
Analysis and Implementation of On-the-Fly Stopping
Criteria for Layered QC LDPC Decoders

Andrei Hera1, Oana Boncalo1, Constantina-Elena Gavriliu1, Alexandru Amaricai1,
Valentin Savin2,David Declercq3, Fakhreddine Ghaffari3

1 University Politehnica Timisoara, Timisoara, Romania
2 CEA-LETI, MINATEC Campus, Grenoble, France

3 ETIS-ENSEA, Cergy-Pontoise, France

�
Abstract—This paper presents an analysis of existing stopping

criteria for layered architecture used for quasi-cyclic (QC) LDPC
decoders. Furthermore, it proposes a novel imprecise method for
early termination in layered decoders. The analysis is performed
under the same framework in order to provide a fair and
accurate comparison between existing methods, and our new
solution. The developed hardware modules have been designed
independently from the decoder architecture, with the only
constraint that the decoder scheduling is layered. Synthesis
estimates for Xilinx Virtex-7 devices and the decoding
performance analysis indicate that the new stopping criterion
presents the best cost/performance trade-off for most of the
considered LDPC codes.

Keywords—LDPC Decoder, Error Correction Codes, Layered
Architecture, Early Termination

I. INTRODUCTION

Modern communication systems have an increased need
for higher and higher data rates combined with the
requirement of reducing power consumption. Low-Density
Parity Check (LDPC)[1] codes form a class of error correction
codes that have a decoding performance close to the Shannon
limit, and have been adopted in many standards such as DVB-
S2, WiMAX, WLAN [2][3]. A structured subclass of these
codes, named Quasi-Cyclic LDPC (QC-LDPC), relies on
special code construction methods, and makes them suitable
for hardware (HW) implementations [5]. Practical
implementations of LDPC decoders deal with different
scheduling strategies, according to the order in which the
information is being processed during a decoding iteration.
There are two major solutions proposed in the literature:
flooding scheduling [6] and layered scheduling [7]. The latter
allows a flexible trade-off between throughput and hardware
resources. Furthermore, it presents a faster convergence
compared to the flooding schedule.

Another important characteristic of any decoding
architecture is represented by stopping rule used in the
decoding process. Two approaches exist: (i) execute a fixed
number of iterations (ii) stop the decoding if the syndrome is
checked (i.e. all parity checks are satisfied for all equations),
or if the maximum allowed number of iterations have been
reached (in case no syndrome check has been reached).
Furthermore, simulation analysis for different codes have
shown that the average iteration number is dependent on

signal to noise ratio (SNR), message quantization and the
LDPC code (defined by the parity check matrix). Since the
average number of iteration to decode a noisy frame is
typically much smaller than the maximum allowed iterations,
especially for long codewords, stopping the decoder earlier
may lead to significant reduction in energy consumption [8]-
[12]. For layered architectures, implementing the stopping
criterion is not a trivial task, as a straightforward early-
termination implementation may have increased HW
complexity and can reduce the decoder throughput. Thus, the
energy saving obtained by stopping the decoder may not
compensate for the energy increase due to the early
termination circuit. Therefore, it is important that the early
termination circuit has minimum complexity in order to limit
area and power overhead of the extra logic. This work focuses
on reviewing existing techniques for layered architectures that
allow early decoding termination, with minimum area
overhead. Furthermore, we propose a new low cost early
termination technique for stopping the decoder.

This article is organized as follows: Section II presents the
layered scheduling for QC-LDPC decoding; the early
termination strategies for layered architecture are described in
Section III; Section IV presents the proposed on-the-fly new
stopping criterion; Section V is dedicated to the analysis of
these strategies.

II. LAYERED SCHEDULING FOR QC-LDPC DECODER

LDPC codes are linear codes defined by sparse parity
check matrices � and can be represented by bipartite Tanner
graphs. These types of graphs connect two kinds of
computational units: variable node units, corresponding to the
codeword bits, and check nodes units, corresponding to the
parity check equations. LDPC decoding is performed by
message-passing (MP) algorithms, which rely on messages
exchange along the edges of the Tanner graph [4].

