
Novel Approach for Modeling Very Dynamic and

Flexible Real Time Applications

Ismail Ktata, Fakhreddine Ghaffari, Bertrand Granado, Mohamed Abid

To cite this version:

Ismail Ktata, Fakhreddine Ghaffari, Bertrand Granado, Mohamed Abid. Novel Approach for
Modeling Very Dynamic and Flexible Real Time Applications. 5th International Workshop
on Reconfigurable Communication-centric Systems on Chip, May 2010, Karlsruhe, Germany.
http://www2.lirmm.fr/recosoc2010/index.php?sec=cp. <hal-00782231>

HAL Id: hal-00782231

https://hal.archives-ouvertes.fr/hal-00782231

Submitted on 18 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00782231

Novel Approach for Modeling Very Dynamic and
Flexible Real Time Applications

Ismail Ktata1,2, Fakhreddine Ghaffari1, Bertrand Granado1 and Mohamed Abid2

1ETIS Laboratory, CNRS UMR8051, University of Cergy-Pontoise,
ENSEA, 6 avenue du Ponceau F95000 Cergy-Pontoise, France

2Computer & Embedded Systems Laboratory (CES), National School
of Engineers of Sfax, (ENIS), B.P.W. 3038 Sfax, Tunisia

1Email: {firstname.name}@ensea.fr
2Email: {firstname.name}@enis.rnu.tn

Abstract
Modeling techniques are used to solve a variety of practical

problems related to processing and scheduling in several domains
like manufacturing and embedded systems. In such flexible and
dynamic environments, there are complex constraints and a
variety of unexpected disruptions. Hence, scheduling remains a
complex and time-consuming process and the need for accurate
models for optimizing this process is increasing. This paper deals
with dynamically reconfigurable architectures which are
designed to support complex and flexible applications. It focuses
on defining a solution approach for modeling such applications
where there is significant uncertainty in the duration, resource
requirements and number of tasks to be executed.

Keywords: Dynamically Reconfigurable Architecture,
uncertainty, scheduling, modeling methodologies, DFG.

I. Introduction

Today, integrated silicon applications are more and more
complex. Moreover, in spite of its performance, ASICs
development is still long and very expensive, and provides
inefficient solutions for many applications which are
composed of several heterogeneous tasks with different
characteristics. In addition, the growing complexity of real-
time applications today presents important challenges, in great
part due to their dynamic behavior and uncertainties which
could happen at runtime [1]. To overcome these problems,
designers tend to use dynamically reconfigurable architectures
(DRA). The development of the latter opens new horizons in
the field of architecture design. Indeed, the DRAs are well
suited to deal with the dynamism of new applications and
allow better compromise between cost, flexibility and
performance [2]. In particular, fine grained dynamically
reconfigurable architectures (FGDRA), as a kind of DRAs,
can be adapted to any application more optimally than coarse
grain DRAs. This feature makes them today an interesting
solution when it comes to handle computational tasks in a
highly constrained context. However, this type of architecture
makes the applications design very complex [3], especially
with the lack of suitable and efficient tools. This complexity

could be abstracted at some level in two ways: at design time
by providing design tools and at run time by providing an
operating system that abstracts the lower level of the system
[4]. Moreover, such architecture requires the presence of an
appropriate operating system that could manage new tasks at
run time and under different constraints. This operating
system, and to effectively manage dynamic applications, has
to be able to respond rapidly to events. This can be achieved
by providing a suitable scheduling approach and dedicated
services like hardware preemption that decreases
configurations and contexts transfer times. To realize an
efficient schedule of an application, this operating system
needs to know the behavior of this application, in particular
the part where the dynamicity can be exploited on a DRA.

In this paper, we are interested in the modeling of
applications that could be executed on dynamically
reconfigurable architecture. This kind of applications is
characterized, in addition to its real-time constraints, by
several types of flexibility. The purpose is to improve the
performance of the modeling techniques which facilitates the
job to design an efficient scheduling approach.

