
Dynamic Adaptation of Hardware-Software Scheduling for Reconfigurable
System-on-Chip

Fakhreddine Ghaffari ; Benoit Miramond ; François Verdier
ETIS Laboratory –UMR 8051 – ENSEA University of Cergy Pontoise – CNRS

6, Av. Du Ponceau,BP 44, F95014 Cergy-Pontoise cedex, France
EMAIL: {fakhreddine.ghaffari, miramond,verdier}@ensea.fr

Abstract
This paper presents an efficient run-time

Hardware/Software scheduling approach. This
scheduling heuristic consists in mapping on-line the
different tasks of a highly dynamic application in such
a way that the total execution time is minimized.Our
approach takes advantage of the reconfiguration
property of the considered architecture to adapt
processing to the system dynamics. We compare our
heuristic with another similar approach.

 We present the results of our scheduling method
on an image processing application. Our experiments
include simulation and synthesis results on a Virtex2P
based platform. This results show a better performance
against existing methods.

1. Introduction

One of the main steps of the HW/SW codesign of a
mixed electronic system (Software and Hardware) is
the scheduling of the application tasks on the
processing elements (PE) of the platform. The
scheduling of an application formed by N tasks on M
target processing units consists in finding the realizable
partitioning in which the N tasks are launched onto
their corresponding M units and an ordering on each
PE for which the total execution time of the application
meets the real time constraints. This problem of
multiprocessor scheduling is known to be NP-complete
[1] that's why we propose a heuristic approach.
Many applications, in particular in image processing
(e.g. an intelligent embedded camera), have dependent
data execution times according to the nature of the
input to be processed. In this kind of application, the
implementation is often stressed by real time
constraints, which demand adaptive computation
capabilities. In this case, according to the nature of the
input data, the system must adapt its behaviour to the
dynamics of the evolution of the data and continue to

meet the variable needs of required calculation (in
quantity and/or in type). Examples of applications
where the processing need changes in quantity (the
computation load is variable) comes from the
intelligent image processing where the duration of the
treatments can depend on the number of the objects in
the image (motion detection, tracking…) or of the
number of interest areas (contours detection,
labelling…).
We can quote also the use in run-time of different
filters according to the texture of the processed image
(here it is the type of processing which is variable).
Another example of the dynamic applications is video
encoding where the run-length encoding (RLE) of
frames depends on the information within frames.
For these dynamic applications, many implementation
ways are possible. In this paper we consider an
intelligent embedded camera for which we propose a
new design approach compared to classical worst case
implementations.
Our method consists in evaluating on-line the
application context and adapting its implementation
onto the different targeted processing units by
launching a run-time partitioning algorithm. The on-
line modification of the partitioning result can also be a
solution of fault tolerance; by affecting in run time the
tasks of the fault target unit on others operational
targets [15]. This induces also to revise the scheduling
strategy. In that context, the choice of the
implementation of the scheduler is of major importance
and depends on the heuristic complexity. Indeed, with
our method the decisions taken on-line by our
scheduler can be very time consuming. A software
implementation of the proposed scheduling strategies
will then delay the application tasks. For this reason,
we propose in this work a hardware implementation for
our scheduling heuristic.With this implementation, the
scheduler takes only few clock cycles. So we can easily
call the scheduler at run-time without penalty on the

The 19th IEEE/IFIP International Symposium on Rapid System Prototyping

978-0-7695-3180-9/08 $25.00 © 2008 IEEE
DOI 10.1109/RSP.2008.28

112

total execution time of the application. The
implementation of our scheduler allows the system to
adapt itself to the application context in real-time. We
have simulated and synthesized our scheduler by
targeting a FPGA (Xilinx Virtex) platform. We have
tested the scheduling technique on an image processing
application implemented onto a heterogeneous target
architecture composed of two processors coupled with
a configurable logic (FPGA).
The remainder of this paper is organized as follows.
Section 2 presents related works on scheduling
approaches. Section 3 introduces the framework of our
scheduling problem. Section 4 presents the proposed
approach. Section 5 shows the experimental results and
finally the section 6 concludes this paper.

