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 Abstract – This paper presents a new embedded 
architecture for home devices control system directed through 
motor imagery actions captured by EEG headset. The proposed 
system is validated by an offline approach which consists on 
using available public data-set. These recording are always 
accompanied with noise and useless information related to the 
equipment, eyes blinking and many others resources of artifacts. 
For this reason, a complex EEG signal processing is required; 
starting by filtering EEG to keep the frequency of interest which 
is located on µ-rhytm and β-rhytm bands in our case; followed by 
the extraction of useful feature to minimize the size of EEG data 
and enhance the probability of classifying each trial correctly. A 
prototype of our proposed embedded system has been 
implemented on Stratix IV FPGA Board. The prototype operates 
at 200 MHz and performs real-time classification with an 
execution delay of 0.5 second per trial and an accuracy average of 
72%. 
 
 Keywords – brain computer interface (BCI), 
electroencephalogram (EEG), EEG filters optimization, Motor 
imagery 
 
I. INTRODUCTION  

The aim of Brain Computer Interface (BCI) is to 
completely build a new communication pathway between 
brain and electronic devices to restore capabilities for people 
with severe motor disabilities. Fig 1 depicts an overview of 
our proposed system which helps a handicap person to control 
home devices. User must provide different brain pattern 
activities which will be captured through a non-invasive EEG 
headset based on Ag/Cl sensor. The captured data is then 
processed using an electronic system to translate each thinking 
actions to actuators for home devices control purpose.  

The proposed home devices must be embedded into 
systems to meet stringent requirements directed by BCI 
application [1]. The system should perform real time signal 
processing to extract critical information early in the data 
stream and minimize as possible the system latency [2]. Also, 
the system should be miniaturized to enable the subject to 
interact freely with the surrounding without any risk of 
discomfort. Furthermore, home devices applications should 
consume low power and should be reconfigurable, portable 
and flexible. For all these reasons, a general purpose 
processing platform is inconvenient to meet these constraints 
[3] and so it is necessary to look for a suitable architecture to 
achieve efficient processing and practical applications.   

Nowadays, several BCI researchers continue to find and 
to improve solutions for practical implementation of BCI 
processing algorithm. In the literature, many BCI applications 
are implemented using advanced platform as DSP, ARM and 
FPGA. There are some studies which focus on the 
implementation of only one block from the basic BCI chain.  

 
For example, a spatial algorithm known as ICA (Independent 
Component analysis) is implemented on an FPGA to 
accelerate its execution time which is very slow when it’s 
running on general-purpose processing platform [4]. Others 
researchers implement an adaptive filter to process EEG 
signals in real time and remove artifacts [5]. On the other hand, 
there are some studies which implement a full BCI chain from 
filtering EEG data to the classification of different trials [1, 6, 
18]. Most of the published works are focusing on the Steady-
state Visual Evoked Potential SSVEP, which is an EEG signal 
response to the flickering visual stimulus. This technique is 
used to control hospital bed nursing system [6]. The system 
firstly presents a light emitting diode stimulation panel to 
induce the user’s SSVEP signal which will be processed in 
FPGA and translated to corresponding actions. Similarly, 
home devices systems are developed based on the SSVEP 
approach using computer-based architecture [7] and ARM 
processor [8]. Despite the successfully implementation of 
mentioned homes devices system, the obtained product is 
discomfort and prevent the uses of the system freely.  

 In this paper, we propose to implement a new home 
device system based on FPGA architecture to control basic 
home devices by the thought of two motor imagery actions.  
User must provide two activities: think move Left Hand (LH) 
and Right Hand (RH) correspond to class one and two 
respectively. The main objective of the electronic system is to 
extract the thinking actions to be translated to electric 
command of door, light…etc. The proposed system is 

Figure 1: Proposed home devices system 
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validated on the public data set of BCI competition III. The 
proposed motor imagery approach, using home device based-
on FPGA embedded system will be more comfortable and 
allows subjects to use it freely.  

The remainder of this paper is organized as follows. In 
Section 2, fundamentals of BCI theory is described.  The SoC 
FPGA-based design architecture for the proposed home device 
system is explained in section 3. Section 4 presents the 
simulation and realization of the system. The conclusion and 
future works plans are discussed in Section 5.  

