
978-1-4799-5944-0/14/$31.00 c©2014 IEEE

Context-Aware Resources Placement for
SRAM-based FPGA to minimize
Checkpoint/Recovery overhead

Sahraoui Fouad∗, Fakhreddine Ghaffari∗, Mohamed El Amine Benkhelifa∗ and Bertrand Granado‡
∗ETIS, CNRS UMR 8051, ENSEA, Université Cergy-Pontoise; FRANCE

‡ LIP6, UPMC, CNRS UMR 7606; FRANCE

Abstract—Existing SRAM-based Field Programmable Gate
Arrays (FPGAs) are very sensitive to Single Event Effects
(SEE) phenomena in harsh environments. To protect applications
running on SRAM-based FPGAs from SEE, those applications
mainly relay on resources redundancy approaches, which involve
significant resources overhead. New proposed fault mitigation
approaches use Partial Dynamic Reconfiguration to overcome
such huge overhead of redundancy methods. In [1] a Backward
Error Recovery (BER) approach based on Partial Dynamic
Reconfiguration (PDR) is proposed. Nevertheless, such approach
suffers greatly from time latency issue. In this paper, we introduce
a new context-aware resources placement strategy to minimize
the time overhead induced by the BER fault mitigation approach.
Both of checkpoint and recovery overhead are evaluated with
and without our context-aware resources placement strategy. A
reduction of up to 71% of context frame is reported.

Keywords: Fault Tolerance, SRAM-based FPGA, Reliabil-

ity, Resources Placement, Backward Error Recovery.

I. INTRODUCTION

Over the past years, SRAM-based Field Programmable

Gate Arrays (FPGA) showed a significant progress on ad-

vancing from prototyping platforms to execution platforms.

This progress mainly came from their attractive features, such

as high resources availability, high speed of execution and

complete/partial reconfiguration capability. The use of SRAM

technology to store the configuration data, called bitstream,

was also a key feature for this advance. Bitstream configures

functional elements such as Look-Up Table (LUT), Flip-

Flop (FF), Block RAM (BRAM), Digital Signal Processor

(DSP) and the routing wires/matrices that link those elements

together. Despite this progress, SRAM-based FPGAs are still

very sensitive to fault occurrences and this can be a limitation

to their widespread use in harsh environments and critical-

safety domains such as aerospace and avionics. This weakness

can be especially important at configuration memory which

represents more than 80% of the total memory inside FPGA

(the rest 20% is BRAMs and FFs), and can lead to erroneous

executions and wrong behaviors of the system.
When integrated circuits, such as FPGAs, are exposed to

cosmic rays or energetic particles, a certain perturbations of

their electrical behavior may occur. Those perturbations are

known as Single Event Effects (SEE) and can lead to different

fault models [2]. The most likely fault models in FPGAs are

Single-Event Upsets (SEUs) and Multiple-Bit Upsets (MBUs).

To cope with this weakness, many Fault Tolerant (FT) meth-

ods have been proposed to enhance the reliability of FPGA-

based systems [3]. A great number of those methods are based

on redundancy, such as Triple Modular Redundancy (TMR)

or Duplication with Comparison (DWC). When redundancy

methods are used, more resources are needed to mask or detect

faults. The overhead varies from 200% to 400% compared to

the initial system [4], in addition to the overhead introduced

by voters needed to validate intermediate/final results.

Research works in [5]–[7] tend to reduce this added over-

head by finding a compromise between performance of the

hardened system and the resource overhead based on other

approaches. However, because redundancy methods mask only

faults, they suffer from some weakness such as faults accu-

mulation in replicas [4], MBUs affecting multiple replicas at

the same time or faults occurring in voters [8].

