
Fast SRAM-FPGA Fault Injection Platform based
On Dynamic Partial Reconfiguration

Fakhreddine Ghaffari∗ Fouad Sahraoui∗ Mohamed El Amine Benkhelifa∗ Bertrand Granado‡

ghaffari@ensea.fr fouad.sahraoui@ensea.fr benkhelifa@ensea.fr bertrand.granado@upmc.fr

Marc Alexandre Kacou∗ Olivier Romain∗

assi-marc.kacou@ensea.fr olivier.romain@ensea.fr

∗ETIS, CNRS UMR 8051, ENSEA, UCP

6 avenue du Ponceau, 95000 Cergy-Pontoise, FRANCE

‡ LIP6, CNRS UMR 7606, UPMC

4 Place Jussieu, 75252 PARIS Cedex 05, FRANCE

Abstract—SRAM-based FPGAs are very sensitive to harsh
conditions, like radiations or ionizations, and need to be hardened
to insure correct running. To validate any fault tolerant solution
for these SRAM-FPGA, fault injection campaigns must be
conducted carefully. In this work, we present a new design flow
to perform localized internal fault injection on specific parts
of a Design Under Test (DUT). To achieve this, we combine
between 1) Partial Dynamic Reconfiguration (PDR) via Internal
Configuration Access Port (ICAP) for rapid fault insertion
on SRAM; 2) Isolation Design Flow (IDF) to isolate both of
placement and routing of Design Under Test into a specific partial
region.

Moreover, we applied realistic fault distribution laws deduced
from ground-based radiation experiments to reflect realistic
behavior of FPGA toward radiations. The implemented injection
platform using this flow shows the importance of using distribu-
tion laws driven approach. Results show that our fault injection
experiments are done more than 15 times faster than one of the
traditional FPGA based fault injection methods with a speed-up
on simulation time up to 8.

Keywords: Fault Injection, Fault Emulation, Fault Toler-

ance, Module Isolation, Fault Distribution Law.

I. INTRODUCTION

In the last years, SRAM-based Field Programmable Gate

Arrays (FPGAs) have made a significant progress by ad-

vancing from prototyping platform to execution ones, which

comes mainly from their attractive features, like high avail-

able resources, high speed of execution and complete/partial

reconfiguration capability. The use of SRAM technology to

store the configuration data, called bitstream, was also a key

feature for this advance. Despite this progress, SRAM-based

FPGAs are very sensitive to fault occurrences and halt their

wide use in aerospace domain. This weakness is especially true

at configuration memory which represents more than 80% of

total memory (20% is BRAM) and can lead to erroneous and

critical execution and incorrect results.

To cope with this weakness, many Fault Tolerant (FT)

methods emerged to enhance the reliability of FPGA-based

systems [1]. A great number of those methods are based on

redundancy, like Triple Modular Redundancy (TMR) [2] or

Duplication with Comparison (DWC) [3] or their derivations.

In these systems more resources are needed, either they are

tripled for TMR approach or duplicated for DWC and voters

are added to validate intermediate/final results. Other methods

aim to avoid using redundancy, which impose a huge overhead

and may be unsuitable to apply on large design. This other

methods take advantage of Partial Dynamic Reconfiguration

(PDR) feature, like for example Configuration Scrubbing [4],

where a golden bitstream is periodically written to SRAM

memory to eliminate any eventual bit upset occurrence. Error

Detection and Correction Codes (EDAC) can also be a solution

to minimize redundancy overheads. Hardware checkpoint and

recovery [5] can also be used to protect computations against

faults occurrence and errors propagation with an acceptable

time overhead.

FT methods is incorporated into the considered system and

fault injection is carried to evaluate the robustness of the used

FT. To achieve a high level of fault injection accuracy, one can

put the system in real conditions of execution [6]. However,

approaches like the one described in [6] are often hard to

control, always time consuming and very expensive. New

approaches need to be elaborated to achieve similar objectives

with lower complexity and lower costs.