The remainder of this paper is structured as follows: in
Section 2, brief review is given about the context and the
related work on modeling techniques used in different
domains. Section 3 describes our new technique modeling
applications targeted to DRA. The Section 4 reports a
description of the proposed modeling method and
comparisons with other models, while the last Section draws
conclusions.

II. Context and problem definition

Today, embedded systems are more and more used in
several domains: automobiles, robots, planes, satellites, boats,
industrial control systems, etc. An important feature of these
systems is to be reactive. A reactive system is a system that
continuously reacts to its environment at a rate imposed by
this environment itself. It receives inputs from the
environment, responds to these stimuli by making a number of
operations and produces the outputs used by the environment,
known as reactions. Dynamically reconfigurable architectures
are an interesting solution for this type of applications. Due to

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 21

that emerging range of applications with dynamic behavior,
dynamic scheduling for reconfigurable system-on-chip
(RSoC) platforms has become an important field of research
[2].

A. Problematics
This paper deals with the constraint-based scheduling for

real-time applications executed on FGDRA. In particular, we
focus on two major problems:
� The modeling of the application that should exhibit its

dynamical aspects and must allow the expression of its
constraints, in particular real-time constraints.

� The run-time performance of the scheduling algorithm that
must be reasonable in term of overhead for a typical
application.
The different components of a scheduling problem are the

tasks, the potential constraints, the resources and the objective
function. Tasks execution must be programmed to optimize a
specific objective with the consideration of several criteria.
Many resolution strategies have been proposed in literature
[5]. Usually these methods assume that processing times can
be modeled with deterministic values. They use predictive
schedule that gives an explicit idea of what should be done.
Unfortunately, in real environments, the probability of a pre-
computed schedule to be executed exactly as planned is low
[6]. This is because of not only variations, but also because of
a lot of data that are only previsions or estimations. It is then
necessary to deal with uncertainty or flexibility in the process
data. Hence, for an effective resolution, we need to make a
significant reformulation of the problem and the solving
methods in order to facilitate the incorporation of this
uncertainty and imprecision in scheduling [7].
Uncertainty in scheduling may arise from many sources [8]:
� The release time of tasks can be variable, even unexpected.
� New unexpected tasks may occur.
� Cancellation or modification of existing tasks.
� The execution order of tasks on resources can be changed.
� Resources may become unavailable.
� Tasks assignments: if a task could be done on different

resources (identical or not), the choice of this resource can
be changed. This flexibility is necessary if such a resource
becomes unusable or less usable than others.

� The ability to change execution mode: this mode includes
the approval or disapproval of preemption, whenever a
task could be resumed or not, the overlap between tasks,
changing the range of a job, taking into account whether or
not a time of preparation, changing the number of
resources needed for a task, etc.
We are considering real cases where some variations could

occur and some data may change over the forecast. The model
has to be few sensible to data uncertainties and variations, and
be flexible to be adaptable to the possible disturbances.

B. Scheduling under uncertainty
In general, there are two main approaches dealing with

uncertainty in a scheduling environment according to phases
in which uncertainties are taken into account [8]:
� Proactive scheduling approach aims to build a robust

baseline schedule that is protected as much as possible
against disruptions during schedule execution. It takes into
account uncertainties only in design phase (off-line).
Hence, it constructs predictive schedule based on statistical
and estimated values for all parameters, thus implicitly

assuming that this schedule will be executed exactly as
planned. However, this could become infeasible during the
execution due to the dynamic environment, where
unexpected events continually occur. Therefore, in this
case, a reactive approach may be more appropriate.