Quasi-Cyclic (QC) LDPC codes are a class of LDPC codes
which feature highly structured parity check matrices, defined
by blocks of circulant matrices [5]. This feature has led to
their wide use in many telecommunication standards. A QC-
LDPC code is defined by a base matrix �, with integer entries
bi,j � −1. The parity check matrix is obtained by expanding the
base matrix � by a factor �. Each entry of � is replaced by a
square matrix of size mxm, as follows: all-zero matrix is used

MIXED DESIGN

Proceedings of the 22nd International Conference "Mixed Design of Integrated Circuits and Systems", June 25-27, 2015, Toru�, Poland

���� ���	�
	�
���	�	 ��������� � ��� �� ���������� � !�"���#�"�����"$ % ����&��� �"���"�' (�)* +��,��$��� � -�"���#���

to replace -1 entries, while entries bi,j � 0 are replaced by a
circulant matrix, obtained by right-shifting the identity matrix
by bi,j positions. A horizontal layer of H is defined as the set
of m consecutive rows corresponding to one row of B.

Regarding decoding algorithms, Min-Sum (MS) and its
variants (such as offset-MS, normalized MS, etc) are more
frequently used, due to their low computational complexity.
Layered MS starts with the initialization of the of the a-
posteriori log-likelihood ratios (AP-LLR - �v) with the channel
values. It performs the following steps: (1) update the variable
node messages (�v) (2) update the check node message (�c) (3)
update the AP-LLR. More details about layered MS decoders
can be found in [7]. Table I presents the notations which will
be used in paper.

III. EARLY TERMINATION STRATEGIES
FOR LAYERED DECODERS

A. Review of On-the-Fly Stoping Criterias

Multiple strategies have been employed for performing
early termination. They are achieved by monitoring in some
way the decoder’s state. The efficiency of such a method lies
in implementing a low cost strategy (small energy
consumption overhead, low cost), that does not degrade either
the decoder performance or its throughput. This work focuses
on analyzing low cost early termination methods - on the fly
stopping criteria - which can be easily integrated in the
layered decoding flow.

The work in [8] proposes a low complexity solution, that
does not affect decoding performance, called SignStability. It
monitors AP-LLR messages’ signs fluctuations. For iteration I
and layer number L the newly computed �v signs are compared
to the ones computed previouslly (i.e. sign of input AP-LLRs).
If all signs match, then a counter is incremented by 1,
otherwise the counter is reset. Decoding stops when the
counter reaches a value equal to ��.

The authors of [9] propose strategy based on verifying the
parity check constraints. After updating the �v messages for
layer L, the parity check constraints for the check nodes within
layer L are verified sequentially. Decoding stops when all the
on the fly parity check equations are satisfied, for all ��
layers. This method is called on the fly syndrome check (OTF
Syndrome).

Another low complexity stopping criterion called SDA
(soft decision aided) is presented in [10]. At a given moment it
checks that all �v magnitudes are greater than a predefined
(statically configured) threshold. If the condition holds for all
layers, the messages are considered to be reliable and
decoding is stopped. The decision assumes to have detected a
codeword.

A slightly more complex criterion compared to the
aforementioned is proposed in [11]. The following two
conditions need to be satisfied for stopping the decoder: (i)
each �v sign remains constant over two successive iterations;
(ii) the absolute value of the smallest �v message is larger than
a predefined threshold (we will refer to this method as
Sun2008).

TABLE I. NOTATIONS

Symbol Description

L Current layer being processed

I Current iteration

M Number of rows in the parity check matrix

N Number of columns in the parity check matrix

�� Number of layers in the parity check matrix

�v Variable node message computed by the vth VNU

�v Check node message computed by the vth CNU

�v AP-LLR message computed for the vth position VNU

�� Check node degree (number of inputs for a check node –row wise)

�	
Variable degree (number of inputs for a variable node - column

wise)

The work from [12], proposes several complex safe

conditions (by safe the authors mean decision will not change
with successive iterations) to halt decoding. For our
evaluation, we have selected two such methods: SSD and
SSiA. SSD requires: Check node Satisfaction and Sign
Stability (condition SS) together with condition D. SSiA is an
alternative set of conditions, derived from the first, which is
more suitable for practical implementations. SSiA checks that
the signs of the CN inputs match the outputs, and satisfy the
CNs (SSi) combined with the requirement that the absolute
value of the check node messages increase with respect to the
previous iteration. Authors of [12], claim no decoding
performance degradation, and a high degree of generality for
their criterions (i.e. they aply for all types of codes).

� �������	���� � ������	������ � � � ������	��������� � � � !�"# ������	����	$%&'(� !�) � � !� " �* + !

(1)

,-./	���0�������	���0��
1 ���23454 6./	��� � �/	��� + /	�������)7554�898 + :54�98�� � � !� " � ; + !< � � !�" � � + =

(2)

The sign function outputs -1 for negative values, +1 for
positive and 0 when the input parameter is equal to 0.