Emulation via Dynamic Partial Reconfiguration [7] has

been proven to be an accurate approach to perform fault

injection evaluation at early stage of system design and its

validation against faults. Fault injection via emulation isn’t a

new method for reliability assessment [8] but is still limited by

closed bitstream format which prevents in deep and accurate

identification of specific parts of the design to be injected. In

this paper, we propose a relevant way to enhance classical

design flow of fault injection by isolating parts of interest in

individual partitions at early stage of system design. Isolation

does not only allow constraining functional elements as com-

pared to PDR, but also constrains wires and matrices used by

these parts of design into specific known regions of SRAM

configuration layer.

The rest of this paper is structured as follows. In Section II, a

978-1-4799-8153-3/14/$31.00 ©2014 IEEE
144

discussion of fault injection methods and its related works are

presented. In section III, Isolation Design Flow benefits and

its integration in fault injection via emulation are presented.

Section IV depicts rapidly implementation details and shows

the importance of self-injection problem, especially in routing

resources, which are easily overcome by our Isolation based

Fault Emulation (IFE). Section V concludes this work and

enumerates some perspectives.

II. RELATED WORKS

Depending on the desired behavior to observe and to vali-

date, different methods are available to perform fault injection

into SRAM-based FPGAs. They can be grouped into: HDL

simulation based methods, FPGA emulation based methods,

accelerated particles or radiation based methods. Each one

provides a certain number of advantages and drawbacks which

need to be considered before using it [9].

With High Description Language (HDL) simulation, it is

possible to evaluate hardened design without the need to

consider the internal behavior of the target FPGA. Such

methods are very effective at early stage of prototyping and

conception; they can pinpoint rapidly weakness in applied FT.

Despite the high level of abstraction and the precision of fault

location offered by HDL simulation, some drawbacks have to

be considered when using such approach. A huge temporal

cost for the simulation step, which can grow rapidly with the

complexity of the DUT or the set of fault combinations to be

injected. Moreover, HDL simulation is non-adapted to perform

black box simulation where generation of its stimulus can be a

serious problem. In [10], FuSE tries to overcome the temporal

cost by accelerating simulation step with SEmulator software

and a dedicated FPGA platform, which can be an additional

cost to consider. HDL simulation methods generate a huge

quantity of data to analyze.

As opposite to HDL simulation methods, ground-based

radiation methods are used to reproduce pseudo-realistic harsh

conditions of execution. They are very suitable to enumerate

possible fault models and to evaluate space readiness of

new SRAM-based FGPAs. However, ground-based radiation

method [11] is a very expensive approach and requires a

specialized infrastructure. This fault injection method also

suffers from a large interval of time to perform irradiation

and it is totally uncontrollable regarding fault location and

fault model.

Emulated based fault injection methods can be more suit-

able junction between the advantages of previous described

methods. By applying a bitstream alteration, it is possible to

recreate effects of radiation or ionization, and by executing

design directly on FPGA target, it is possible to validate the

behavior of FT in conjunction with FPGA behavior at runtime

execution.

Approaches using Partial Dynamic Reconfiguration (PDR) to

perform bit upset at runtime offers more complex scenarios.

PDR can be achieved either from a PC or another FPGA via

external reconfiguration port [8], like Select Map or JTAG,

and it allows the validation of the DUT with its real routing

and placement on the chip. PDR can be performed via Internal

Configuration Access port (ICAP) to reach high rate of fault

insertion and removal, which can be a key feature to emulate

advanced scenarios and realistic fault rate.

The additional step of isolation proposed in this work gives

a new way to localize the resources to be injected, especially

routing wires/switches. Another benefits of using our approach

is to separate between the logics/routes of the DUT from those

belonging to the injector or between different instances in the

case of TMR for example.

III. ISOLATION BASED FAULT EMULATION - IFE

Hardened system

Synthesis tool
Fault Tolerance

application

Initial system (HDL/Netlists) FT Method

Fault Injector
Addition

IFE application Fault injection Analyze

Isolation Design
Flow

Emulation on
FPGA

Distribution
Law for faults

Im
pl

em
en

ta
ti

on

F
T

V
al

id
at

io
n?

Fig. 1: FT Validation using Isolation based Fault Emulation.

