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Abstract—Reliability is a major concern for embedded systems.
Semiconductor devices used to implement them can suffer from
various environmental perturbations. This is more evident when
considering SRAM-based FPGA. Perturbations are very frequent
and they can limit FPGA’s usability. In this paper, a new fault
tolerance approach is presented which try to take advantage
of partial dynamic reconfiguration provided by SRAM-based
FPGAs. The approach is based on the Backward Error Recov-
ery to mitigate faults on the configuration layer by restoring
the correct behavior of the application. Fault injection using
emulation is used to evaluate the reliability of the proposed
fault mitigation technique and its results are compared to those
obtained when configuration scrubbing is used. An improvement
of up to 12% for reliability and availability of the Design Under
Test is observed.
Keywords: Fault mitigation, Backward Error Recovery,

SRAM-based FPGA, Reliability, Configuration Scrubbing.

I. INTRODUCTION

Modern Field Programmable Gate Arrays (FPGAs) have

gained an important place over the past decade on various

application domains, like: transportation, aeronautic, and even

aerospace [1]. Such widespread utilization is mainly due to

certain number of benefits that FPGAs offer, like : short time to

market, affordable engineering costs, in-field (re)configurable

and high resources availability, high execution speed and low

energy consumption.

Most used FPGAs are structured into two layers : (a)

configuration layer and (b) resources layer.
Configuration layer is based on SRAM technology and it is

divided into a set of SRAM-based cells where each one is used

to hold one bit, this latter configures a specific element from

the resource layer. This set of bits is known as ”bitsream”.

Resource layer is also divided into cells called tiles, each
one contains a fixed number of Look-Up Table (LUT) and

Flip-Flop (FF) that can be used to implement a small boolean

function. A complex system is build on FPGA by dividing it

to small boolean functions, map each one to a specific tile, and

then interconnect each tile by a set of routing wires/matrices.

By writing a new bitsream to the configuration layer, a new

functionality is performed by the resources layer elements,

this is known as (Re-)Configuration. Such ability brings new
paradigms to how applications are designed and executed on

FPGAs. Indeed, instead of having all the application loaded

at the same time into the FPGA where only some portions

of this application is processing data, it is possible to split

the whole application to different modules, and load/unload

modules on-demand following execution conditions [2].

However, as a result of the huge number of SRAM memory

used on FPGAs to achieve reconfiguration, FPGAs are very

sensitive to faults caused by the interactions of high energy

particles with their substrate [3]. Single-Event Effects (SEE)

regroups those types of interactions, where the most recurrent

faults on SRAM-based FPGAs are Single Event Upset (SEU)

and Single Event Transient (SET), both are soft errors. A soft

error is a temporarily disruption of the application execution

and can be corrected by a simple reset/reconfiguration. Hard

errors are faults that cause permanent damage to the FPGA

and involve its replacement. Hard errors are out of the scope

of this work.

Single Event Transient (SET) is a voltage glitch in one

electronic element of the FPGA. If this glitch is used by a

combinational logic then wrong values could be captured and

computed. The SET can also appear and vanish without any

impact. Single Event Upset (SEU) is an inversion of value

saved by a sequential logic of FPGA. SEUs can occur either

in the configuration memory or in the application memory like

for example a flip-flop. The application-SEU is less frequent

then the configuration-SEU because the first memory is an

order of magnitude smaller than the configuration memory. In

the rest of these work, SEU is used to refer to SEU occurring

on the configuration memory of an FPGA.

A well-known approach to mitigate faults on FPGAs is the

use of Triple Modular Redundancy (TMR) [4]. TMR mitigates

faults by performing a majority voting upon the results of three

identical instances. While there is only one faulty instance,

TMR produces a high rate of reliability. However, it is

very resources/power consuming and can even degrade the

execution speed of the hardened application. Moreover, TMR

can be inefficient on FPGAs due to SEU accumulation on the

configuration layer or when multiple bit upsets are considered

[5], [6].

To overcome such weakness with less overhead, new fault

tolerant approaches based exclusively on partial dynamic re-

configuration (PDR) are proposed in the literature, those ap-

proaches try to take advantage of FPGA abilities. In this work,

a reliability evaluation is performed for both configuration
scrubbing and Backward Error Recovery using PDR through

fault injection campaigns.