Redundancy-alternative methods try to take advantage of

Partial Dynamic Reconfiguration (PDR) feature, like Configu-

ration Scrubbing [9], where a golden bitstream is periodically

written to the SRAM memory to eliminate any eventual bit

upset occurrence. Scrubbing approach is generally combined

with Error Detection and Correction Codes (EDAC), the

latter can provide a solution to minimize read/write overhead

by localizing and correcting only the erroneous part of the

bitstream.

Although those alternative methods enhance the application

reliability on SRAM-based FPGA, they are inappropriate to a

certain type of applications where both bitstream and context

must be corrected to avoid fault propagation, such applications

can be for example Evolutionary Algorithms (EA). Formally,

for any application which is more effective and provides better

results upon time execution (generation/iteration) needs to be

protected with methods that take into account its behavior

of evolution. Recent researches [10]–[13] show that FPGAs-

based platforms are becoming more and more interesting to

be used as execution platforms for those types of applications

within uncertain and harsh environments.

In the aim to protect those types of applications against

transient faults occurring into configuration layer of SRAM-

based FPGA, we propose the use of Backward Error Recovery

(BER) as a fault mitigation mechanism [1]. We continually

verify the correctness of system configuration and save several

checkpoints with minimal context. Upon fault detection, we

use hardware context restoration to go back to an error-

free state (checkpoint) to limit computation loss and faults

accumulation/propagation.

The rest of this paper is organized as follows: Section II

gives an overview of PDR-based methods proposed in the liter-

ature to mitigate transient faults on FPGAs. In Section III, we

present our fault mitigation approach based on Backward Error

Recovery (BER) and Partial Dynamic Reconfiguration. Section

IV details our new Context-Aware Resources Placement algo-

rithm (CARP) which reduces the number of context frame and

so minimizes the overhead induced by checkpoint/recovery.

Section V gives results on both reliability controller and CARP

algorithm. Finally, section VI summarizes our contribution and

discusses future works.

II. RELATED WORKS

Mitigation of transient faults by hardware redundancy have

been improved in numerous research works. New approaches

are proposed to provide a reasonable trade-off between the

resources utilization, the circuit operating frequency, the power

consumption and the reliability improvement.

In [14], mitigation by hardware redundancy is only applied

on parts of the circuit that are classified as persistent (i.e.

part of the circuit that causes functional errors when upsets

occur on it), while the rest of the circuit is only protected by

scrubbing. However, determining persistent bits can be time

consuming and unreliable [15]. Another approach presented in

[16] introduces an extra step in the classical design flow, where

after a successful place-and-route of the design, an enumera-

tion of not-fully occupied LUTs is conducted on the netlist.

These LUTs are replaced by a more robust and functionally

equivalent LUTs to reduce fault effects and their propagation.

Despite the low resources overheard and path delay overhead

reported in this approach, it can only protect LUT elements

and needs another mitigation method for routing elements.

Adaptive approaches based on environmental information

are also investigated. In [17], a reliability controller based on

PDR-feature is presented. At run-time, the controller deter-

mines the number of present replicas following the current

orbital position changes to provide different levels of faults

mitigation. With this adaptive approach, more resources are

available to execute other non-critical tasks while the system

is at low radiation orbit. A hard condition imposed by this

method is that protected system must perform significant

change of its altitude position (variation of failure rate).

As mentioned previously, hardware redundancy methods

mitigate faults by masking them with majority votes of

intermediate/final results and still need correction methods

to eliminate those faults accumulated into the configuration

memory. A well-known approach to conduct such a correction

is using Configuration Scrubbing. Depending on the access

port used to read/write configuration memory, scrubbing can

be performed externally or internally [18]. Moreover, it can

be performed periodically or only after an error is detected.

Taking into account that, the configuration layer of an

SRAM-based FPGA is partitioned into frames, where a frame

is the smallest portion of the configuration memory that can be

read or written. Information redundancy approaches are used

to protect those frames by appending additional parity bits. In

[19], an embedded self-test core is presented. It uses parity

bits in conjunction with DPR feature to continually monitor

the status of the configuration layer and corrects bit-flips when

they occur. However, because of the use of extended hamming

code (EDAC) [19], only single error correction and double

errors detection (SECDED) are achieved. Moreover, results

reported by [18] show clearly that relying only on SECDED

code is not sufficient to mitigate faults, even worse it can lead

to the introduction of errors upon false detection of upsets.

