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 Abstract – We propose in this paper a novel approach of 

adaptive filtering of EEG signals. The filter adapts to the 

intrinsic characteristics of each person. The goal of the proposed 

method is to enhance the accuracy of the home devices system 

controlled by the thoughts related to two motor imagery actions. 

µ-rhythm and β-rhythm are the specific returned bands that 

contain the information. The main idea of the proposed method is 

to preserve the frequency bands of interest with a different value 

of the SNR on the stop-band. Our experimental results show the 

benefits of a suitable tuning of the filter on the accuracy of the 

classifier on the output of the EEG system. The proposed 

approach outperforms significantly performances reported in the 

literature and the effectively enhancement of the classification 

accuracy can reach up to 40% based only on filtering tuning. 
 

 

 Keywords – brain computer interface (BCI), 

ElectroEncephaloGram (EEG), EEG filters optimization, Motor 

imagery. 

 

I. INTRODUCTION  

A Brain Computer Interface (BCI) is an interface which 

can improve the life quality of people with severe disabilities 

and make people capable to control and communicate with 

outside using only their thoughts. According to the non-

invasive technique, EEG signals are captured from EEG 

headset based on Ag/cl sensors. This acquisition technique 

provides a fine temporal resolution, ease of use, portability 

and low set-up cost. EEG based BCI has become the 

mainstream of brain computer interface. 

 In order to control a BCI, user have to provide different 

brain activity patterns which will be identified by the system, 

processed and translated to actuators and control devices. The 

captured activity pattern is always accompanied with noise 

due to several causes like bad electrode location, electrode 

impedances, etc [7]. Hence it is very valuable to remove all 

artifacts and enhance the accuracy of the EEG signal 

processing by adjusting signal to noise ratio (SNR) related to 

the filtering component. Due to the big size of the EEG signal 

trials and the no-stationary character of such signal, filtered 

data is followed by feature extraction techniques, before being 

classified by one of the appropriate classifier.  

Nowadays, several BCI researchers continue to improve and 

to find solutions for practical implementation of processing 

algorithms. Their works are focused on feature extraction and 

classifying EEG records to desired classes of mental tasks [12]. 

Despite the significant improvements that have been achieved 

in this area, the obtained results are still limited without deep 

analysis of filtering blocks which have an important impact on 

the system performance [19]. Few works in the literature 

analyze the filter block effect, and alert BCI researchers to 

study raw data for a simple element. If the filtering process 

must be used, we should be careful when choosing the filter 

parameters [22] [8]. In this respect, we conduct a study of the 

effect of pre-processing techniques on the improvement of the 

accuracy for different subjects. The feature extraction and the 

classification algorithms are out of the scope of this study. 

As the filtering block seems to be a useful preprocessing 

step for removing artifacts, improving stationary, and 

increasing the accuracy, a design exploration of the filtering 

techniques is required [3]. It looks that digital filters are 

widely used for EEG signals without deep analysis of their 

effect on different trials and different data-set leading to a 

decrease in the system performance for many subjects [1]. In 

this work, our objective is to find the suitable parameters of 

the most common used filter for motor imagery domain 

including: Finite Impulse Response (FIR) and Infinite Impulse 

Response (IIR) techniques. Some parameters of the filter, as 

stop band (SB), pass band (PB), bandwidth (BW) and 

transition width (TW) should be accurately tuned to reduce 

filter order while increasing the classification accuracy of the 

motor imagery system. Most of the published works 

considered FIR and IIR techniques with order ranging from 4 

to 8 without any analysis and justification for their choices [6] 

[5] [7]. By using the Matlab filter design tool, we checked 

these filters and noticed that the predefined features (SB, PB, 

BW and TW) are not well tuned for the motor imagery data 

sets. That is why we conduct extensive investigations on filter 

design for different subjects to find the optimal SNR 

bandwidth for each subject which leading to an improvement 

of the classification accuracy. 

The remainder of this paper is organized as follows. In 

section II, we describe the data-set used in our experiments.  

In section III, we review the feature extraction and classifiers 

algorithm and present the chosen one. Section IV mentions the 

existing filtering algorithms for BCI and presents the problem 

related to the motor imagery area. Experimental results and 

analysis are discussed in section V. Section VI is dedicated to 

describe the proposed method. Section VII shows our 

experimental results. And finally, concluding remarks are 

drawn in section VIII. 
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II. DATA SET DESCRIPTION 

In all of our experiments, we use three public data sets of BCI 

competition IV (1 data set) and BCI competition III (2 data 

sets) provided by Graz University of Technology. These three 

data sets contain motor imagery EEG signals recorded from 

seventeen subjects performing two different motor imagery 

tasks (Left Hand “LH” and Right Hand “RH”). Below, the 

description of these data sets.  

