly modified flipping 
sets j:(l) 

III. BREAKING TRAPPING SETS ATTRACTION WITH NA-GDBGF 

In this section, we provide specific illustrations to show that added 
random perturbations could help avoiding the attraction of local 
minima of the GDBF algorithm. The theory and detailed analysis 
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of the approach cannot be described in this paper for lack of space, 
and will bre reported in a future publication. Unless said otherwise, 
the all-zero codeword will be assumed for the analysis and the 
simulations. 

A. Trapping sets of noiseless decoders 
In deterministic BF algorithms including the GDBF, the sequence of 
decoder states {v(i) hSISL is completely determined by the update 
rule and the channel vector y. For some channel vectors y the decoder 
does not converge to a codeword. The corresponding error pattern e 

is referred to as uncorrectable. In the error floor regime, the error 
performance is dominated by low weight uncorrectable error patterns, 
which are typically located in trapping sets []. In the next example, 
we illustrate such behavior. 
In figure 1, we show a trapping set TS (5, 3) composed of five variable 
nodes, which is the smallest structure (apart from cycles) that can 
appear in regular LDPe codes with girth 9 = 8 and dv = 3. We 
consider the case where only 3 errors occur on variables VI, V3 and 
V5, while V2 and V4 are error free. The channel values in y are 
indicated as ° or 1 beside the circles. 
Ignoring the messages from the rest of the graph (the isolation 
assumption described in [6]), the GDBF decoder oscillates between 
the two states shown in figures l(a) and l(b). In this figure, 
white/black circles represent correct/erroneous variable nodes, while 
white/black squares denote satisfied/unsatisfied check nodes. At the 
first iteration, variable nodes VI, V2, V3 and V4 (dashed-circled) have 
the maximum energy b(O) = 2, and are flipped. At the second 
iteration, the maximum energy is b(l) = 4, and is associated with the 
same variable nodes. Thus the same set of nodes is flipped in every 
iteration, leading to a decoder fixed point. The above error pattern is 
thus uncorrectable by the GDBF algorithm. 

(a) (b) 

Figure 1: A trapping set (oscillating behavior) of a GDBF decoder : 
a) Iteration I. b) Iteration 1 + 1. 

It is convenient to analyse such behavior using a state space 
representation. Let 5 = (VI, V2, V3, V4, V5 h be the state vector of the 
five bits composing the TS (5, 3). Using the example of figure 1, the 
GDBF decoder oscillates indefinitely between 521 = (1,0,1,0, 1h 
and 526 = (0,1,0,1, 1h. Let us now illustrate how PGDBF and 
NGDBF can be analyzed on such state space representation. 

B. PGDBF probability of escaping a TS 
Using the example of the previous section, we can build the state 
space of the PGDBF decoder, with state 5e = 521 as root node. In 
principle, with a five bits state vector, the size of the state space is 
25 = 32 states. However, due to the particular VN and eN update 
equation of the PGDBF, the state space with initial state 521 has only 
20 achievable states. Fortunately, the desired correct state 50 is one 
of them. 
In figure 2, we show the state space and draw the allowed transitions 
between the states. Each transition corresponds to a particular 
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realization of the random noise sequence E(l) = (EI, E2, E3, E4, E5) . 
Amongst the 20 achievable states, we highlighted 521 which is the 
initial error state, 526 which is the oscillating state of the GDBF 
algorithm, 50 which is the correct state, and 516 which is the state 
corresponding to the shortest path from 521 to 50. 
This shortest path is unique, and is realized using the following 
noise sequences E(l) = (0,1,0,1, x) and E(2) = (x, x, x, x, 1) 
(the x symbol means that the noise can be indifferently ° or 1). 
Due to independence, the occurrence probabilities of these two 
configurations are prob{E(I)} = P6(1 - po? and prob{E(2)} = Po. 
The probability of correcting the 3-error pattern of figure 1 is thus 
prob{E(I)}prob{E(2)} = p6(1- Po? Note that other sequences of 
flipping configurations may lead to the successful decoding in more 
than two iterations, but their probability of occurence will be smaller. 
The maximum probability of correcting this 3-error pattern is equal 
to 0.0346, obtained for the optimum value Po = 0.6. 
The approach can be generalized to other TS and possibly averaged 
over all the TS present in a given LDPe codes, in order to find 
the best value for the parameter Po, and predict the error correction 
performance of PGDBF in the error floor. 