Authors in [20] propose a fully hardware internal scrubber

and they evaluate its performances against two soft-core-based

scrubbers. Nevertheless, this solution also relays on EDAC.

Heterogeneous configuration memory scrubbing is proposed

in [21] and is compared to classical homogeneous scrubbing

approaches like [18], [22]. It shows an improvement in Mean-

Time-To-Failure (MTTF) when scrubbing is focused only on

critical parts of the mapped application into the configuration

memory. However scrubbing is still limited by the fact that it

only cleans configuration memory from faults and can leave

eventual errors in results which already propagated between

the moment that the fault occurs and the moment it is detected

and removed.

III. BACKWARD ERROR RECOVERY USING PARTIAL

DYNAMIC RECONFIGURATION

An application implemented on FPGA is assumed to be a

set of tasks, where each one is represented by a number of

operations applied on a predetermined block of input data

to produce a block of processed data. The task can be a

hardware module (IP: Intellectual Property) which is placed

on Enhanced Reliability Region (ERR) and executed directly

by the FPGA [1] or it can be a soft-core processor running an

application and is executed on the FPGA inside an ERR (here

the soft-core processor is considered as a special IP).

We adopt a firm real-time model, where a task Ti is character-

ized by a work that needs Ci unit of time to be accomplished

before a deadline Di. The task Ti has Ii bits of input data and

produce Oi bits of output processed data.

A task is represented, in addition, by:

• nclbi the number of configurable logic blocs (CLB)

needed to implement task Ti,

• nfcriticali the number of critical frame that contains at

least one critical bit (a critical bit is a bit which if its

initial value changes an error occurs in the corresponding

task [23]),

• nfcontexti the number of context frame (a context frame

contains one or more bits that store FFs or LUTRAMs

contents of the corresponding task).

The fault tolerance approach proposed in this work is divided

into three components : Fault Detection (FD), Hardware

Checkpoint (HC) and Hardware Recovery (HR). Each compo-

nent uses PDR-feature to achieve its operations. To protect a

task against transient faults, the task is placed into an Enhanced

Reliability Region (ERR). A Reliability Controller (RC) is

added to the system and it is hosted into a static region [1].

An ERR is a normal partial dynamic region protected by the

RC. However this latter can be assigned to protect multiple

ERRs by performing the following operations on each one

separately. Figure 1 presents an example of multiples ERRs

on a Virtex-5 FPGA.

Fig. 1. Enhanced Reliability Regions illustration on a Virtex-5 SX50T layout.

A. Fault Detection (FD)

As stated before, using Error Detection and Correction

Codes, only one fault can be corrected and up to two faults can

be detected per frame. In our reliability controller, we use only

the detection capability of the available EDAC in each frame to

activate the Recovery action. We avoid its correction capability

due to the potential risk of fault introduction [18]. Each frame

of the ERR contains a parity bits calculated at the bitstream

generation step. At run-time, those bits are used together with

a hardwired circuit ”FRAME ECC” to check the correctness

of the data stored in that frame at each read cycle. To solve

the problem of odd number of faults (> 2) reported in [18],

the granularity of our detection is set to a frame, which means

that a detection of at least one faulty bit in a frame makes the

hole frame completely faulty and induces a recovery action of

all the corresponding ERR. The fault detection is performed

continuously in multitasking with the tasks execution until a

fault is detected or a hardware checkpoint is required, hence

no delay is introduced in the task workload.