1. Data set IIa [18], from BCI competition IV 

constitutes EEG data from nine subjects performing four 

different motor imagery data, i.e., LH, RH, foot and tongue. 

The recording was done with 25 Ag/cl electrodes; three of 

them contain EOG artefacts, and was sampled with 250 Hz, 

and filtered between 0.5 and 100 Hz. Each subject recording 

contain 288 trials, for this study we use only EEG signals 

corresponding to left and right hand Motor Imagery (MI) 

tasks.  

2. Data set IIIa [4], from BCI competition III contains 

EEG signals from three subjects performing four different 

motor imagery data i.e., LH, RH, foot and tongue. The data 

were acquired through 60 electrodes, was sampled with 250 

Hz and filtered between 1 and 50 Hz. The recoding comprises 

60 trials for each class. For the purpose of our study, only 

EEG signals corresponding to LH and RH were used.  

3. Data set Iva [4], from BCI competition III comprises 

data set from five healthy subjects performing two different 

MI data, i.e., RH, foot. EEG was recorded using 118 

electrodes. Signals were band-pass filtered between 0.05 and 

200 Hz and then digitized at 1000 Hz. Each subject recording 

contain 280 trials.  

For the three data-sets, trials are extracted in reference to the 

Trigger. Based on some experiments, the epoch (window) had 

duration of 2 seconds for data set (IIIa, IIa) and 0.2 second for 

data set IVa [13]. Figure 1 depicts an example of two trials for 

one subject for each data set. The presented signals are taken 

from C3 and C4 channel which are characterized by the 

appearance of rhythmic activity of the motor imagery 

movement [21].  
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Figure 1: Example of raw EEG signal 

 

III. OVERALL BRAIN COMPUTER INTERFACE DESCRIPTION 

 

In this paper, we report on the offline analysis of the two 

class BCI experiment to be used by the finite state machine of 

the home devices controller. General structure of the motor 

imagery detection system is depicted in Figure 2. At the 

beginning of the chain, we start by extracting trials from the 

recorded EEG signals which are referenced by a trigger.  

Before applying features extraction, we conducted a deep 

analysis of the filter block which will be presented later on the 

next section. Regarding the signal enhancement process, 

several feature extraction techniques are proposed to examine 

the long EEG signals which require rapid and automatic 

methods to provide fundamental features to be used in 

subsequent automatic analysis. Many techniques have been 

reported including power spectral density [7], Short-Time 

Fourier transform STFT [2], CSP [3] and wavelet analysis [2] 

etc. The choice of any technique will affect the accuracy of the 

associated classifier. In this respect, we will consider the CSP 

technique which seems to be the best spatial filter algorithm 

for the motor imagery from the effectiveness point of view to 

extract ERD/ERS effect. The main idea of this technique is to 

design a pair of spatial filters such that the filtered signal's 

variance is maximal for one class while minimum for others 

[1]. For comparison purpose, we use also other variants from 

the CSP which are SRCSP (Spatially regularized CSP), 

CCSP1 (Composite Common Spatial Pattern) and DLCSPauto 

(Diagonal Loading CSP automatic) [13].  

A classifier algorithm is applied to check the classification 

accuracy using the selected feature. A comprehensive review 

of classifiers for BCI is presented in [14] with many classifiers 

such as Linear Discriminant Analysis (LDA), Support Vector 

Machine (SVM), Neural Networks (NN), Hidden Markov 

Models (HMM) and Mahalanobis distance (MD). Also the 

choice of any classifier technique will affect the performance 

of the BCI-based system. For this reason, we propose to use 

the LDA technique which is a simple and robust classifier. 

Despite its good performances, it was used in a widely cited 

paper [9].    

 
Figure 2: System block diagram of EEG chain 



IV. EEG FILTER DESIGN 

It is critical to ensure that preprocessing steps do not 

introduce spurious information, as do not remove interesting 

data which can result in system performance degradation. To 

avoid any of these symptoms, the unwanted signals should be 

carefully removed through one of the appropriate techniques. 