The rest of this paper is organized as follows: Section II
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gives an overview of configuration scrubbing method used to

mitigate transient faults on FPGA’s configuration. In Section

III, we present our fault mitigation approach based on Back-

ward Error Recovery (BER) and Partial Dynamic Reconfigu-

ration. Section IV discusses the architecture used to perform

fault injection emulation on those mitigation approaches and

the adopted fault generation model. Section V gives reliability

performances for both configuration scrubbing and BER ap-

proaches. Finally, section VI summarizes our contribution and

outlines perspectives.

II. CONFIGURATION SCRUBBING

A convenient way to eliminate SEU from the configuration

memory of an SRAM-based FPGA is Configuration Scrubbing

[7]. It is a technique based on the rewrite of initial bistream

into the SRAM memory. The scrubber operates continuously

sequencing through each frame and reloading its content

following two possible strategies [8].

An efficient and simplest strategy to implement it is ”Blind
Scrubbing”. The scrubber uses a golden copy of the bitstream
and periodically refresh the configuration layer with it. Usu-

ally, such strategy is performed with an external controller,

which means that additional circuitry must be added to the

initial FPGA-based system. Moreover, the controller must be

fault tolerant to SEUs and a RadHard memory must be used

to save the golden copy of the the initial bitstream.

Alternatively to blind scrubber, ”Readback Scrubber” per-
forms a detection of upsets on each frame before triggering

any rewrite of the initial values.

Readback scrubbers are based on the ability to readback

configuration memory from the SRAM [9] and to check if

upsets are present or not. Detection of upsets can be performed

either by comparing the retrieved frames with the initial ones

or by using error detection and correction codes (EDAC).

First version of readback scrubber [7] was based on cyclic

redundancy check (CRC) to evaluate the integrity frames

and it uses the external configuration interface SelectMap

for ”Read/Write” operations. Later, Extended Hamming code

[10] (ECC) was used to carry detection/correction (SECDED)

and the Internal Configuration Access Port is used to frame

read/write. According to [7], readback srubbers can be divided

based on their detection and repair approach as follow :

• Readback & Repair with Golden copy

• Readback with ECC & Repair with Golden copy

• Readback & Repair with ECC

The first one is exclusively based on the comparison of

readback frames with the Golden copy of bitsream. For cor-

rection, the initial frame from the golden memory is rewritten

into the configuration memory. The second and the third types

use EDAC information available inside each frame to seek for

any upsets occurring on the frame. Furthermore, in modern

FPGAs, a hardwired circuitry is available to perform automatic

detection after each readback of a frame [11].

For correction, the second type of scrubber uses a golden copy

to reload correct values into the configuration memory, where

the third one uses directly the location capability of used code

to identify the bit to correct.

Improvement to scrubbing based on ECC can be achieved

considering the fact that not all configuration bit upsets lead

automatically to an application error [12]. It is possible to

define a subset of configuration bits, where, if one of those

bits is flipped then a functional change of the application will

imperatively appear and the application would be incorrect

(erroneous behavior or failure). By identifying those critical

bits offline, it is possible to trigger correction only upon

their change. Critical bits can be used to enhance the rate

of scrubbing [12].

III. BACKWARD ERROR RECOVERY USING PARTIAL

DYNAMIC RECONFIGURATION

Backward Error Recovery (BER) is the ability to bring back

an application to a correct state upon the detection of an

error. We already proposed in [13] a fault mitigation approach

based on BER for SRAM-based FPGAs using Partial Dynamic

Reconfiguration.

To protect a hardware IP core against transient faults, the

IP is placed into an Enhanced Reliability Region (ERR) and

a Reliability Controller (RC) is added to the final system.

The RC is hosted into a static region [13]. An ERR is a

normal partial dynamic region protected by the RC. This latter

can be assigned to protect multiple ERRs by performing the

following operations on each one separately using a frame

masking mechanism [13], [14].

A. Fault Detection (FD)

Using Extended Hamming Codes, only one fault can be

corrected and up to two faults can be detected per frame

[11]. Each frame contains a parity bits calculated at the

bitstream generation step. At run-time, those bits are used

together with a hardwired circuit ”FRAME ECC” to check

the correctness of the data stored in that frame at each read

cycle. In our reliability controller, we only use detection

capability of the available EDAC to activate the Recovery

action. We avoid its correction capability due to the potential

risk of fault introduction [15]. The fault detection is performed

continuously in multitasking with the tasks execution until a

fault is detected or a hardware checkpoint is required, hence

no delay is introduced in the IP workload.