Optimum 
PGDBF 
Slate 

Correct 
State 

GDBF 
State 

Figure 2: State space of the PGDBF decoder for the TS (5, 3). 

C. NGDBF probability of escaping a TS 
The NGDBF algorithm applies real valued perturbations directly in 
the energy function at each VN, hence the space of allowed decoder 
state transitions is much larger than for PGDBF. In particular, for 
the example of the TS (5, 3) all 32 states are achievable. Let us 
present how to compute the transition probabilities under the isolation 
assumption. 
The initial errors for the AWGN channel are associated with negative 
channel likelihoods L(O) (Yn) < 0. Let us assume that only the VN 
(VI, V2, V3, V4, V5) are initially in error, while the rest of the VNs are 
correct. 
Using the notations of section II, and the NGDBF flipping condition 
of (7), the probability of flipping the bit Vn, having energy Evn is 
expressed as: 

1 je-EVn _ x2 

F(Evn ' 0, i7p) = ;;c e 27f, dx, 
v 27ri7p - 00  

(8) 

Since the added noise samples E(l) sample are independent, It IS 

possible to compute the transition probability A( 5, 5') between two 
states, 5 the current state before flipping and 5' the state after the 
bit flips: 

A( 5, 5') = 
nET(S,S') n'l.T(S,S') 

(9) 



2016 9th International Symposium on Turbo Codes & Iterative Information Processing 

where T(S, S') is the subset of indices n of {I, 2, 3, 4, 5} where 
Sen) and S'(n) differ. 
Using definition (9) for the transition probabilities in the state space, 
and for a given realisation of the received channel samples {yen) < 
0}n=1.5, it is then possible to compute the probability of correcting 
the TS errors from the structure of the transition matrix A and the 
Perron-Frobenius theorem. More details will be given in a future 
publication. 
Fig. 3 shows the probability that the TS (5, 3) stays in error, as a 
function of the iteration I, and for different values of the random 
perturbation variance (J'p (the value of (J'p is given as a function of 
a virtual signal to noise ratio SNRp as (J'p = y'lOSNRp/10/2). 
This figure shows that the higher SNRp, the lower the probability of 
error but also the slower the convergence. There is clearly a tradeoff 
between speed and error correction probability. In the same way as 
for the PGDBF case, this approach can be generalized to any TS (or 
a collection of them), and averaging these results over the channel 
noise realizations {L(Yn)} provide optimum values for the threshold 
e and the random perturbation variance (J'p. 

10-' ---B- SNR
p 

= -3 dB 

-+-- SNR
p 

= -1 dB 

---+-- SNR
p 

= 1 dB 

__ SNR
p

=3dB 

10-" 
---B- SNR

p 
= 5 dB 

o 50 100 150 200 250 300 350 400 
iteration number 

Figure 3: Probability of TS error as a function of the iteration index 
for several value of injected noise. 

IV. PGDBF WITH MODIFIED SCHEDULING 
In this section, we further improve the performance of the PGDBF on 
the BSC channel by adaptively changing the scheduling in order to 
perturb even more the dynamics of the decoder, and avoid unwanted 
local attractors that are not solved by the PGDBF alone. The rationale 
behind the proposed modification is that some error events are still 
not corrected using PGDBF, i.e. there is no path in the state space 
that goes from the error state Se to the correct state So. Our goal 
is to get rid of all unwanted attraction, and get performance close 
to maximum likelihood decoding (MLD), at the cost of a very large 
number of decoding iterations. 

A. DDS-PGDBF with Previously Computed Threshold 
The new scheduling for the PGDBF algorithm is based on using 
the maximum energy value computed at the previous iteration (I -
1) to perform the bit flips of the current iteration I. We call this 
modified scheduling decoder-dynamic shift PGDBF (DDS-PGDBF). 
The new algorithm is described in Algorithm 2 for the BSC channel. 
The modification can be implemented using a modified definition of 
the flipping set, which uses the maximum value determined at the 
previous iteration b(l-l): 

-(l) { { }  (I) (1-1) } FOOS-PGOBF = n E 1, N ; Evn 2: b and E < Po (10) 
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Therefore, the computation of the maximum energy at the current 
iteration bel) is no longer implemented in the flipping set computation, 
but at the end of the decoding iteration, in Step 6 of the DDS­
PGDBF. Note also that the condition on the energy is changed from 
the PGDBF as the bits considered for flipping have energy greater 
or equal the threshold value b(I-I). 