The most effective and widely used algorithms of EEG data 

filtering are Finite Impulse Response (FIR) and Infinite 

Impulse Response (IIR). FIR filters may be realized by non-

recursive structures which are simpler and more convenient 

for programming on dedicated digital signal processing 

platform.  These structures are always stables and guarantee 

the phase linearity of the signal. The main disadvantage of the 

FIR filer is the high orders for simple filtering operation. On 

the other hand, IIR digital filters require a reasonable order 

compared to the FIR, leading to an important reduction in 

resources and timing saving. It seems that IIR-based 

techniques are well adapted for embedded and real-time 

implementation. However, IIR filters don’t have a linear 

phase, which can be corrected by cascading it with a pass filter 

[6]; or applying the filter in forward and reverse direction to 

give zero-phase distortion [15] [17].  

The frequency of the received data is in the range [0.5 100] 

Hz and [0.05 200] Hz for the data set (IIa, IIIa) and (IVa) 

respectively. For this range of frequencies, these data should 

be processed through one of the above mentioned filter 

techniques to keep the interesting frequency of the system in 

its bandwidth. In our case, the theoretical frequency response 

for the MI area is located on the µ-rhythm [8-13] Hz and β-

rhythm [14-30] Hz [2]. In our case, the only known parameter 

is the attenuation band which should be close to zero decibel 

to avoid any distortion of the EEG information [16]. For the 

pass band frequency it’s on µ and β-rhythm. But in reality it 

differs from one subject to another [10] [20], making the 

selection of proper frequency bands one of the most 

challenging problem in BCIs.  
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Figure 3: Frequency response for Butterworth (Order=4) 

To filter the motor imagery data, many works have been 

reported in [6] [5] [3] which proposed using of Butterworth 

filter with an order ranges from 4 to 8. These low filters order 

are insufficient to remove the unwanted frequencies located 

outside the band of interest. Figure 3 depicts the frequency 

response of the Butterworth filter with an order four (2
nd

 row), 

and it shows clearly the presence of the undesirable 

information outside µ and β band which can be among factor 

of system performance deterioration. Also the uniformly 

attenuation of the rejected EEG data lets the diagnosis of the 

system more complicated to locate the information close to the 

pass band frequencies. These experiments prove this filter 

with fewer weights, in general, passes a few activity in the 

pass bands and more activity in the outside of the band [1]. To 

filter the usual band motor imagery band, a minimum filter 

order should be defined as depicted in Figure 4. These orders 

at least guarantee the removal of the unwanted signal and kept 

just µ and β band. The calculation of these filter orders is 

based on the SNR value, transition width which is equal to 

1Hz on both pass band and stop band. We notify that more 

these constraint are complex, the filter order is increasing, by 

consequent the filter implementation requires more execution 

time. Using one of the filter order will keep the frequency in 

question and will facilitate the localization of the information 

related to each subject. 
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Figure 4: Minimum Filter order for MI-EEG data 

A lot of researchers in the literature, mentioned the uses of µ 

and β bands for motor imagery applications and demonstrate 

that the most responsive frequency bands vary according to 

each subject [11] [10] [20]. These two major points are totally 

different and each one should be treated alone. From this point 

of view, to process motor imagery data under the first 

hypothesis, we should keep, before filter parameters, all 

frequencies outside these two bands. Under the second 

hypothesis, the main question how to apply a band pass filter 

with guarantee that the information isn’t affected. In [20], it 

was propose to identify the informative frequency band based 

on ERSP (Event-Related Spectral Perturbation) method but 

this step was done after performing a band pass filter which 

can already affect the interesting data. This motivates us to 

make deep analysis of the filter block which is not yet well 

studied in the EEG literature. 

V. PRELIMINARY OBSERVATIONS AND DISCUSSIONS: 

To show the effect of the filter parameters on the BCI chain, 

we propose to evaluate the system performance based on filter 

parameters for each subject. For comparison purposes with 

other results, we use the criterion of kappa score metric [18]. 

As example, in figure 5, we present the accuracy of subject 

number “one” of data set IIa depending on the filter type and 

the SNR value. The same treatment is made for all other 
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subjects of three data sets (but not showed here) and we 

noticed the same dependence of classification accuracy to the 

SNR values and the filter type.  