B. Hardware Checkpoint (HC)

Backward Error Recovery (BER) tends to return an IP to

a free-fault state when a fault is detected. To achieve this, a

periodic/sporadic creation of checkpoint is used.

Based on the nature of FPGA-based application, HC uses

partial dynamic reconfiguration [11] for the checkpoint cre-

ation. The context of each IP is retrieved from the configu-

ration layer of the FPGA by performing a readback capture

of the corresponding ERR. A readback capture is a normal

readback of bitstream [11] using PDR-feature preceded by a

capture sequence (GCAPTURE) of FFs/LUTRAMs contents

belonging to the target ERR. This distributed information is

2014 9th International Design and Test Symposium

249



localized on a set of frames and identified from the produced

files after the bitstream generation (Xilinx file with extension

.ll) [16].

Hardware checkpoint is also performed by the RC in parallel

with the execution of tasks. Like configuration scrubbing, no

preemption of IPs is needed to trigger the capture sequence

of FFs or LUTRAMs nor the readback of frames.

C. Hardware Recovery (HR)

After a fault detection, RC must halt the execution of

the corresponding ERR and performs a hardware recovery

using partial dynamic reconfiguration. The HR is a set of two

actions, first a rewrite of IP’s context frames from the last

checkpoint and the correct frame which was detected as faulty

is performed, then a restore sequence (GRESTORE) [11] is

activated to re-initialize the content of FFs and LUTRAMs to

the previously saved context of the task.

Unlike previous operations, the execution of HR induces a

time overhead for the recovered task, this overhead Trecovryi
is expressed by:

Trecovryi = tframewrite
× (nfcontexti + 1), (1)

where tframewrite is the required time to write one frame

to the configuration layer by the reconfiguration controller

and nfcontexti is the number of context frame plus 1 for the
erroneous frame.

Figure 1 depicts two scenarios of a task execution with our

reliability controller: (a) shows a normal execution where no

fault is detected by FD and no overhead introduced and (b)

shows the hardware recovery in action upon a fault detection.

The execution of the IP is stopped during the HR execution.

Fig. 1: Execution scenario of a task with reliability controller

(a) without and (b) with fault occurrence.

IV. HARDWARE PLATFORM FOR FAULT EMULATION

A. Test Application

Advanced encryption standard (AES) is used as a design

under test (DUT). By nature, the AES algorithm is very

sensitive to any changes, for example a small variation of

its inputs can produce significant variations on the output or

completely new one [17].

In our DUT, an implementation based on a KCPSM3 [18]

(KCPSM3 is an embedded 8-bit RISC microcontroller for

xilinx FPGAs) was used to perform an AES-128 computation.

Also, a hardware version of substitution box (S-BOX) was

used to accelerate the computation time of AES, from the

processor point of view, the SBOX is considered as an I/O

device. The PicoBlaze also uses an I/O controller to communi-

cate with its RS232 controller and SBOX module as illustrated

in Figure 2. The use of a processor based implementation of

AES is motivated by having inside the DUT a design with

both hardware and software computations.

Fig. 2: Design under test architecture.

The plaintext and the encryption key are generated by a
small IP core named ”DATAGEN” located inside the DUT,

see Figure 2. First, the processor loads two random arrays

of 128-bits length each, and then it computes the encryption

by executing the AES algorithm. Finally, the plaintext, the
encryption key and the ciphertext are sent through the RS232
port to a host PC to be logged for later analyses.

We use the architecture presented in Figure 3 to implement

the reliability controller of BER approach. And, to implement

blind scrubbing with golden copy, we reuse this same ar-

chitecture. We only change the application executed on the

mircoblaze processor. This guarantees the same frequency of

configuration memory read/write operation for both mitigation

approaches.

Fig. 3: Architecture of evaluation platform with Fault

Emulation.
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B. Injection Flow

The reliability of each mitigation method is evaluated using

fault emulation approach [19]. For each mitigation approach,

the DUT was placed on an isolated partial reconfigurable

region [20]. This insure that injected faults via configuration

layer will only target the DUT’s logic/routing, the fault injec-

tor and the RC/scrubber remain correct throughout the fault

injection campaigns.