Algorithm 2 DDS-PGDBF : [iteration l] 

[Step 1] Compute CNs values 
c;.;:, '<1m = 1, . . .  , M, using (1), 

[Step 2] Compute energy values at VNs 
E��, using (2) 

[Step 3] Compute the modified flipping set 
-(l) FODS.PGDBF using (10), 

[Step 4] Bit flipping 
-(l) (1+1) W '<In E FODS-PGOBF Vn = Vn 

'<In rf. j��S-PGOBF V�+I) = v�l) 
[Step S] Update energy values at VNs 

E�� = E��; - Yn EEl v�) + Yn EEl V�+I). 
[Step 6] Compute new maximum energy 

bel) = max (E�l) l:Sn:SN n 

The algorithm differs from PGDBF in that the flipping operation is 
performed before computing the current maximum bel) and bel) is 
found before considering the new CNs values. After flipping, the 
local energies E�� are revised at the flipped symbol locations to 
account for the immediate changes due to bit flippintr. The next flip 
threshold is then found from amongst the revised Evl). 
This modified scheduling allows to jump in the state space of the 
decoder whenever it is stuck in a local minima, therefore shifting the 
decoder-dynamic to another trajectory. However, the jumps are not 
controlled in the sense that the candidate bits that form the flipping 
set j��S'PGDBF cannot be localized. As a consequence, the probability 
to escape a strong local minimum is very small, and a very large 
number of iterations is needed to escape from them and reach MLD 
performance. 
Note that a similar perturbation in the value of the bel) for PGDBF 
has been proposed in [12], where the authors proposed to decrease 
periodically the maximum value bel) to b(l»-1 in order to perform the 
large jumps in the state space, and avoid the trapping set attraction. 
With the DDS-PGDBF, the jumps are not periodic, and follow the 
dynamics of the decoder. 

B. Peiformance of DDS-PGDBF 
Simulations were performed on the Tanner (N = 155, K = 

64, Dmin = 20) LDPC code. Fig. 4 shows the comparative frame 
error rate (FER) performance of DDS-PGDBF alongside the original 
GDBF and PGDBF algorithms, on the BSC channel with crossover 
probability a. For this code, the original PGDBF algorithm achieves 
its best performance at about 100 iterations and no longer improves 
with more iterations. For a maximum of 300 iterations, DDS­
PGDBF shows significantly better performance. When the algorithm 
is allowed a very large number of iterations L, its performance 
improves incrementally until it approaches the MLD limit. By 
comparison, the classic belief propagation (BP) algorithm reaches 
a suboptimal performance limit after about 100 iterations. Among 
previously reported iterative decoders, we also plot the results of 
FAID decoders, which approach MLD performance by exploiting 
decoder di versi ty [7]. 
DDS-PGDBF is able to achieve the same result by just modifying 
a very simple BF decoder. It is important to note that, on average, 
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DDS-PGDBF terminates in a very small number of iterations due the 
early stopping condition, even when L is large. The average number 
of iterations is only 16.8 when a = 0.03, and 4.9 when a = 0.02, 
which indicates that "hard frames" that require all L iterations are 
very rare. Another feature of the DDS-PGDBF using a very large (or 
unlimited) number of iterations is that it highly likely to halt on a 
codeword, which is either the transmitted codeword, or an undetected 
error. 
These performance and behaviors have been observed on other LDPC 
codes with various rates and lengths. 
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Figure 4: Frame error rate performance of different decoders on the 
(N = 155, K = 64, D min = 20) Tanner code. 

Y. CONCLUSION 

In thi s paper, we have studied two noise-aided GDBF algorithms, 
and demonstrated that the random perturbations allow to escape the 
attraction of fixed points of the GDBF algorithms, located on trapping 
sets. We have also proposed a modification of the iterative scheduling 
that takes advantage of the introduced randomness to greatly improve 
decoding performance, and eventually get dose to MLD performance. 
We believe that that this new paradigm of noise-aided hard decision 
LDPC decoder could become serious competitors to soft decision 
decoders (MS, BP), when the issue of slow convergence is solved. 
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