However, the latency of FD influences the checkpoint

frequency and location. A worst scenario of fault detection

latency would be a fault occurring on the previous frame which

was reported as correct. This latency is estimated by:

Latencydetection = tframescan × nfscan, (1)

where tframescan
= tframeread

+ tframecheck
is the time

required to readback a frame from configuration memory and

to verify the parity bits, and nfscan is the number of frames

to verify before reaching the faulty frame.

B. Hardware Checkpoint (HC)

Backward Error Recovery (BER) tends to return a task to

a free-fault state when a fault is detected. To always satisfy a

free-fault state, BER manages the creation and restoration of

task context. This state creation is called checkpoint and can

be periodic or sporadic depending on the FT strategy adopted.

Because of the heterogeneous nature of FPGA-based appli-

cation, BER must be applied on both software and hardware

tasks. A unified way to create checkpoints on FPGAs is the

use of PDR [24], the context of each task is retrieved from

the configuration layer of the FPGA by performing a readback

capture of the corresponding ERR.

A readback capture is a normal readback of bitstream [25]

using PDR-feature preceded by a capture sequence (GCAP-

TURE) of FFs/LUTRAMs contents belonging to the target

ERR. This distributed information is localized on a set of

frames, which we call context frames, the number of those

frames is given by nfcontext and can be computed from the

produced files after the bitstream generation (Xilinx file with

extension .ll) [26]. nfcontext ≤ nftotal is always true, where

nftotal represents the total number of frames that configures

a task’s ERR.

Hardware checkpoint is also performed by the RC in

multitasking with the execution of tasks and with a frequency

equal to fc. No preemption of tasks is conducted when the

capture sequence of FFs or LUTRAMs is triggered nor the

readback of frames. However, the time required by the RC to

perform one checkpoint of a task Ti is given by the following

equation:

Tcheckpointi = tframeread
× nfcontexti . (2)

The tframeread
is heavily correlated to the implementation

of the reconfiguration controller and the provided input clock

[27].

C. Hardware Recovery (HR)

Following a fault detection, RC must halt the execution

of the corresponding ERR and perform a hardware recovery

using partial dynamic reconfiguration. The HR is a set of

two actions, first a rewrite of task’s context frames from the

last checkpoint and the correct frame which was detected as

faulty is performed, then a restore sequence (GRESTORE) is

activated to re-initialize the content of FFs and LUTRAMs to

the previously saved context of the task.

Unlike previous operations, the execution of HR induces a

time overhead for the recovered task, this overhead Trecovryi

is expressed by:

Trecovryi = tframewrite × (nfcontexti + 1), (3)

where tframewrite
is the required time to write one frame

to the configuration layer by the reconfiguration controller.

Therefore, the amount of lost computation Clost(i) due to the

recovery action in the case of periodic checkpoint is given by:

Clost(i) = Ci × fc. (4)

Figure 2 depicts two scenarios of a task execution with our

reliability controller: (a) shows a normal execution where no

fault is detected by FD and no overhead introduced and (b)

shows the hardware recovery in action upon a fault detection.

The execution of the task is stopped during the HR execution.

From figure 2, it is clear that a mutual exclusion exists between

Deadline

Fault Detection Hardware Checkpoint Hardware Recovery

Activation

Activation

Task execution
(a)

RC execution

Task work

Fault
occurrence

Deadline

Task execution
(b)

RC execution

Fig. 2. Execution scenario of a task with reliability controller (a) without and
(b) with fault occurrence.

the fault detection and the checkpoint creation/restoration. This

exclusion is due to the fact that only one Internal Configuration

Access Port (ICAP) can be used at the same time, even if there

are two instances in modern FPGAs [25]. The longer HC/HR

takes time to create/restore a checkpoint the longer fault detec-

tion is inactive. This means that the probability to have fault

occurring and been undetected will grow proportionally with

the interval of FD inactivity. In the next section, we propose an

original design approach to minimize this interval of inactivity

by introducing a new resources placement strategy.