The fault injector is implemented as a routine interruption

launched by the Timer. Using the information of the char-

acteristics of a fault to inject (type, size, shape), the routine

halts the Reliability application executed on the microblaze, it

selects a frame address following a probabilistic law, read the

frame from the configuration layer invert the bit and rewrite

the frame to the configuration layer. following the type of the

fault and its shape, one or more frame/bit can be involved in

one fault injection.

The probabilistic law used to generate faults characteris-

tics and frames address is generated based on the ground

experimentation reported in [21]. This choice is motivated by

reproducing real behavior of the FPGA toward heavy ion per-

turbations. For the power LET, we use the information reported

for the characterization using heavy ion with two Fluence (38.1

and 68.3 MeV − cm2/mg). We also take into account the
variation of incident angles (θ, φ), we reproduce two different
values for each angle, θ = (0◦, 90◦) and φ = (0◦, 60◦) [21].
Table I gives an example of faults distribution law considering

SEU/MBU.

TABLE I: Example of fault distribution law deduced from

[21] for (θ = 0◦, φ = 0◦)

LETs & Angles 38.1 MeV − cm2/mg 68.3 MeV − cm2/mg
SBU 1-bit 54% 41%

MBU
2-bits

46%
39%

59%
34%

3-bits 6% 13%
4-bits 1% 12%

Percentage of Table I are used to compute the among of

gault that should be injected into DUT memory and to chose

their characteristics (size & shape).

V. EXPERIMENTAL RESULTS

Our experiments have been conducted on an ML506 board

which incorporates a Virtex-5 FPGA. The fault injection was

repeated, for each combination of LET fluence and incident

angles, 50 times to produce significant data set to analyzed.

A fault injection campaign finishes after the injection of 1000

faults, and the injection routine send a signal to the host PC

to halt the FPGA, refresh the configuration layer with correct

bitstream and launches a next injection campaign.

Each campaign results are stored on the host PC, later this

information are parsed by a script on the host pc. The script

recomputes the ciphertext using the saved plaintext and the

encryption key and it compares it with the one produced by

the DUT.

The process of fault injection is performed in parallel with

the execution of configuration scrubbing or BER approach.

The histogram presented in Figure 4 summarizes the per-

centage of correct output data produced by the DUT when

protected by BER approach and when protected by scrubber.

The fault injection frequency was set to 10 events by second.

An event can produces a single fault or multiple.
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Fig. 4: Percentage of correct encrypted data produced by the

DUT.

We can notice, from Figure 4, that the BER approach

produces a slightly better protection against faults for each

fault injection campaign. Improvement varies between 2%

and 12% depending on the type of radiation (environmental

characteristics).
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Fig. 5: Maximum size of erroneous block of data.

Moreover, when considering the biggest size of erroneous

block of data, given in Figure 5, configuration scrubber

produces longer erroneous behavior upon time execution. This

means that the availability of the protected system was lowered

when using configuration scrubbing.

Such behavior is explained by the fact that scrubbing tends to

correct the configuration layer without taking into account the

current state of the DUT (correct/erroneous state). Evermore,

when using TMR with scrubbing, in [22], authors point out

that scrubbing failed to correct faults. Experiments reported

in [23] show that when inverting some configuration bits

(occurrence of upsets) and then correcting them, the appli-

cation (DUT) continued to show an erroneous behavior due to

persistent errors.

Using BER approach shows that it is possible to avoid such

a behavior by triggering recovery of the DUT’s context to go

back to a correct state. The same results are obtained when we

vary the values of fault injection frequency, as shown in Figure

6. Both configuration scrubbing and BER approach perform

better protection when fault arrival is relaxed.
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Fig. 6: Fault injection frequency variation for heavy ion

emulation with 68.3 & (θ = 0◦, φ = 0◦).

VI. CONCLUSION AND FUTURE WORK

In this work, we conducted fault emulation against Con-

figuration Scrubbing approach and Backward Error Recovery

to evaluate their reliability performance. A software/hardware

implementation of AES algorithm was used as a design under

test. Faults information was generated following a probabilistic

distribution law on Virtex-5. Obtained results show an im-

provement on both reliability and availability of the tested

system.

In our future work, we will conduct a deep evaluation of BER

overhead upon DUT need to be conducted and minimization

must be performed to enhance the overall reliability of our

approach.
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