In Table 1, we summarize the best and the worst results for 

each subject and the couple of filter type and SNR value 

corresponding to each result. It is clear that there’s no 

specified filter algorithm or specified filter parameters that 

provides always better accuracy for any subject. This confirms 

the variability of frequency domain due the intrinsic 

characteristic of subject's EEG signals [11]. Moreover, in 

some cases we noted that filtering deteriorated dramatically 

the classification accuracy relative to non-using of filter: for 

example for subject number B3 of data set IIIa, using 

Kaiserwin filter with SNR of 70 dB decreases the performance 

of the system by more than 50%. This recalls the presence of 

the motor imagery information outside µ and β bands. In this 

special case, it is better to work on unfiltered signals, or 

change the pass band of the subject.  

For example, filtering EEG data of subject number C9 with an 

Elleptic filter and for a SNR value of 50 dB enhance the kappa 

value by only 0.7% (see Table 2). In this case, we have to 

consider a trade-off between the execution time and the 

classification accuracy improvement.  

 

VI. PROPOSED APPROACH 

 

The main idea of our proposed system is to find the suitable 

filter type and filtering parameters by subject. We recall here 

that the used basic metric in our studies is the SNR which has 

an effect on the filter order: when the SNR value is too high, 

then the filter order is too high, consequently the EEG data is 

very well filtered and all unwanted frequencies are removed. 

This may causes a problem for people having motor imagery 

frequency outside µ and β bands. To solve this problem and 

avoid the suppression of the useful data, the proposed system 

is depicted on Figure 6. 

At the beginning, we divide the data-set of each subject into 

two parts: the first part is used for the training step, and the 

second for the test phase. Each part will be filtered through 

EEG filter block commanded automatically by a multiplexer 

(to select the filter parameters). These parameters are P1...n 

corresponding to the filter type (6 filters) and the SNR value 

(vary from 10 to 100 dB). Hence, there are generally sixty 

parameters to apply for the data of each subject. Thereafter, 

optimal spatial filters are extracted through the CSP block. 

Hence the signal size will be reduced that overload the work 

of the next step which is the training classification. Once the 

training process is performed, we apply the obtained test 

feature and measure the kappa performance (X %) 

corresponding to each parameter. After finishing the 

computation for each subject, an automatic process will be 

launched to select the best parameters giving the maximum 

accuracy P(max(X%)). The returned parameters will be used 

in runtime by this subject. Finally it will be very interesting to 

auto-calibrate the system during the online approach, by 

feedback the information to the system at each bad 

classification (accuracy under desired threshold).  

 

 
Accuracy in term of kappa (%) 

Min  Filter (SNR dB) Max  Filter (SNR dB) 

B
C

I co
m

p
etitio

n
 IV

 

IIa
 

C1 57.63 Kaiserwin (70) 91.66 Kaiserwin (10) 

C2 47.22 Kaiserwin (70) 67.36 Butterworth (90) 

C3 52.08 Kaiserwin (100) 96.53 Elleptic (20) 

C4 45.18 Kaiserwin (80) 73.61 Equiripple (10) 

C5 43.75 Kaiserwin (70) 68.06 Chebyschev1(70)  

C6 51.39 Kaiserwin (90) 73.61 Chebyschev1(50) 

C7 48.61 Equiripple (90) 79.16 Chebyschev1(10) 

C8 59.02 Kaiserwin (90) 99.30 Chebyschev1(80) 

C9 69.44 Kaiserwin (100) 93.75 Elleptic (50) 

B
C

I co
m

p
etitio

n
 III 

IIIa
 

B1 51.11 Kaiserwin (90) 97.77 Equiripple (10) 

B2 53.00 Kaiserwin (90) 71.66 Butterworth (30) 

B3 33.33 Kaiserwin (70) 100.0 Elleptic (50) 

IV
a

 

A1 38.39 Equiripple (60) 67.14 Kaiserwin (80) 

A2 46.42 Butterworth (50) 98.21 Elleptic (20) 

A3 45.40 Butterworth (50) 58.16 Equiripple (10) 

A4 42.41 Chebyschev1(80) 51.33 Butterworth (10) 

A5 44.84 Chebyschev1(30) 56.75 Kaiserwin (50) 

Table 1: Resume of the accuracy for each subject. 

Figure 5: Performance in term of kappa using different filter type for (subject1, data set IIa) 



VII. EXPERIMENTAL RESULTS 

To show the effectiveness of the suggesting approach, we 

integrate our proposed methods on the framework proposed in 

[13] to keep the same environment. Table 2 reports the 

classification accuracies obtained on data sets for different 

couples of feature extraction and filters. Our  results  show  a  

clear improvement  in performance  and  an  effective way  to 

address the  problem  of classifying the Motor Imagery system 

actions. The success degree of the proposed approach is 

depending from the data set; and it reaches 100% for the data set 

IIIa, 91.66% for data set IIa and 50% for the last data set. These 

heterogeneous of the accuracy are due to many factors such as the 

recording equipment, environment and degree of subject’s 

interaction with the system.  