Figure 1 presents an illustration of FT validation using our

Isolation based Fault Emulation flow. After an application of

the FT method upon an initial system, synthesis is performed

and later a fault Injector design is added. Isolation Design

Flow is applied to separate between the DUT and the rest

of the design. Finally emulation is performed using a fault

distribution law to validate the FT robustness by checking

DUT computation results.

A. Resources and Configuration layer structure

Following explanations use Virtex-5 FPGA as an illustration

device but doesn’t restrict the proposed flow to it.

Resource layer in SRAM-based FPGAs is generally struc-

tured into three main blocks, which are: Configurable logic

blocks (CLB) used to implement Boolean functions, routing

matrices used to interconnect logic blocks and input/output

blocks allow communication with external world. In recent

devices, there are also embedded resources on the die, like

Block RAM or DSPs, which aim to accelerate some specific

part of implemented modules. Each column of resource is

configured with a specific number of frames stored on the

configuration layer (SRAM). A frame is a vector of (1, n)-bits

(n is specific to the device). For example, in Virtex-5 a frame

has n=1312 bits height and 36 frames are needed to totally

configure a column of configurable logic blocks (CLB).

To perform fault injection by emulation, frames are read from

the configuration layer, altered by inverting one or more bits

and written back to the configuration layer [8].

978-1-4799-8153-3/14/$31.00 ©2014 IEEE
145

B. Isolation Design Flow in IFE

Xilinx Isolation Design Flow (IDF) [12], is a specialized

flow used to build high dependable design for critical sys-

tem like cryptography, where attributes like confidentiality,

availability, safety, reliability, maintainability and integrity are

very required. Especially, this flow is used on system with

redundancy, where it is helpful to conduct fault confinement,

analyze of redundant instance, fault removal and correction.

For each isolated partition, an ”SCC ISOLATION” attribute

is added to notice the Placement and Routing tool (PAR) that

these partition need special care when performing their place-

ment and routing. An unused column of CLB resource, called

Fence, must be inserted vertically or horizontally between each

isolated partitions and the Top design partition, like illustrated

in Figure 2.

Fig. 2: Binary counter isolated with Xilinx Isolated Design

flow.

Figure 2 shows also that all routing are localized on their

respective partition, except for connections that link the static

partition to the isolated partition, which are performed via

trusted routes [13]. This flow insures a correct execution of

the embedded fault injector when using ICAP.

C. Fault Distribution Law

Fault injection by emulation can be conducted either using

a random law or following a realistic distribution law. The

random approach is more generic and can be used to rapidly

validate preliminary designs, while the second approach pro-

vides more realistic scenarios and emulates more complicated

faults that are uncovered in the first one, like for example

multiple bit upset and their shape.

Combining our IFE flow with a fault distribution law, we are

able to emulate ground-based fault injection experiments upon

isolated partition, with a very low cost and at high speed. Table

I illustrates an example of a fault distribution law of a Virtex 5

configuration layer deduced from [11]. This example outlines

that actual FPGAs are subject to complex scenarios, where

using random law to choose fault location and size, may fail

to evaluate correctly a given FT method.

TABLE I: Example of fault distribution law deduced from

[11].

LETs & Angles
68.3 (MeV − cm2/mg)

(0◦, 0◦)
72.8 (MeV − cm2/mg)

(90◦, 60◦)
SBU 1-bit 41% 28%

MBU
2-bits

59%

34%

72%

23%
3-bits 13% 15%
4-bits 12% 18%
5-bits -% 7%
6-bits -% 9%

D. Fault Generator

To be able to reproduce fairly a distribution law and its

involved scenarios, it is important to have a fault generator

algorithm which is capable of determining for each generated

fault a number of properties, like size, location and type of

resource involved, shape in case of multiple bits upset (MBU),

and time of its insertion. We constructed fault generator to

perform such choices where it takes those fault distribution

law tables as inputs to drive its operations.