 
II. OVERALL BRAIN COMPUTER INTERFACE DESCRIPTION 

The general structure of the brain computer interface 
system is depicted on Figure 2. As a first validation of the 
proposed system, we consider the offline approach which 
consists of using existing EEG data-sets. In all our 
experiments, we use the data set (IIIa) of BCI Competition III 
[9]. These data were provided by Graz University of 
Technology and were recorded from nine subjects performing 
four different motor imagery data, i.e., LH, RH, foot and 
tongue. The recording was done with 25-channels.  Three of 
them contain EOG artifacts. The EEG was sampled with 250 
Hz, and filtered between 0.5 and 100 Hz. Each subject 
recording contains 288 trials. For this study, we use only EEG 
signals corresponding to LH and RH tasks. First, trials are 
extracted in reference to the Trigger during 2 seconds based 
on some experiments. For each subject EEG data are divided 
into two parts: training part and test part; which are stored into 
memory file and loaded into FPGA later. Then, we proceed by 
filtering blocks which is a useful preprocessing step for 
removing artifacts and improving stationary. The unwanted 
signals should be removed carefully using one of the 
appropriate filtering techniques [19]. The most effective and 
widely used algorithms of EEG data filtering are Finite 
Impulse Response (FIR) and Infinite Impulse Response (IIR).  
In our case we use FIR filter which is simpler and more 
convenient for programming on dedicated digital signal 
processing platform.  

 

We use Butterworth filter with order 4 to remove the data 
outside the theoretical frequency response located on the µ-
rhythm [8-13] Hz and β-rhythm [14-30] Hz [10]. In the third 
step, we proceed for the examination of long recordings of 
EEG signals which requires rapid and automatic methods to 
provide fundamental features to be used in subsequent 
automatic analysis. Many techniques have been reported 
including power spectral density, Short-Time Fourier 
transform STFT [10], Common Spatial Pattern CSP [11] and 
wavelet analysis [12] etc. The choice of any technique will 
affect the accuracy of the associated classifier. In this respect, 
we will consider the CSP technique which is the best spatial 
filter algorithm for motor imagery from the effectiveness point 
of view to extract ERD/ERS effects. The main idea of this 
technique is to design a pair of spatial filters such that the 
filtered signal's variance will be maximal for one class while 
minimum for others. The returned algorithm is known by its 
highest computation complexity and isn’t yet embedded. It is a 
major issue of embedded-real-time implementation of CSP in 
the BCI domain. 
 Finally, the classification block is provided to classify 
each trial to its corresponding actions. A comprehensive 
review of classifiers for BCI is presented in [13] with many 
classifiers algorithm such as Linear Discriminant Analysis 
(LDA), Support Vector Machine (SVM), Neural Networks 
(NN), Hidden Markov Models (HMM) and Mahalanobis 
distance (MD). The MD technique, which is a variant of the 
LDA techniques, is addressed by our experiments and for 
which we have assigned a feature vector x for the class that 
corresponds to the nearest prototype. It is a simple and robust 
classifier and seems to be suitable for asynchronous BCI 
systems. Despite its good performances, it is still scarcely used 
in the BCI literature. The returned MD algorithm is too fast 
compared with other algorithm such as SVM, LDA, HMM 
and KNN.  

The first validation step of the proposed system consists on 
developing and simulating Matlab codes. Figure 4 presents the 
performance of the system which determined by the mean of 
the classification accuracy, sensitivity and specificity over 5 
runs for the nine subjects. The proposed approach outperforms 
significantly performances reported in the literature [14].  
 
III. EMBEDDED IMPLEMENTATION OF HOME DEVICE SYSTEM 

The design and implementation of a real-time home devices 
control system in the context of SoC (System on Chip) 
architecture require consideration of several issues such as: 
hardware design step, software design step and system design 
step [15]. In the first one, the embedded system-based 
hardware architecture build around embedded soft-core 
processor as depicted on figure 3. It incorporates fast version 
of the Nios II core processor with on-chip memories and a 
JTAG-UART interface interconnected using the Avalon fabric. 
We use DDR2 memory because it is the only memory on the 
board that can support the calculation of the matrix with 
biggest size. Then, we proceed for the design of a pure 
software architecture using Gnu Scientific Library (GSL) 
based-on high-level language (HLL). We chose an existing 

Figure 2: System block diagram of EEG chain 
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ANSI-C library due to the hard complexity of BCI algorithm, 
especially CSP. The code is developed and executed first on 
Intel processor platform. Once simulated and checked, we 
integrate all BCI codes on the Nios II processor to be executed. 
Finally, we integrated our design in FPGA-based architecture 
including both hardware and software components. The Altera 
Stratix IV EP4SGX230KF40C2 technology is used here for 
the prototyping. To accelerate the execution of our proposed 
system, an adequacy between the architecture and target 
techniques is explored by performing several optimizations: 
On the system architecture, we maximize the cache memory 
size and use burst option to send the data from memory to 
processor. On the software level, we minimize the number of 
instructions and inter-space the interdependent operations.  