� Instead of anticipating future uncertainties, reactive
scheduling takes decisions in real-time when some
unexpected events occur. A reference deterministic
scheduling, determined off-line, is sometimes used and re-
optimized. In general, reactive methods may be more
appropriate for high degrees of uncertainty, or when
information about the uncertainty is not available.
A combination of the advantages of both precedent

approaches is called proactive-reactive scheduling. This
hybrid method implies a combination of a proactive strategy
for generating a protected baseline schedule with a reactive
strategy to resolve the schedule infeasibilities caused by the
disturbances that occur during schedule execution. Hence, this
scheduling/rescheduling method permits to take into account
uncertainties all over the execution process and ensures better
performance [9] [10]. For rescheduling, the literature provided
two main strategies: schedule repair and complete
rescheduling. The first strategy is most used as it takes less
time and preserves the system stability [11].

Scheduling techniques are quite different depending on the
nature of the problem and the type of disturbance considered:
resources failure, the duration of the variation and the fact that
new tasks can occur, etc. The mainly used methods are
dispatching rules, heuristics, metaheuristics and artificial
intelligence techniques [12]. In [13] authors considered a
scheduling problem where some tasks (called "uncertain
tasks") may need to be repeated several times to satisfy the
design criteria. They used an optimization methodology based
on stochastic dynamic programming. In [14] and [15]
scheduling problem with uncertain resource availabilities was
encountered. Authors used proactive-reactive strategies and
heuristic techniques. Another uncertainty case, which is
uncertain tasks duration, had been studied in [16] and [17].
Authors discuss properties of robust schedules, and develop
exact and heuristic solution approaches.

C. Scheduling model
To study a system we need models to describe it, including

significant system characteristics of geometry, information
and dynamism. The latter is a crucial system characteristic as
it permits to represent how a system behaves and changes
states over time. Moreover, dynamic modeling can cover
different domains from the very general to the very specific
[18]. Model types have different presentations, as shown in
figure 1: some are text-based using symbols while others have
associated diagrams.
� Graphical models use a diagram technique with named

symbols that represent process and lines that connect the
symbols and represent relationships and various other
graphical notations to represent constraints (figure 1(a), (b)
(d)).

� Textual models typically use standardized keywords
accompanied by parameters (figure 1(c)).

In addition, some models have static form, whereas others
have natural dynamics during model execution as in figure 1
(a). The solid circle (a token) moves through the network and
represents the executional behavior of the application.

22 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Figure 1. Four types of dynamic system models.
(a) Petri net. (b) Finite state machine. (c) Ordinary differential

equation. (d) Functional block model.

In the domain of embedded systems, a large number of
modeling languages have been proposed [19], [20], [21],
including extensions to finite state machines, data flow
graphs, communicating processes, and Petri nets, among
others. In this section we present main models of computation
for real-time applications reported in the literature.

� Finite State Machines

The classical Finite State Machine (FSM) representation is
probably the most well-known model used for describing
control systems. However, one of the disadvantages of FSMs
is the exponential growth of the number of states that have to
be explicitly captured in the model as the system complexity
increases making the model increasingly difficult to visualize
and analyze [22]. For dynamic systems, the FSM
representation is not appropriate because the only way to
model such kind of systems is to create all the states that
represent the dynamic behavior of the application. It is then
unthinkable to use it as the number of states could be
prohibitive.

� Data-Flow Graph

A data-flow graph (DFG) is a set of compute nodes
connected by directed links representing the flow of data. It is
very popular for modeling data-dominated systems. It is
represented by a directed graph whose nodes describe the
processing and the arcs represent the partial order followed by
the data. However, the conventional model is inadequate for
representing the control unit of systems [23]. It provides no
information about the ordering of processes. It is therefore
inappropriate to model dynamic applications.