 

 

Figure 6: Proposed EEG filter design approach 

Although, the system become more accurately, the home device 

controller is accompanied with an increasing on the consuming 

time and the complexity. During training steps, the proposed EEG 

filter design will consume 1.19 seconds to process EEG trials.  

Anyway, this task will be executed just one time, after that the 

home device system will take almost 0.02 second to process EEG 

trials captured through 22 electrodes.   

 

VIII. CONCLUSION  

The EEG filter design described in this study proposes an 

adaptive EEG-filter platform capable to avoid any decrease of 

the system performance. Instead of using unified filter 

parameters for BCI system users, filter parameters should be 

well tuned during the training phase of the home devices 

system. Our proposed approach are tested and validated on the 

three public data-set and we prove that accuracy can be 

significantly increased based only on the adaptive filtering 

implementation with respect to each user. Our system 

performance can reach an enhancement of more than 40% for 

some subject. Hence, the results obtained in this study encourage 

the use of the proposed adaptive filter. Our future work targets 

an embedded System on Chip (SoC) implementation of our 

BCI system to integrate it in the new generation of low power 

wireless EEG headsets. 
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CSP SRCSP CCSP1 DLCSPauto 

Without 

filter 

Butter 

Order 

4 [18] 

proposed 
Without  

filter 

Butter 

Order 

4[18] 

proposed 
Without 

filter 

Butter 

Order 

4[18] 

proposed 
Without 

filter 

Butter 

Order 

4[18] 

proposed 

B
C

I co
m

p
etitio

n
 IV

 

IIa
 

C1 77.08 88.89 91.66 72.22 88.89 93.75 72.22 88.89 92.36 75.69 88.89 91.66 

C2 52.08 51.39 67.36 51.38 63.19 70.13 52.08 54.17 68.05 52.77 51.39 68.05 

C3 89.58 96.53 96.53 92.36 96.53 96.53 92.36 96.53 96.54 91.66 96.53 96.52 

C4 56.25 70.14 73.61 65.97 66.97 72.22 66.66 70.83 68.10 56.25 70.14 73.61 

C5 50.00 54.86 68.06 50.00 63.19 68.05 50.00 62.50 78.47 50.00 56.94 68.06 

C6 56.94 71.53 73.61 56.94 63.89 70.83 56.94 67.36 79.17 56.94 71.53 73.61 

C7 59.72 81.25 79.16 70.14 78.47 79.16 59.94 81.25 99.31 58.33 81.94 79.17 

C8 95.13 93.75 99.30 95.83 95.83 98.61 95.83 95.87 99.31 96.52 93.75 99.30 

C9 93.05 93.75 93.75 92.36 92.36 93.75 91.66 91.67 92.36 93.05 93.75 93.75 

B
C

I co
m

p
etitio

n
 III 

IIIa
 

B1 94.44 95.56 97.77 93.33 96.67 98.88 92.22 98.89 98.88 94.44 94.44 98.88 

B2 51.66 61.67 71.66 51.66 53.33 80.00 50.00 56.67 66.66 50.00 63.33 75.00 

B3 85.00 93.33 100 90.00 93.33 100.0 85.00 93.33 100.0 88.33 95.00 100.0 

IV
a

 

A1 47.32 66.07 67.14 55.35 72.32 57.14 52.67 71.43 57.14 49.10 66.96 53.57 

A2 75.00 96.43 98.21 85.71 96.43 100.0 75.00 96.43 98.21 58.92 96.43 98.21 

A3 55.10 47.45 58.16 48.46 60.20 55.61 54.08 63.27 55.10 55.10 46.94 57.14 

A4 53.12 71.88 51.33 55.80 77.68 58.48 51.78 71.88 69.64 54.46 71.43 57.58 

A5 52.38 49.60 56.75 48.80 86.51 64.68 42.86 86.90 66.66 53.17 50.00 54.36 

Mean 67.28 75.53 79.06 69.19 79.16 79.87 66.74 75.84 78.73 67.13 79.28 81.52 

Table 2: Classification accuracies obtained for each subject for different feature extraction methods. 
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