IV. CONTEXT AWARE RESOURCES PLACEMENT (CARP)

Generally, the design-flow applied to generate a system-

on-chip for SRAM-based FPGA is composed of three steps:

synthesis, map and place-and-route. A synthesizer takes a

hardware description of a circuit and translates it into an RTL

design. After that, a mapper transforms this RTL design into a

gate-level model (which is composed of a set of tiles). Finally,

a placement algorithm is executed to assign each tile to a

location on the FPGA matrix and it is followed by a routing

algorithm to connect them together. However, it is not always

simple to integrate new heuristics for one of those steps.

This is one of the reasons for the introduction of RapidSmith

framework [28] in our work, which is a set of tools and APIs

dedicated to create new CADs tools for Xilinx FPGAs.

It is clear that the distribution of used frames is correlated

to the placement of tiles onto the FPGA. However available

placement algorithms do not take into account distribution

of context frames usage as a criteria of placement. Other

heuristics consider the maximum clock frequency or the low

power usage as criteria. So by using RapidSmith, we were

able to integrate context frame size as a new criteria when

placing tiles of a given design. We were also able to compare

bitstreams resulting from different placed designs and thus

finding a relationship between the number of CLB column

used to host the ERR and the number of context frames needed

for its configuration. For example, we noticed that FFs on a

Virtex-5 family hosted on the same CLB column shares two

frames to store their content values on the configuration layer.

Using such a type of correlation as criteria, the algorithm

described in Algorithm 1, as a C-like pseudo-code, takes a

technology-mapped description of the design and produces a

placed technology-mapped description while minimizing the

number of CLB columns.

Context-Aware Resources Placement:
Data: unplaced design: D; bounding box of EER: box
Result: placed design: D’
LShape ← ShapesT iles(D);
LContext ← ContextT iles(D);
LLogic ← LogicT iles(D);
for i ∈ { Shape, Context, Logic} do

for tile ∈ Li do
currentColumn ← getFirstColumn(box);
while tile not placed do

if currentColumn can hold tile then
Place tile on currentColumn;

else
currentColumn ← getNextColumn(box);

end
end

end
end
check unplacedTiles(D);

Algorithm 1: Context-Aware Resources Placement algorithm

flow

First, the tiles are divided into three lists : shape, context
and logic. A shape is formed of two or more tiles which must

be placed in a certain manner otherwise the routing operation

will automatically fail. An example of a placed design is given

in figure 3 where the shape tiles are depicted. Context tiles are

the ones that contain a used FFs/LUTRAMs, which represent

locations of task context. Logic tile are neither shape tile nor

context tile, for example it can be a tile that only implements

a Boolean function.

Fig. 3. Example of shapes in an FPGA matrix.

We point out that both functions ”ContextT iles” and

”LogicT iles”, first construct the corresponding lists of tiles

and then apply an optimization sort based on tiles’ connectivity

to minimize the risk of an un-routed design.

Once the construction of lists is achieved, we iterate over each

tile of each list and search for a free place on the available

CLB column in the bounding box of the considered ERR. We

begin by placing the shapes list first because of their placement

constraints, then contexts list and finally logics list.

Each time a tile is successfully placed, the ”currentColumn”

variable is reinitialized to the first column of the bounding box.

This allows minimization of total number of CLB’s column

when the placement algorithm finishes.

V. EXPERIMENTAL RESULTS

Our experiments have been conducted on ML506 board

which incorporates Virtex-5 FPGA. The detection, checkpoint

and recovery were implemented on a MicroBlaze-based SoC

platform with a fully 32-bits hardware implementation of a re-

configuration controller. This later use the ICAP at a frequency

of 100Mhz. The time needed for a read/write operation of one

frame is: tframeread
= tframewrite = 1.8μs.

Further, to reduce the overhead of checkpoint/recovery, we

evaluated our proposed context-aware resources placement

strategy on the ITC99 Benchmark (b01,b02,...) and an AES

algorithm on a PicoBlaze soft-core (PicoAES), both context

size and tile usage are listed on Table I for each benchmarks.