 
 

IV. EXPERIMENTAL IMPLEMENTATION AND VALIDATION  

After integrating the overall architecture including hardware 
and software in a single Chip, we have simulated the design 
and evaluated their complexity. Table 1 presents the 
complexity of a total system with their hardware and software 
parts in term of Logic utilization (LUTs), DSP and block 
memory. We note that the complexity of the design is too low 
compared to available resource. The whole home devices 
design occupied less than 7% allowing the possibility of 
integrating hardware IP to accelerate EEG signal processing 
and to integrate other BCI techniques. 

 
FPGA core 

resources type 
Resources of EP4SGX230KF40 

Used Total Percentage 
LUTs 17281 456000     7% 
Block memory 557.332 14.625.792 4% 
DSP block 4 1288   <1% 

 
Table 1: Resource utilization of the Startix IV FPGA 

 
For validation purposes of our proposed system, we use 
Matlab 2010a to check the accuracy of classification 

regardless the timing consideration for different trials. Using 
Matlab, the system performance reach about 80% for nine 
subjects as depicted on Figure 4. In order to test the system 
with full speed operation (200 MHz), EEG data were uploaded 
to the DDR2 of Stratix IV FPGA using double formatted data 
to avoid any information loss. We notify that, extracted data 
features from the FPGA-based architecture are exactly the 
same as the resources extracted using the Matlab simulation. 
Once downloading the hardware design on the board, ANSI-C 
code of home devices are launched on the Nios II processor 
which is connected to Eclipse Window through JTAG 
interface to show the results of classifier. As depicted in 
Figure 4, performances of the control home devices system 
based on FPGA are very reasonable compared with Matlab. 
Indeed, the average accuracy of classification for the nine 
subjects is about 72%. This small difference in the accuracy is 
due to diverse factors at feature extraction and classification 
levels. We use the CSP at the feature extraction level which is 
based on generalized Eigen vector problems. This type of 
operation is too complex, and it is not easy to find the same 
results as Matlab. In addition, the classifier uses the 
calculation of the inverse of the square matrix, which is also a 
complex operation when using a big size matrix, or if the 
matrix is badly scaled. We notify, that Matlab environment is 
too accurate with respect to GSL Library. Despite this 
complexity of the proposed architecture, the proposed home 
devices system processed EEG data in real time and provides 
good performance.  

The timing presenting in Fig5 is provided by the Nios II soft-
core CPU, the measurements are taken through highly 
accurate internal timer. As depicted on the Figure 5, the 
proposed home devices system takes about 57.77 seconds 
during the training process based on 106 trials. These results 
mean that to classify an action, the system will take about 0.5 
second to process one trial. Despite that for home device 
applications, we don’t have strong real-time constraints, the 
processing time of our system on chip is smaller than the 
execution time for several embedded systems in same 
applications domain. For example, to control hospital Bed 
nursing system based on SSVEP approach, the system 
proposed in [6] takes about 5.2 seconds to process one trial 
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Figure 3: Block diagram of the home device SoC

Figure 4: Accuracy of the home devices system 
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while it based-on a very simple algorithm and uses only 3 
channels (  in our case we use 22 channels). Furthermore, 
others work mentioned the timing spanning to process one 
EEG trial captured based-on 5 channels is about  3 seconds 
[16].  

 

 

V. CONCLUSION 

In this paper, we present an issue of a first hardware software 
implementation of entire brain computer interface chain 
including training and classification steps. We demonstrate the 
feasibility of an embedded home devices system based-on 
FPGA and commanded through the thought of two motor 
imagery actions. The proposed methods achieve an acceptable 
system performance with an execution delay of 0.5 second per 
trial with very low FPGA resources. In future works, we will 
add additional filters to enhance the SNR of the processed data 
which will increase the system performance. The development 
of a full integrated architecture including hardware 
accelerators to enhance the execution time is in progress.    
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