� Petri Net

Petri net (PN) is a modeling formalism which combines a
well-defined mathematical theory with a graphical
representation of the dynamic behavior of systems [18]. Petri
Net is a 5-tuple PN = (P, T, F, W, Mo) where: P is a finite set
of places which represent the status of the system before or
after the execution of a transition. T is a finite set of
transitions which represent tasks. F is a set of arcs (flow
relation). W: F� {1, 2, 3, ... } is a weight function. M0 is the
initial marking. However, though Petri net is well-established
for the design of static systems, it lacks support for

dynamically modifiable systems [24]. In fact, the PN structure
presents only the static properties of a system while the
dynamic one results from PN execution which requires the use
of tokens or markings (denoted by dots) associated with places
[25]. The conventional model suffers from good specification
of complex systems like lack of the notion of time which is an
essential factor in embedded applications and lack of
hierarchical composition [26]. Therefore, several formalisms
have independently been proposed in different contexts in
order to overcome the problems cited above, such as
introducing the concepts of hierarchy, time, and valued
tokens. Timed PNs are those with places or transitions that
have time durations in their activities. Stochastic PNs include
the ability to model randomness in a situation, and also allow
for time as an element in the PN. Colored PNs allow the user
and designer to witness the changes in places and transitions
through the application of color-specific tokens, and
movement through the system can be represented through the
changes in colors [18].

Most of the methodologies mentioned provide no
sufficient support for systems which include variable dynamic
features. Dynamic creation of tasks for instance is not
supported by most of the systems above mentioned [26]. In
[26], authors proposed an extension of high-level Petri net
model [27] in order to capture dynamically modifiable
embedded systems. They coupled that model with graph
transformation techniques and used a double pushout
approach which consists of the replacement of a Petri net by
another Petri net after firing of transitions. This approach
allows modeling dynamic tasks creation but not variable
execution time nor variable number of needed resources.

III. Proposed method

Before beginning to describe our modeling method, we
define the constraints that typically appear in dynamic
systems. In our case, we consider a firm real-time context. In
fact, for actually developed applications, especially
multimedia and control applications, tardiness or deadline
violations results only in degradation of Quality of Service
(QoS) without affecting good processing. In this context
hardware tasks are characterized by the following parameters:

- Execution time (Ci),
- Deadline (Di),
- Periodicity (Pi),
- Precedence constraints among tasks,
- Tasks could be preempted,
- Used resources of the DRA.

In real world, all characteristics may change: tasks (the
release time, deadline and execution time), as well as the
availability of resources. There are several types of changes
like uncertainty, unexpected changes and values variation. For
our study, we will consider three cases of dynamic scheduling
problems for dynamic applications:

(a) The number of tasks is not fixed. It may change from
iteration to another.

(b) The tasks execution time may change too.
(c) The number of needed resources for tasks execution is

variable. In addition, the number of available resources may
decrease after a failure occurs.

For those cases, the goal is to develop a robust scheduling
method that is little sensible to data uncertainties and
variations between theory and practice. In addition, the

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 23

schedule has to be flexible to be adaptable to the possible
disturbances. Therefore, we consider a proactive-reactive
approach. The proactive technique (a reference schedule
computed offline for the static part) is used to facilitate the
execution of the reactive strategy online, so that scheduling
decisions have a better quality and produced in a shorter time.
To represent all those constraints in the same model and to be
adequate for the adopted scheduling approach, our graph will
be composed of two forms of nodes. The first type of nodes
refers to static tasks which are known in advance and whose
execution is permanent during the whole application of the
lifecycle execution. The second type is for dynamic tasks
which could be executed in a cycle and not in others and with
a variable number of needed resources. Therefore, the first
step is to separate the two parts of the application (static and
dynamic). Then, a priority-based schedule is established
offline for static part. Such a schedule serves very important
functions. The first is to allocate cells of the hardware DRA to
the different hardware tasks. The second is to serve as a basis
for planning tasks that may occur during execution. The basic
idea is to sort static tasks from the graph and schedule them
according to a priority scheme, while respecting their
precedence constraints (topological order). Tasks are executed
at the earliest possible time. If there is equality between some
tasks, task which has maximum execution time will have
priority to be launched before the others. At runtime, the
objective is to generate a new schedule that deviates from the
original schedule as little as possible so that the repair
operations will be mostly simple. Therefore, the online
scheduler must take into account the next tasks to be
performed with their dynamic aspects (different duration,
more or less instances to execute, more or less number of
needed cells for execution). It has to prefetch configurations
context of new tasks in the columns that are available for
executing and to find the possible way to integrate them in the
current schedule without effect on performance. This schedule
repair must rely on rapid algorithms based on a simple
scheduling technique so that it can perform online execution
with no overhead. It consists in finding a suitable partitioning
of N tasks, forming the application, to be executed on M target
resources of the hardware devices. In addition, tasks execution
order has to meet the real time constraints. This scheduling
problem is known to be NP-hard [28] [29]. In this context,
heuristics are schedule repair methods which offer fast and
reasonably good solution but do not guarantee to find an
optimal schedule.