TABLE I
CONTEXT SIZE AND TILES USAGE OF CONSIDERED BENCHMARKS.

Circuit
Context

size
(bits)

#of
shapes

#of
shape

tile

#of
context

tile

#of
logic
tile

b01 8 0 0 2 1
b02 3 0 0 1 1
b03 31 0 0 10 2
b04 67 2 4 18 6
b05 36 5 14 17 35
b06 3 0 0 1 3
b07 43 2 4 14 7
b08 9 0 0 4 3
b09 28 0 0 10 0
b10 20 0 0 11 0
b11 34 1 3 15 8
b12 141 0 0 65 55
b13 43 1 3 14 4
b14 179 14 88 68 162
b15 417 19 142 161 359
b17 1323 57 414 538 699
b18 2803 128 887 1203 2031
b19 5579 263 1816 2322 3129
b20 431 31 194 191 328
b21 432 33 207 179 320
b22 617 49 305 274 547
PicoAES 4374 12 22 84 26

Using RapidSmith, the classical design-flow described early

is executed until the place and route step, where the NCD file

of the design is converted to an XDL file [29] and placement

of tiles is performed through RapidSmith API. Finally, the

placed XDL is converted back to an NCD file and the design

is routed and the bitstream is generated.

We implemented the algorithm 1 as a Java application that

take an XDL description of the design and produces a placed

netlist with an optimal number of context frame. To evaluate

the gain of our placement strategy, we compared its results

with the placement produced by Xilinx Place and Route (PAR)

tool. Figure 4 gives resources placement of b15 benchmark

with and without CARP and Table II summarizes the results

obtained for the number of context frames and both number

of critical frames and critical bits.

Fig. 4. Resources Placement for b15.

TABLE II
SUMMARY OF IMPLEMENTATION RESULTS FOR XILINX (PAR) AND

CONTEXT-AWARE RESOURCES PLACEMENT (CARP).

Xilinx (PAR) Context-aware resources (CARP)

Circuit
#of

context
frame

#of
critical
frame

#of
critical

bit

#of
context
frame

#of
critical
frame

#of
critical

bit
b01 1 75 2053 2 229 2913
b02 2 73 942 2 163 1506
b03 8 236 7692 2 211 9399
b04 8 222 17483 2 240 21693
b05 8 878 32273 2 550 39571
b06 2 73 2120 2 132 3334
b07 4 121 14511 2 326 17390
b08 2 83 5112 2 458 7646
b09 4 99 5729 2 175 6500
b10 2 104 7754 2 260 10380
b11 6 169 16931 2 598 20331
b13 4 128 10248 2 579 14365

b12 21 623 47151 8 815 68444
b14 26 1223 197298 8 1562 270331
b15 67 2617 357090 19 1927 497782
b17 131 3879 1033822 60 4170 1797585
b18 293 8993 2234146 293 8993 2234146
b19 392 9180 4493610 392 9180 4493610
b20 57 2431 444563 22 2183 641227
b21 60 2620 437615 20 2176 613314
b22 89 3242 665340 33 2604 991980
PicoAES 59 657 48709 14 1086 71671

We can notice here that for benchmarks that have small

context size (b01-b11,b13), our placement strategy will reduce

the number of context frame with a huge augmentation of

critical frames and critical bits. This overhead of critical

bits is mainly due to inputs/outputs locations, where the

bounding box was not always located nearby I/O, inducing

an augmentation of used wires and so the size of critical bits.

However for other benchmarks, it is clear that context-aware

resources placement strategy minimizes the number of context

and critical frames with a small overhead of the total number

of critical bits (mainly b15, b20, b21, b22). This reduction of

critical frames is beneficial for the fault detection latency.