2. Related work

The field of study which tries to find an execution
order for a set of tasks that meets system design
objectives (e.g. minimize the total application
execution time) has been widely covered in the
literature. In [2] the problem of HW/SW scheduling for
system-on-chip platforms with dynamically
reconfigurable logic architecture is exhaustively
studied. Moreover several works deal with scheduling
algorithm implemented in hardware [3], [4], [5].
Scheduling in such systems is based on priorities.
Therefore, an obvious solution is to implement
priorities queues. Many hardware architectures for the
queues have been proposed: binary tree comparators,
FIFO queues plus a priority encoder, and a systolic
array priority queue [3]. Nevertheless, all these
approaches are based on a fixed priority static
scheduling technique. Moreover most of the hardware
proposed approaches addresses the implementation of
only one scheduling algorithm (e.g., Earliest Deadline
First) [5]. Hence they are inefficient and not
appropriate for systems where the required scheduling
behavior alters during runtime. Also, system
performance for tasks with data dependent execution
times should be improved by using dynamic schedulers
instead of static (at compile time) scheduling
techniques [6], [14].

The idea of dynamic partitioning/scheduling is
based on the dynamic reconfiguration of the target
architecture. Increasingly FPGA [16, 17] offer very
attractive reconfiguration capabilities: partial or total,
static or dynamic.

The reconfiguration latency of dynamically
reconfigurable devices represents a major problem that
must not be neglected. Several references can be found
addressing temporal partitioning for reconfiguration

latency minimization [7]. Moreover, configuration
prefetching techniques are used to minimize
reconfiguration overhead. A similar technique to
lighten this overhead is developed in [8] and is
integrated into an existing scheduling environment. In
this paper, we focus only on the scheduling strategy
and we assume that those reconfiguration aspects are
taken into account in the HW/SW partitioning step (in
the decision of task implementation). Furthermore we
addressed this last step in our previous works [10].

3. Problem definition
3.1. Target architecture

The target architecture is depicted in Figure 1. It is a
heterogeneous architecture, which contains two
software processing units: a Master Processor and a
Slave Processor. The platform also contains a hardware
processing unit: RCU (Reconfigurable Computing
Unit) and shared memory resources. The software
processing units are Von-Neumann mono-processing
systems and execute only a single task at a time.
Each hardware task (implemented on the RCU)
occupies a tile on the reconfigurable area [9]. The size
of the tile is the same for all the tasks to facilitate the
placement and routing of the RCU. We choose for
example the tile size of the task which uses the
maximum of resources on the RCU (we designate by
“resource” here the Logic Element used by the RCU to
map any task).
The RCU unit can be reconfigured partially or totally.
Each hardware task is represented by a partial
bitstream. All the bitstreams are memorized in the
contexts memory (the shared memory between the
processors and the RCU in the figure 1). These
bitstreams will be loaded in the RCU to reconfigure the
FPGA according to run-time partitioning results. The
HW/SW partitioning result can change at run-time
according to temporal characteristics of tasks. In [10]
we proposed a HW/SW partitioning approach based on
HW SW and SW HW tasks migrations. The theory
of tasks migrations consists in accelerating the task(s)
which become critical by modifying their
implementations from software units to hardware units
and to decelerate the tasks which become noncritical by
returning them to the software units.
After each new HW/SW partitioning result, the
scheduler must provide an evaluation for this solution
by providing the corresponding total execution time.
Thus it presents a real time constraint since it will be
launched at run-time. With this approach of dynamic

113

partitioning/scheduling the target architecture will be
very flexible. It can self-adapt even with very dynamic
applications.

3.2. Application model

The considered applications are data flow oriented
applications such as image processing, audio
processing or video processing etc. To model this kind
of applications we consider a DFG: Data Flow Graph
(an example is depicted in figure 2) which is a directed
acyclic graph where nodes are processing functions and
edges describe communication between tasks (data
dependencies between tasks). The size of the DFG
depends on the functional partitioning of the
application and then on the number of tasks and edges.
We can notice that the structure of the DFG has a great
effect on the execution time of the scheduling
operations. A low granularity DFG makes the system
easy to be predictable because tasks execution time
does not vary considerably, thus limiting timing
constraints violation. On the other hand, for a very low
granularity DFG, the number of tasks in a DFG of great
size explodes, and the communications between tasks
become unmanageable.
Each node of the DFG represents a specific task in the
application. For each task there can be up to three
different implementations: Hardware implementations
(HW) placed in the FPGA, Software implementations
running on the master processor (MS), and another
Software implementations running on the slave
processor (SL).
Each node of the figure 2 is annotated with two
informations: one about the implementation (MS or SL
or HW) and the other is the execution time of the task.
 Similarly each edge is annotated with the
communication time between two nodes (two tasks).