We make use of the example shown in figure 3 in order to
illustrate the different definitions corresponding to our model.
For this example, the set {T1, T2, T3, T4, T5, T6, T7, T8}
represents the static tasks which are always executed in each
period and {T9, T10, T11} are dynamic tasks which may be
executed in some period but not in others and whose number
of resource requirements is variable. Each task is represented
with time characteristics: Ci for the execution time and Di for
the deadline.

The first dynamic feature considered in this model is tasks
with variable execution time. To represent that case, we are
inspired by the Program Evaluation and Review Technique
(PERT) [30], which is a network model that allows
randomness in activity execution times. For each task, PERT
indicates a start date and end time at the earliest and latest.
The chart identifies the critical path which determines the
minimum duration of the project. Tasks are represented by
arcs with an associated number presenting the tasks duration.

Between arcs, we find circles marking events of beginning or
end of tasks (figure 2). In this model, we replace the release
time feature by the execution time as it would be changed over
execution, and we keep the deadline as it will be useful to
minimize the makespan (or the length of the schedule). In
figure 3, tasks with variable execution time are {T1, T7, T8}.
This will be noticed by the use of asterisk.

Figure 2. PERT graph

To be executed, hardware tasks need a minimum number
of resources. The percentage of this minimal number is
indicated in labels over tasks nodes. This case is frequently
found on some computer vision applications where a first task
is detecting objects and then a particular processing is applied
on each detected object. To execute multiple instances of this
process, the minimum needed number of resources will be
multiplied by the number of instances. In figure 3, task T9 will
be executed n times. T9 is represented with circled node and
the minimum needed number of resources indicated in the
label will be multiplied by n. If the integer number n=0 then
task will not occur. The instance number is unexpected from
the static phase and decision will be taken online. The number
n will depend on the previous executions and the actual input
data to be processed (such as keypoints in the robotic vision
application). Thus, n will be recalculated, after each period,
based on its previous values. For more details, we take an
example of execution. In each iteration the scheduler will have
two values of n: np which is a predicted value of n to be used
by the scheduler for the next period, and nr which is the real
value of n for the executed task. At t=0, let n= np =0 (no
prediction to execute T9). In the first execution, the
application needs n= nr =10 instances of T9. So, for the
second iteration, the scheduler will predict to execute n= np
=10 instances of T9, while, in the real execution, n= nr =6. For
the next execution, np could be: the maximum of precedent
values, the highest values of n, the average of real last values
(n= np =8), or a Gaussian like probability which is a typical
realistic distribution, etc. The choice will depend on the
application. For the example of a moving robot which need to
predict the direction and the presence or absence of obstacles,
it will be preferred to take the last real values with different
weights. In our model, the number n is represented above the
arcs. The arcs represent the dependencies between tasks. For
static (permanent) tasks, we represent arcs with solid lines,
while unpredictable dependencies are represented by dashed
lines.