We noticed also that our new placement algorithm (CARP)

cannot find better placement which can be routed and imple-

mented for b18 and b19 due to their huge tile usage.

Moreover, the maximum frequency for each benchmark is

exactly identical for both PAR and CARP strategy.

TABLE III
TIME OVERHEAD REDUCTION IN BER USING CARP.

Circuit FD HC/HR
b15 26.37% 71.64%
b20 10.20% 61.40%
b21 16.95% 66.67%
b22 19.68% 62.92%

Table III gives percentage of time overhead reduction

due to the use of our new context-aware resources place-

ment with Backward Error Recovery fault tolerant approach.

For example the fault detection latency of the circuit b22

(Latencydetection = 5.83ms) is reduced by more than

19% (4.68ms) when using CARP. Similarly, Tcheckpointi =
160.2μs and Trecovryi

= 162μs are reduced by more than

62% (Tcheckpointi = 25.2μs and Trecovryi
= 27μs).

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a new resources placement

strategy which reduces significantly the time overhead of our

fault mitigation approach. This later uses Partial Dynamic

Reconfiguration to protect SRAM-based applications against

transient faults. First, the time overhead of such an approach

is evaluated and then optimized using a new Context-Aware

Resources Placement algorithm (CARP). The CARP approach

is implemented and evaluated against Xilinx Place and Route

(PAR) tool. Results show a reduction of both context frames

and critical frames, which subsequently reduces the execution

time for fault detection, hardware checkpoint and hardware

recovery. In our future work, we target to integrate the routing

strategy to the Context-Aware Resources Placement to reduce

both the size of context frames and the size of critical frames.

REFERENCES

[1] F. Sahraoui, F. Ghaffari, M. El Amine Benkhelifa, and B. Granado. An
efficient ber-based reliability method for sram-based fpga. In Design
and Test Symposium (IDT), 2013 8th International, pages 1–6.

[2] C. Bolchini and C. Sandionigi. Fault classification for sram-based fpgas
in the space environment for fault mitigation. Embedded Systems Letters,
IEEE, 2(4):107–110, 2010.

[3] Jason A. Cheatham, John M. Emmert, and Stan Baumgart. A survey
of fault tolerant methodologies for fpgas. ACM Trans. Des. Autom.
Electron. Syst., 11(2):501–533, 2006.

[4] F.L. Kastensmidt, L. Carro, and R.A. da Luz Reis. Fault-tolerance
Techniques for SRAM-based FPGAs, volume 32. Springer Verlag, 2006.

[5] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin. Im-
proving fpga design robustness with partial tmr. In Reliability Physics
Symposium Proceedings, 2006. 44th Annual., IEEE International, pages
226–232.

[6] S. Yousuf, A. Jacobs, and A. Gordon-Ross. Partially reconfigurable
system-on-chips for adaptive fault tolerance. In Field-Programmable
Technology (FPT), 2011 International Conference on, pages 1–8.

[7] A. Ilias, K. Papadimitriou, and A. Dollas. Combining duplication, partial
reconfiguration and software for on-line error diagnosis and recovery in
sram-based fpgas. In Field-Programmable Custom Computing Machines
(FCCM), 2010 18th IEEE Annual International Symposium on, pages
73–76.

[8] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and K. Lund-
green. Domain crossing errors: Limitations on single device triple-
modular redundancy circuits in xilinx fpgas. Nuclear Science, IEEE
Transactions on, 54(6):2037–2043, 2007.

[9] M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello. Exploiting
self-reconfiguration capability to improve sram-based fpga robustness in
space and avionics applications. ACM Trans. Reconfigurable Technol.
Syst., 4(1):1–22, 2010.

[10] J. Kok, L. F. Gonzalez, and N. Kelson. Fpga implementation of an
evolutionary algorithm for autonomous unmanned aerial vehicle on-
board path planning. Evolutionary Computation, IEEE Transactions on,
17(2):272–281, 2013.