In our experiment, both generation and insertion of faults

were performed with an embedded injector. This helped the

validation the absence of fault injection into injector logics

(self-injection problem) when using IFE approach. An im-

portant step in this process is MBU generation. It is crucial

to fairly reproduce the behavior of the relationship between

bits involved into an MBU, and the way to choose frames

that are hit by MBU. A solution to achieve this objective is

to keep track of different shapes of collected MBUs when

characterizing an FPGA and their corresponding probability of

occurrence. Table II presents an example of such information.

A shape is described by the smallest matrix (NxM) which

bounds the MBU bits.

TABLE II: Fault distribution law of shape for MBU on

Virtex 5 FPGA.

MBU 2-bits 3-bits 4-bits
Shape (1x2) (2x1) (2x2) (3x1) (2x2) (3x2)
Heavy

ion
21% 56% 7% 5% 3% 3%

Proton 50% 32% - 8% 10%

IV. IMPLEMENTATION AND RESULTS

To outline benefits of isolation design flow for fault injection

with emulation, we first implemented a MicroBlaze-based

system that runs the previous presented fault generator. We

placed some functional logics inside partial region as DUT.

The system perform fault injection via Xilinx SEU controller

[14], and reports results for later analyze through serial port

to a host PC.

Table III shows a timing performance comparison of two

fault injection methods for configuration memory of SRAM-

based Xilinx FPGAs. We note that the injection with SEU

controller is much faster. It allows an injection of a fault every

14 microseconds. Thus, with this method we can emulate

all radioactive environments that have rate of fault arrival

less or equal to 71.43kHz. Moreover, preliminary results

978-1-4799-8153-3/14/$31.00 ©2014 IEEE
146

from experiment using traditional fault emulation approach

demonstrate that the injector is susceptible to self-injection

problem, even when targeting the DUT configuration memory.

TABLE III:

Fault Injection Time (= Read + Write of one frame).

Injection
Method

READ
Frame

WRITE
frame

Injection
time

Freq
Max

HWICAP
Miroblaze
(100 MHz)

0.82
(ms)

1.01
(ms)

1.83
(ms)

546,44
Hz

SEU CTRL
Picoblaze

(100 MHz)

7
(μs)

7
(μs)

14
(μs)

71,43
KHz

While using our Isolated Fault Emulation, it is possible to

performed fault insertion into any frame inside the DUT rout-

ing and CLB without harming the functionality of our internal

injector design. Furthermore, the application of Xilinx Isola-

tion design flow doesn’t influence the maximum frequency

of neither the design under test nor the fault injector. We

validate our Fault injection tool on three different workloads:

one simple (64 bits counter), a more complex (Bubble sort) and

finally a PicoBlaze Processor executing an AES algorithm. As

it is shown in table IV, we reached to speed-up more than 15

times in our experiments comparing with existing approaches.

TABLE IV:

Fault Injection Time (= Read + Write of one frame).

DUT # frames
Traditional Approach

[15] external
Fast Approach
[16] internal

Our Method

1 injection = 62.5 1 injection = 218.75 1 injection = 14μs
Counter 36 2250 ms 7875 μs 504 μs

Bubble Sort 144 9000 ms 31500 μs 2016 μs
Picoblaze AES 324 20250 ms 70875 μs 4536 μs

Finally, we compared in Table V the simulation time

required to validate an approach of reliability by injecting

faults with an exhaustive approach or following a realistic fault

model. The speed-up of simulation time is very significant and

may in some cases exceed 8 times.

TABLE V: Simulation Time Speed-Up.

Injected
Errors

Exhaustive
Model

Our Model
(for Specific
Environment)

Heavy ion
68.3 MeV-cm2/mg

0.78 upset/ms
(Freq=777.8Hz)

Speed-up

1 bit 36.73 ms 41% = 15.05 ms 2.43
2 bits 12.04 s 34% = 4.09 s 2.94
3 bits 1.46 Hours 13% = 683.28 s 7.7
4 bits 19.91 12% = 2.38 days 8.33

V. CONCLUSION AND FUTURE WORK

We proposed in this work for fault injection emulation by

taking advantage of new capabilities of placement and routing

tools. Isolation of the design under test is applied to separate

the fault injector logics/routing from the DUT’s one. Our

injection method eliminates any risk of self-injection of faults

inside the injector design (especially routing) which can be

an issue for correctness of fault validation results. We show

the importance of keeping track of multiple bit upset shapes,

especially for newer FPGAs. This information is useful for the

reproduction of complicated fault scenario, which can be very

difficult to predict fairly and is important to consider even with

smaller probability.