While decoding performance has been theoretically
analyzed for some of these methods [12], others have been
introduced as optimizations to a particular architecture [8].
Implementation results of LDPC codes with stopping criterion
have been derived for different technologies especially when
targeting low power designs (e.g. ASIC CMOS 65 nm [9],
ASIC CMOS 90 nm [11]). One contribution of this work is to
study all of these approaches under the same conditions, and
to derive simulation and implementation characterizations of
their performance.

B. Proposed On-the-Fly Imprecise PC Termination Criteria

We propose a low cost, low overhead early termination
method with minimal or no performance degradation for
layered LDPC decoders that is based on parity checks (PC).
Low implementation cost is achived by only considering the
signs of the newly updated �v messages. Parity check
equations for each processed layer are computed. If they are
satisfied, layer by layer, for �� consecutive layers, a counter is
incremented yielding a partial syndrome check as LLR
messages fluctuate during layered decoding. Decoding ends,
when three partial syndrome checks are obtained for a
codeword.

Iter_Cnt = 0;
For it=0÷MAX_IT
 Intra_It_Cnt = 0;
 Foreach layer L
 process_layer();
 Intra_It_Cnt += layer_pc();

If (Intra_It_Cnt == ��)
 Iter_Cnt = Iter_Cnt + 1;
If (Iter_Cnt == 3)
 Go to data_offloading();

 data_offloading();

Layer_pc() returns 1 if all parity checks are satisfied for
layer L. Here *� is used to denote all the lines from the parity
matrix H, coresponding to layer L. > ������	����	$%&'(� !�)�?�*������� (3)

Because each AP-LLR value is updated several times
during an iteration, the parity checks are computed for
different values of the AP-LLRs . As shown in [13], these
values fluctuate even after a codeword has been reached,
making the pin-pointing of the exact moment of a codeword
being decoded difficult. Partial syndrome computation
(equivalent to the OTF method) is computed as the sum of all
the parity checks coresponding to all the layers from the
curent iteration. Depending on the LDPC code, chosing this as
stopping criterion, yields up to two order of magnitude in
performance loss (see Table II – OTF syndrome FER results).

Regarding the cost for the proposed solution, computing
the parity checks for a layer, requires circulant size dc input
XOR gates. The inputs are the updated �v message signs. Two
counters are needed: a @ABCD��E bit counter for partial
syndrome check computation, that accounts for the satisfied
PCs, and a 2 bit counter is needed for the satisfied iterations.
For the decoder’s control unit, a signal, when asserted, notifies
that decoding can be stopped under the assumption that a
codeword has been detected. All other processing is aborted,
and decoding offloading can start.

IV. ANALYSIS AND DISCUSSIONS

We have evaluated the stopping criteria within a common
simulation framework under the same setup parameters:
message quantization, maximum number of iterations, and a

set of LDPC codes taken from the literature. We have
considered both regular and irregular codes, with different
rates. Ideally, decoding stops when a codeword is detected.
This corresponds to the case, where at the end of each iteration
AP-LLR sign bits are checked against all parity checks (i.e.
conventional syndrome check). During decoding performance
analysis, we have considered the conventional syndrome
check as our baseline (best performance in FER, and
minimum average iterations). For all other techniques, we
have compared the results obtained from simulations against
the baseline. We have run simulations for several SNR ranges
(depending on each code and rate) and we have monitored two
metrics: FER and average number of iterations.

The decoder used is layered Min-Sum (MS). We have
employed a (4, 6) quantization scheme, meaning 4 bits for �
messages, and 6 bits for �, with the following codes and rates:
WiMAX Rates 1/2, 5/6 [2], WPAN Rates 1/2, 3/4, 7/8 [3] and
four non-standard regular matrices (rates 1/2 and 3/4) [14].
These regular matrices all have the same codeword length,
being 1296. Circulants sizes are defined as m=54 for the low
rate matrices and m=27 for the high rate matrices, with ���	� ��� degrees (3, 6) and (4, 16).

Fig. 1. Difference of average iteration increase compared to the baseline for
all methods.