[11] K. Asami, H. Hagiwara, and M. Komori. Visual navigation system
based on evolutionary computation on fpga for patrol service robot. In
Consumer Electronics (GCCE), 2012 IEEE 1st Global Conference on,
pages 295–298.

[12] A. Grunewald, S. Hardt, M. Mielke, and R. Bruck. A decentralized
charge management for electric vehicles using a genetic algorithm:
Case study and proof-of-concept in java and fpga. In Evolutionary
Computation (CEC), 2012 IEEE Congress on, pages 1–7.

[13] François C. Allaire, Mohamed Tarbouchi, Gilles Labonté, and Giovanni
Fusina. Fpga implementation of genetic algorithm for uav real-time path
planning. J. Intell. Robotics Syst., 54(1-3):495–510, 2009.

[14] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin. Im-
proving fpga design robustness with partial tmr. In Reliability Physics
Symposium Proceedings, 2006. 44th Annual., IEEE International, pages
226–232.

[15] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M. Wirth-
lin. Seu-induced persistent error propagation in fpgas. Nuclear Science,
IEEE Transactions on, 52(6):2438–2445, 2005.

[16] Huang Keheng, Hu Yu, Li Xiaowei, Hua Gengxin, Liu Hongjin, and
Liu Bo. Exploiting free lut entries to mitigate soft errors in sram-based
fpgas. In Test Symposium (ATS), 2011 20th Asian, pages 438–443.

[17] S. Yousuf, A. Jacobs, and A. Gordon-Ross. Partially reconfigurable
system-on-chips for adaptive fault tolerance. In Field-Programmable
Technology (FPT), 2011 International Conference on, pages 1–8.

[18] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. A. LaBel,
M. Friendlich, H. Kim, and A. Phan. Effectiveness of internal versus
external seu scrubbing mitigation strategies in a xilinx fpga: Design, test,
and analysis. Nuclear Science, IEEE Transactions on, 55(4):2259–2266,
2008.

[19] B. Dutton and C. Stroud. Built-in self-test of embedded seu detection
cores in virtex-4 and virtex-5 fpgas. In International Conference on
Embedded Systems and Applications, pages 149–155.

[20] U. Legat, A. Biasizzo, and F. Novak. Seu recovery mechanism for sram-
based fpgas. Nuclear Science, IEEE Transactions on, 59(5):2562–2571,
2012.

[21] Lee Ju-Yueh, Chang Cheng-Ru, Jing Naifeng, Su Juexiao, Wen Shijie,
R. Wong, and He Lei. Heterogeneous configuration memory scrubbing
for soft error mitigation in fpgas. In Field-Programmable Technology
(FPT), 2012 International Conference on, pages 23–28.

[22] Ken Chapman. Seu strategies for virtex-5 devices, 2010.
[23] Ken Chapman. Virtex-5 seu critical bit information. XAPP864, 2010.
[24] A. G. Schmidt, Huang Bin, R. Sass, and M. French. Checkpoint/restart

and beyond: Resilient high performance computing with fpgas. In Field-
Programmable Custom Computing Machines (FCCM), 2011 IEEE 19th
Annual International Symposium on, pages 162–169.

[25] Xilinx. Virtex-5 fpga configuration user guide ug191 (v3.11).
[26] Xilinx. Command line tools user guide (ug628 v14.2), 2012.
[27] S. G. Hansen, D. Koch, and J. Torresen. High speed partial run-

time reconfiguration using enhanced icap hard macro. In Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on, pages 174–180.

[28] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings. Rapidsmith: Do-it-yourself cad tools for xilinx fpgas. In
Field Programmable Logic and Applications (FPL), 2011 International
Conference on, pages 349–355.

[29] C. Beckhoff, D. Koch, and J. Torresen. The xilinx design language
(xdl): Tutorial and use cases. In Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), 2011 6th International Workshop
on, pages 1–8.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