24 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Figure 3. New model for dynamic application

On the reconfigurable device, resource failure may occur
which will affect the resource availability. Thus, execution
may occur or not depending on the available resources
compared with needed ones. A variable, which is initialized as
the total number of resources, will indicate the amount of
remaining resources. From the ready list, algorithm
determines the tasks that can be executed on the
reconfigurable device. Tasks with the higher priorities will be
placed first until the area of device is fully occupied.

IV. Comparison of models

When we compare with other models (section 2-C), the
proposed technique presents several advantages. For
unpredicted number of occurring tasks, the data flow graph
does not contain information about the number of instances.
During execution of the application, every task represented by
the nodes of DFG is executed once in each iteration [31]. Only
when all nodes have finished their executions, a new iteration
can start. So to model this, we need to represent n nodes of the
same task, which increases the size of the model (see figure
4(b)). In our model, information about number of instances of
a same task to be executed is noted by the circle form of the
task and the indicated number above its arc. For PN model,
(see figure 4(a)), arcs could be labeled with their weights
where a k-weighted arc can be interpreted as the set of k
parallel arcs [32]. But, from its definition (section 2-C),
weights are positive integers, so it cannot present a fictive arc
with non firing transition representing a task that may not be
executed in some iterations. In figure 4(a), if T9 and T10 are
not executed, then n should be null, which is impossible from
PN definition. In addition, to fire T8 all input places should
have at least one token, which will be not possible if T10 or
T11 was not executed (fired).

Figure 4. (a) A Petri net representation of the example of figure 3.
(b) A DFG representation of the example of figure 3.

Timing information is useful for determining minimum
application completion time, latest starting time for an activity
which will not delay the system, and so on. We have inspired
from the PERT chart to explicitly represent useful time
features that are, in our case, execution time and deadline.
However, Petri net does not provide any of this type of
information. The only important aspect of time is the partial
ordering of transitions. For example, it presents variable tasks
duration with a set of consequent transitions for each task
which will complicate the model (see figure 5). The addition
of timing information might provide a powerful new feature
for Petri nets but may not be possible in a manner consistent
with the basic philosophy of Petri nets Research [33].

For resource representation, PN models this feature by an
added place with a fixed number of tokens. To begin
execution, a task removes a token from the resource place and
gives it back in the end of its execution. However, this model
is inadequate in our case since the number of available
resources may change over the execution.

Therefore, the use of conventional modeling methods is
not effective in our case. In fact, with PN and DFG model
(figure 4), there is no distinction between static tasks and
dynamic ones (that may not be executed), nor an explicit
notion of time (as variable execution time of some tasks).

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 25

Figure 5. PN model for variable tasks duration

The main advantage of the proposed method is the
possibility to present several dynamic features of real time
applications with the minimum of nodes and thus in a simple
formalism. Indeed, from the first sight of the model, we can
bring out three main characteristics of this model:
- The distinction between the static execution (which is

presented by the squared nodes) and the dynamic execution
i.e. the tasks whose execution and number of instances is
uncertain (presented by the circled nodes),

- The tasks whose execution time is variable (presented by the
asterisk),

- The percentage, for each task, of needed resources for its
execution. In each iteration, and depending on the available
resources, schedule is able to decide which ready tasks could
be executed on the device.

Those informations will be useful further for the scheduler.
We consider a 1D area model as it is a commonly used
reconfigurable resource model, but even 2D area model could
be considered. In that considered 1D model, tasks can be
allocated anywhere along the horizontal device dimension; the
vertical dimension is fixed and spans the total height of the
hardware task area (see figure 6).

Figure 6. 1D area model of a reconfigurable device

Based on the proposed tasks model, statically defined tasks
represented by squared nodes, will be scheduled and placed on
the reconfigurable device during the proactive phase. Whereas
dynamically defined tasks, which are represented by circled
nodes, will be scheduled online in a reactive phase. This
online decision will take into account the variable parameters

and try to fit into the set of already guaranteed tasks, to delay
or to reject these new dynamic tasks.