ACKNOWLEDGEMENTS

The authors acknowledge the support of General Council of Val d’Oise
(CGVO) and the urban community (CA) of Cergy-Pontoise, under Grant
Agreement number 14RETID382 (EXELA-VO project).

REFERENCES

[1] Jason A. Cheatham, John M. Emmert, and Stan Baumgart. A survey
of fault tolerant methodologies for fpgas. ACM Trans. Des. Autom.
Electron. Syst., 11(2):501–533, 2006.

[2] C. C. Xapp. Triple modular redundancy design techniques for virtex
fpgas, 2006.

[3] J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey,
P. Graham, and K. Morgan. Using duplication with compare for on-
line error detection in fpga-based designs. In Aerospace Conference,
2008 IEEE, pages 1–11.

[4] M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello. Exploiting
self-reconfiguration capability to improve sram-based fpga robustness in
space and avionics applications. ACM Trans. Reconfigurable Technol.
Syst., 4(1):1–22, 2010.

[5] F. Sahraoui, F. Ghaffari, M. El Amine Benkhelifa, and B. Granado. An
efficient ber-based reliability method for sram-based fpga. In Design
and Test Symposium (IDT), 2013 8th International, pages 1–6.

[6] Heather Marie Quinn, Paul S Graham, Keith S Morgan, Zachary K
Baker, Michael P Caffrey, David A Smith, Mike Wirthlin, and Randy
Bell. Flight experience of the xilinx virtex-4. Nuclear Science, IEEE
Transactions on, PP(99):1–9, 2013.

[7] R. Velazco, G. Foucard, and P. Peronnard. Combining results of
accelerated radiation tests and fault injections to predict the error rate
of an application implemented in sram-based fpgas. Nuclear Science,
IEEE Transactions on, 57(6):3500–3505, 2010.

[8] U. Legat, A. Biasizzo, and F. Novak. Automated seu fault emulation
using partial fpga reconfiguration. In Design and Diagnostics of
Electronic Circuits and Systems (DDECS), 2010 IEEE 13th International
Symposium on, pages 24–27. [same as us] for fault emulation + [cat4]
[printed].

[9] H. Quinn, P. Graham, K. Morgan, M. Caffrey, and J. Krone. A test
methodology for determining space-readiness of xilinx sram-based fpga
designs. In AUTOTESTCON, 2008 IEEE, pages 252–258.

[10] M. Jeitler, M. Delvai, and S. Reichor. Fuse - a hardware accelerated hdl
fault injection tool. In Programmable Logic, 2009. SPL. 5th Southern
Conference on, pages 89–94.

[11] H. Quinn, K. Morgan, P. Graham, J. Krone, and M. Caffrey. Static
proton and heavy ion testing of the xilinx virtex-5 device. In Radiation
Effects Data Workshop, 2007 IEEE, volume 0, pages 177–184.

[12] John D. Corbett. The xilinx isolation design flow for fault-tolerant
systems, 2012.

[13] L. Gantel, M. E. A. Benkhelifa, F. Lemonnier, and F. Verdier. Module
relocation in heterogeneous reconfigurable systems-on-chip using the
xilinx isolation design flow, 5-7 Dec. 2012 2012.

[14] Ken Chapman. Seu strategies for virtex-5 devices, 2010.
[15] M. Shokrolah-Shirazi and S. G. Miremadi. Fpga-based fault injection

into synthesizable verilog hdl models. In Secure System Integration
and Reliability Improvement, 2008. SSIRI ’08. Second International
Conference on, pages 143–149.

[16] M. S. Shirazi, B. Morris, and H. Selvaraj. Fast fpga-based fault injection
tool for embedded processors. In Quality Electronic Design (ISQED),
2013 14th International Symposium on, pages 476–480.

978-1-4799-8153-3/14/$31.00 ©2014 IEEE
147