A task of the DFG is characterized by the following
parameters: Texe (Execution time), Impl
(Implementation on the RCU or on the master
processor or on the slave processor), Nbpred (number
of predecessor tasks) and the Nbsucc (number of
successor tasks). All the tasks of a DFG are thus
modeled identically and the only real time constraint is
on the total execution time. At each scheduler
invocation, this total execution time corresponds to the
longest path in the mapped task graph. It then depends
both on the application partitioning and on the chosen
total order on processors.

4. Proposed approach

The applications are periodicals. In one period, all the
tasks of the DFG must be executed. In the image
processing the period is the execution time needed to
process one image. The scheduling occurs only at the
end of the execution of all tasks. Hence the result of
partitioning/scheduling will be applied on the next
period (next image). Our run-time scheduling policy is
dynamic since the execution order of application tasks
is decided at run-time. For the tasks implemented on
the RCU, the only condition for launching their
execution is the satisfaction of all data dependencies. A
task may begin execution only after all its incoming
edges have been executed. For the tasks implemented
on the software processors, the conditions for
launching are (1) the satisfaction of all data
dependencies and (2) the discharge of the software
unit. Hereby the task can have four different states:
waiting, running, ready and stopped. The task is in the
waiting state when it waits the end of execution of one
or several predecessors. When a processing unit has
finished the execution of a task, new tasks may become

Figure 2: An Example of DFG

13

1

3

5 6

2

4

5

3 7

18

1 1

3

2

1 1

SL

MS

SL

HW MS

HW

MS: Master Processor
SL: Slave Processor
HW: FPGA

Master
CPU

RCURAM

 Contexts

Bus 1 Bus 2

DMA

Figure 1: The target architecture

Slave
CPU

Bus 3

114

ready for execution if all their dependencies have been
completed. The task can be stopped in the case of
preemption or after finishing its execution. The states
of the processing units in our target architecture are:
execution state, reconfiguration state or idle state. In
the following, we will explain the principle of our
approach as well as a hardware implementation of the
proposed HW/SW scheduler.

4.1. Description of the scheduling algorithm

As explained on the figure 3, the basic idea of our
heuristic of scheduling is to take decision of tasks
priorities according to three criteria. The first criterion
is the ASAP (As Soon As Possible) time. The task
which has the shortest ASAP date will be launched
first. The second criterion is the urgency time: the task
which has the maximum of urgency will have priority
to be launched before the others. This new criterion is
based on the nature of the successors of the task. The
urgency criterion is employed only if there is equality
of the first criterion for at least two tasks. If there is
still equality of this second criterion we compare the
last criterion which is execution time of the tasks.

We choose the task which has the upper execution time
to launch first. We use these criteria to choose between
two or several software tasks (on the Master or on the
Slave) for running.
The urgency criterion
The urgency criterion is based on the implementation
of tasks and the implementations of theirs successors.
A task is considered as urgent when it is implemented
on the software unit (Master or slave) and has one or
more successor tasks implemented on other units
(hardware unit or software unit). The figure 4 shows
three examples of DFG. In figure 4 (a), task 3 is
implemented on the Slave processor and it is followed
by task 4 which is implemented on the RCU. Thus the

urgency of task 3 is the execution time of its successor
(Urg (3) = 13). In the example (b) it is the task 2 which
is followed by the task 4 implemented on a different
unit (on the Master processor). In the last example (c)
both task 2 and 3 are urgent but the task 2 is more
urgent than 3 since its successor has an execution time
upper than the execution time of the successor of task
3. When a task has several successors with different
implementations, the urgency is the maximum of
execution times of the successors.

In general case, when the direct successor of the task A
has the same implementation as A and has a successor
with a different implementation, then this last
feedbacks the urgency to task A. We show the
scheduling result for the case (a) when we respect the
urgency criterion in the figure 4 (d) and for the other
case in figure 4(e). We can notice for all the examples
of DFG in figure 4 that the urgency criterion makes a
best choice to obtain a minimum total execution time.
The third criterion (the execution time) is an arbitrary
choice and has very rarely impact on the total execution
time. This scheduling strategy needs an on-line
computation of several criterions for all software tasks
in the DFG. A software implementation of this strategy
is thus incompatible with real time constraints. We
describe in the following an optimized hardware
implementation of our scheduler.