TABLE II. FER SIMULATION RESULTS

Code
Early termination method

Proposed
OTF

Syndrome SDA
Sun
2008

WiMAX
Rate ½

1.2e-04 at 2.6 dB
4.3e-05 at 3.0 dB

Saturates:
4.-dB

10x - 100x at
2.6, 2.8 , 3.0 dB

-

WiMAX
Rate 5/6

-
Saturates-:

2.5e--003 dB
3.9e-05 at 6.8 dB
2.8e-05 at 7.0 dB

-

Dv=3 Rate 1/2 - no FER degradation dB

Dv=3
Rate ¾

1.8e-04 at 5.8 dB
2.1e-04 at 6.2 dB

Saturates:
1.1e-00-3 at 6,6 dB

Saturates:
6.6e-005 a-t 6,6 dB

1.0e-05 at
6.2 dB

Dv=4
Rate ½

-
10x - 100x at

3.6, 3.8, 4.0 dB
Saturates:

1.4e-003 -at 4,0 dB
-

Dv=4
Rate ¾

-
10x - 100x at

5.8, 6.0, 6.2 dB
10x - 100x at

6.0 and 6.2 dB
-

WPAN
Rate ½

-
Saturates:

4.5e-2- at 3,0 dB
1.9e-03 at 3.0 dB -

WPAN
Rate 3/4

-
Saturates:

2.1e-00-at 3,4 dB
1.0e-04 at 6.2 dB
2.8e-05 at 6.6 dB

-

WPAN
Rate 7/8

-
10x - 100x at

7.4, 7.8, 8,0 dB
2.0e-04 at 8.0 dB -

0.0
1.0
2.0
3.0
4.0
5.0

A
ve

ra
ge

 it
er

at
io

n
di

ff
er

en
ce

s

�

Fig. 2. Synthesis cost estimates for several LDPC architeture variations.

The maximum allowed number of iteration has been fixed
to 20. Simulation results yielded no FER degradation for
SignStability, SSD and SSiA, for all SNR ranges simulated.
Table II highlights the differences compared to the baseline
for all other techniques. A significant FER degradation has
been obtained for OTF Syndrome and SDA (up to 2 orders of
magnitude for some codes), and a negligible SNR degradation
(< 0.2 dB) has been observed for the proposed criteria, as well
as Sun2008. Furthermore, for WPAN rate 1/2, SignStability
and SSiA fail to reach the stopping condition, reaching the
maximum allowed number of iterations.

Regarding the HW implementation, these modules have
been designed as off-the-shelf modules, which can be added to
an existing LDPC decoder architecture with minimal changes
to an existing HW model. Integration wise, the most
significant overhead is in the control unit. It must be able to
take into account the early termination signal and stop
decoding. Furthermore, the implemented modules are fully
parameterized (i.e. quantization, circulant size, datapath,
number of pipeline stages etc.).

We have obtained synthesis results for WiMAX codes,
with circulant size 96 for Xilinx Virtex 7 - 7vx330tffg1157-3
FPGA platform using Xilinx ISE 14.7. In order to assess the
cost of the stopping criteria for different architectures, we
have considered the following setup of the hardware
architecture: (i) number of AP-LLR messages processed in
parallel by the processing units (performing both variable and
check-node message processing), (ii) depth of the pipeline for
data-path processing, and (iii) pipeline depth for the check-
node unit update. These are denoted in Fig.2 with Datain_No,
PL_VCN, and PL_CNU respectively. Working frequencies,
are in the range 400÷600 MHz. For implementation cost larger
than 15000 LUT-FF pairs we have marked them with (*) and
have saturated their value. Results show that cost
corresponding to methods which require the sign/value from a
previous iteration increase with the number of pipeline stages,
due to the needed delay buffers. This is the case for SignStab,

Sun2008, SSiA, SSD. Even for a small number of pipeline
stages (3 for the whole data-path, and 1 for check node unit
processing), a method such as SignStability can have a cost
increase of 10x. However, this is not the case for methods that
only check results from the current iteration (i.e. SDA, OTF,
and the proposed method,). These latter methods are only
influenced by the number of input messages. Another
interesting conclusion from the simulation results is that the
proposed criterion provides similar performance for all codes
analyzed, yielding an almost constant average iteration
increase of around 1.6. Furthermore, with two minor
exceptions, the FER performance of our new method was not
degraded with respect to the baseline.

SignStability was found to be a fast and reliable early
termination method for many codes. It is suitable for LDPC
architectures with no pipeline, or very few pipeline stages.
Performance (FER and average iteration) is code dependent.
Results show significant performance loss for codes which
have �	=2. To mitigate this limitation, we have only performed
SignStab on the codeword source bits. The efficiency of this
solution is code dependent. While it has allowed successful
decoding stopping for some matrices (WPAN 1/2), it has
proved less efficient for WiMAX ½, where performance drops
considerably with respect to the baseline for SNRs above 2.4
dB. Furthermore, for WIMAX rate ½ code, sign stability
method yields the highest average iteration number for which
decoding can be stopped. SSiA has shown a similar limitation
being unable to detect codewords for WPAN rates 1/2 and 3/4.
SSiA and SSD are expensive compared to other solutions. For
the codes considered in this study the conditions appeared to
be a case of overdesign. In most of the cases, they yield both
an increase in average iteration count. Other criteria such as
Sun2008, and SDA are also reliable, but require at least 70%
more LUT-FF pairs with respect to the least expensive one
(SignStability or Proposed method depending on the LDPC
architecture parameters).