V. Conclusion

This paper presented a particular modeling problem
dealing with the implementation of dynamic and flexible
applications on dynamically reconfigurable architecture. The
purpose is to consider most of the dynamic features supported
by the architecture and to present them in an easy and efficient
method. For that point we have proposed a model, based on
some features of existing modeling techniques, and which is
more dedicated to dynamic real time applications. The main
advantage of our specification model is the possibility to
obtain more exact scheduling characteristics from the
representation. Those characteristics include the distinction
between static and dynamic occurring tasks, bring out tasks
whose execution time may change over the time and
determine the number of resources needed for executing
hardware tasks. So, we will be able either to take decisions or
not. As a reconfigurable architecture, we target OLLAF [4]
(Operating system enabled Low LAtency Fgdra), an original
FGDRA specifically designed to enhance the efficiency of an
RTOS services necessary to manage such architecture. Future
works will consist in integrating our scheduling approach
among the services of an RTOS taking into account the new
possibilities offered by OLLAF.

VI. References

[1] C.Steiger, H.Walder, M.Platzner, "Operating systems for
reconfigurable embedded platforms: online scheduling of real-
time tasks", Computers, IEEE Transactions on Volume 53, Issue
11, Nov. 2004 Page(s): 1393 - 1407.

[2] J. Noguera, R.M. Badia, "Multitasking on reconfigurable
architectures: Microarchitecture support and dynamic
scheduling", ACM Transactions on Embedded Computing
Systems, Volume 3, Issue 2 (May 2004) pp. 385-406.

[3] A. Mtibaa, B. Ouni and M. Abid, "An efficient list scheduling
algorithm for time placement problem", Computers and
Electrical Engineering 33 (2007) 285–298.

[4] S. Garcia, B. Granado, "OLLAF: a Fine Grained Dynamically
Reconfigurable Architecture for OS Support", EURASIP
Journal on Embedded Systems, October 2009.

[5] P. Brucker & S. Knust, "Complex Scheduling", Springer Berlin
Heidelberg, 2006.

[6] V. T'kindt and J.-C. Billaut, "Multicriteria Scheduling: Theory,
Models and Algorithms", Springer-Verlag (Heidelberg), second
edition (2006).

[7] N. González, R. Vela Camino, I. González Rodríguez,
"Comparative Study of Meta-heuristics for Solving Flow Shop
Scheduling Problem Under Fuzziness", Second International
Work-Conference on the Interplay Between Natural and
Artificial Computation, IWINAC 2007, Spain, June 18-21,
2007, Proceedings Part I : 548-557.

[8] A. J. Davenport and J. C. Beck, "A Survey of Techniques for
Scheduling with Uncertainty", accessible on-line at
http://tidel.mie.utoronto.ca/publications.php on February 2006,
2000.

[9] H.Aytug, M.A.Lawley, K.McKay, S.Mohan, R.Uzsoy,
"Executing production schedules in the face of uncertainties: A
review and some future directions", European Journal of
Operational Research 161, 2005, p86-110.

[10] W.Herroelen and R.Leus, “Project scheduling under uncertainty:
Survey and research potentials”, European Journal of
Operational Research, Vol. 165(2) (2005) 289--306.

26 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

[11] G.E.Vieira, J.W.Hermann, and E.Lin, "Rescheduling
manufacturing systems: a framework of strategies, policies and
methods", Journal of Scheduling, 6 (1), 36-92 (2003).

[12] D. Ouelhadj, and S. Petrovic, "A survey of dynamic scheduling
in manufacturing systems", Journal of Scheduling, 2008.

[13] Peter B. Luh, Feng Liu and Bryan Moser, "Scheduling of design
projects with uncertain number of iterations", European Journal
of Operational Research, 1999, vol. 113, issue 3, pages 575-592.