V. CONCLUSION

Our study highlights the strengths and weaknesses of the
existing early termination criteria, and we have proposed a
new method for on-the-fly stopping criterion. Its strong points
are: (i) decoder performance is similar for all codes considered
in this study; (ii) criterion cost has a weak dependence on the
underlying LDPC architecture characteristics (i.e. pipeline);
(iii) cost overhead is small (� 1% cost overhead with respect
to a low cost serial AP-LLR processing MS decoder such as
[15]). From the studied stopping criteria, we derive that two
have proved cost-efficient: the ones based on parity checks,
and the one relying on sign stability. More complex stopping
criteria might offer zero performance degradation for all kinds
of LDPC codes, but they are in many cases overdesigns, and
cost-prohibitive.

ACKNOWLEDGMENTS

This work has been supported by the Franco-Romanian
(ANR-UEFISCDI) Joint Research Program “Blanc–2013” –
project DIAMOND.

REFERENCES
[1] R. G. Gallager, Low Density Parity Check Codes, M.I.T. Press, 1963,

Monograph.

[2] IEEE-802.16e, “Physical and medium access control layers for
combined fixe and mobile operation in licensed bands,” 2005,
amendment to Air Interface for Fixed Broadband Wireless Access
Systems

[3] IEEE 802.15.3c-2009 “Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for High Rate Wireless Personal
Area Networks (WPAN)”, 2009, Amendment 2: Millimeter-wave-based
Alternative Physical Layer Extension

[4] R. M. Tanner, “A Recursive Approach to Low Complexity Codes,”
IEEE Trans. Information Theory, vol. 27, no. 5, pp. 533–547, 1981.

[5] M.P.C. Fossorier, “Quasicyclic Low-Density Parity-Check Codes from
Circulant Permutation Matrices,” IEEE Trans. on Information Theory,
vol. 50, no. 8, pp. 1788–1793, 2004

[6] F. R. Kschischang and B. J. Frey, “Iterative decoding of compound
codes by probability propagation in graphical models,” IEEE Journal on
Selected Areas in Communications, vol. 16, no. 2, pp. 219–230, 1998.

[7] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” Proc. of IEEE Workshop on Signal
Processing Systems (SIPS), 2004,

[8] J. Li, G. He, H. Hou, Z. Zhang, J. Ma, “Memory Efficient Layered
Decoder Design with Early Termination for LDPC Codes”, Proc. IEEE
Int. Symp. On Circuits and System(ISCAS), 2011.

[9] E. Amador, R. Knopp, R. Pacalet, V. Rezard “On-the-fly Syndrome
Check for LDPC Decoders”, Proc. 6th Int. Conf. on Wireless and Mobile
Communications (ICWMC) ,2010.

[10] C.-H. Lin, T.-H.Huang, C.-C.Chen and S.-Y.Lin, “Efficient layer
stopping technique for layered LDPC decoding”, Electronic Letters,
Vol. 49, Issue 16, 2013.

[11] Y. Sun, J. R. Cavallaro, “A low-power 1-Gbps reconfigurable LDPC
decoder design for multiple 4G wireless standards”, Proc. 28th IEEE
SOC Conference, 2008.

[12] M. Ferrari, S. Belini, A. Tomasoni “Safe Early Stopping of Layered
LDPC Decoding”, IEEE Communications Letters, Vol. 19, Issue 3,
2014.

[13] D. Shin, K. Heo, S. Oh, J. Ha “A Stopping Criterion for Low-Density
Parity-Check Codes” Proc. IEEE 65th Vehicular Technology
Conference, 2007

[14] i-RISC/Deliverable 6.1 “Report on Reliability Aware Synthesis and
LDPC Decoders Built with Unreliable Components” online:
http://www.i-risc.eu/home/liblocal/docs/iRISC_Deliverables/i-
RISC_D6.1.pdf

[15] A. Amaricai, O. Boncalo, V. Savin “Memory Efficient Implementation
of Self-Corrected Min-Sum LDPC Decoder” 21st IEEE International
Conference on Electronics Circuits and Systems, Marseille, Dec. 2014.

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