[14] O.Lambrechts, E.Demeulemeester, W.Herroelen, "Proactive and
reactive strategies for resource-constrained project scheduling
with uncertain resource availabilities", Journal of scheduling
2008, vol.11, no.2, pp. 121-136.

[15] S.Liu, K.L.Yung, W.H.Ip, "Genetic Local Search for Resource-
Constrained Project Scheduling under Uncertainty",
International Journal of Information and Management Sciences
2007, VOL 18; NUMB 4, pages 347-364.

[16] M. Turnquist and L. Nozick, "Allocating time and resources in
project management under uncertainty", Proceedings of the 36th
Annual Hawaii International Conference on System Sciences,
Island of Hawaii, January 2003.

[17] J. Christopher Beck, Nic Wilson, "Proactive Algorithms for Job
Shop Scheduling with Probabilistic Durations", Journal of
Artificial Intelligence Research 28 (2007) 183–232.

[18] P.A Fishwick, "Handbook of dynamic system modeling",
Chapman & Hall/CRC Computer and Information Science
Series 2007.

[19] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-
Vicentelli, "Design of Embedded Systems: Formal Models,
Validation, and Synthesis", Proc. IEEE, 85(3):366–390, March
1997.

[20] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich,
"Models of computation for embedded system design". In A. A.
Jerraya and J. Mermet, editors, System-Level Synthesis, pages
45–102, Dordrecht, 1999. Kluwer

[21] A. Jantsch. "Modeling Embedded Systems and SoC’s:
Concurrency and Time in Models of Computation". Morgan
Kaufmann, San Francisco, CA, 2003.

[22] L. Alejandro Cortes, "Verification and Scheduling Techniques
for Real-Time Embedded Systems", Ph. D. Thesis No. 920,
Dept. of Computer and Information Science, Linköping
University, March 2005.

[23] L. Alejandro Cortés, P. Eles and Z. Peng, "A Survey on
Hardware/Software Codesign Representation Models", SAVE
Project, Dept. of Computer and Information Science, Linköping
University, Linköping, June 1999.

[24] Carsten Rust, Franz J. Rammig: "A Petri Net Based Approach
for the Design of Dynamically Modifiable Embedded Systems".
DIPES 2004: 257-266.

[25] M. Tavana, "Dynamic process modelling using Petri nets with
applications to nuclear power plant emergency management",
Int. J. Simulation and Process Modelling (2008), Vol. 4, No. 2,
pp.130–138.

[26] Franz-Josef Rammig, Carsten Rust, "Modeling of Dynamically
Modifiable Embedded Real-Time Systems", WORDS Fall 2003:
28-34.

[27] E. Badouel and J. Oliver. "Reconfigurable Nets, a Class of High
Level Petri Nets Supporting Dynamic Changes". In Proc. of a
workshop within the 19th Int’l Conf. on Applications and
Theory of Petri Nets, 1998.

[28] Michael Garey and David Johnson, "Computers and
Intractability: A Guide to the Theory of NP-completeness",
Freeman, 1979.

[29] Z.A. Mann, A. Orbán, "Optimization problems in system-level
synthesis". Proceedings of the 3rd Hungarian-Japanese
Symposium on Discrete Mathematics and Its Applications,
Tokyo-Japan (2003).

[30] F. Chauvet, J.-M. Proth, "The PERT Problem with Alternatives:
Modelisation and Optimisation", Report N° RR-3651 (1999)
SAGEP (INRIA Lorraine) France.

[31] Oliver Sinnen. "Task Scheduling for Parallel Systems" (Wiley
Series on Parallel and Distributed Computing). Wiley-
Interscience, 2007.

[32] Tadao Murata, "Petri nets: Properties, Analysis and
Applications", Proceedings of the IEEE, 77(4):541-574, April
1989.

[33] James L. Peterson, "Petri net theory and the modeling of
systems", Prentice Hall PTR, 1981.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 27