Figure 4: Case examples of urgency computing

13

1

3

4

2

5

3
7 SL

M

SL

HW 5

1

3

4

2

5

3
7 SL

M

SL

MS
 2

1

3

5

2

5

3
7

M

M

M

SL
(a) Urg[3] = 13 (b) Urg[2] = 5 (c) Urg[2] = 8

 Urg[3] = 2

*

4 HW
8

* **

1

2 3

4
HW

SL

MS
5

8 15

28

1

2 3

4

5

12 15

25

(d) Case of DFG (a)
Task 2 before task 3

(e) Case of DFG (a)
Task 3 before task 2

For all Software tasks do
 Compute ASAP

 Task with minimum ASAP will be
chosen

 If (Equality of ASAP)
 Compute Urgency

 Task with maximum urgency will be
chosen

 If (Equality of Urgency)
 Compare Execution time

 Task with maximum execution time
will be chosen

Figure 3: Principle of our scheduling policy

115

4.2. Hardware Scheduler architecture
In this section, we describe the architecture of our
scheduler. This architecture is shown in figure 5 for a
DFG example of three tasks. It is divided in four main
parts: (1) the DFG_IP_Sched, (2) The DFG_Update,
(3) The MS_Manager and (4) the Slave_Manager.

The basic idea of this hardware architecture is to
maximize the parallelism of processing tasks. So, at the
most, we can schedule all the tasks of the DFG in
parallel for infinite resources architecture. We associate
to the application DFG a modified graph with the same
structure composed of the IP nodes (each IP represents
a task). Therefore in the best case we could schedule all
the tasks in the DFG in only one clock cycle (if all
tasks can be executed in parallel). To parallelize also
the management of the software execution times, we
associate for each software unit a hardware module
(Master Task Manager and the Slave Task Manager)
which manage the order of the tasks executions and
compute the processor time for each one. In the
following paragraphs, we will detail each part of this
architecture.

The DFG_IP_Sched block
In this architecture there are N components (N is the
number of tasks in the application).
For each task we associate an IP component which
computes the intrinsic characteristics of this task
(urgency, ASAP, Ready state…). It also computes the
total execution time for the entire graph.
If the task is implemented on the RCU it will be
launched as soon as all its predecessors will be done.
For the software tasks (on the master or on the slave)
the scheduling will take one clock cycle per task. Thus
the computing time of the hardware scheduler only
depends on the result of the HW/SW partitioning.

The DFG_Update block
When a DFG is scheduled the result modifies the DFG
into a new structure. The DFG_Update block
generates new edges (dependences between tasks) after

scheduling in objective to give a total order of
execution on each computing unit.
We represent dependences between tasks in the DFG
by a matrix where the rows represent the successors
and the columns represent the predecessors.
After scheduling, the resulting matrix is the update of
the original one. It contains more dependences than this
later. This is the role of the DFG_Update block.

The MS_Manager block
The objective of this module is to schedule the
software tasks according to the algorithm given above.
The input signal represents the ASAP times of all the
tasks. The tasks which have the two criteria (ASAP and
urgency) will be represented by a Tasks_Ready signal.
A Task_Scheduled signal determines the only software
task which will be scheduled. With this signal, it is
possible to choose the good value of signal TEXE_SW
and to give the new value of the SW_Total_Time
signal thereafter. A single clock cycle is necessary to
schedule a single software task. By analogy the
Slave_Manager block has the same role as the
SW_Manager block. From scheduling point of view
there is no difference between the two processors

5. Experimental results

With the idea to cover a wide range of applications, we
have tested our approach on a complex DFG which
contains different classical structures (Fork, join,
sequential). This DFG is depicted in Figure 6. It
contains twenty tasks. Each task can be implemented
on the Software computation unit (Master or Slave
processor) or on the Reconfigurable RCU. The original
DFG is the model of an image processing application:
motion detection on a fixed image background. This
application is composed of 10 sequential tasks (from
ID 1 to ID 10). We added 10 others virtual tasks to
obtain a complex DFG containing the different possible
parallel structures. This type of parallel program
paradigm (Fork, join …) arises in many application
areas. All the execution times are in milliseconds (ms).
In order to test the presented scheduling approach, we
have performed a large number of experiments. Several
scenarios of HW/SW partitioning results are analyzed.
From figure 7, it may be concluded that when the result
of partitioning changes at runtime, then the
computation time needed for our scheduler to schedule
all the DFG tasks is widely dependent on this
modification of tasks implementations. So:
(1) There is a great impact of the partitioning result
and the DFG structure on the scheduler computation
time. (2) The longest sequential sequence of tasks

Figure 5: The scheduler architecture for a DFG of
three tasks

116

corresponds to the case where all tasks are on the
Software (each task takes one clock cycle). This case
corresponds to the maximum of schedule computation
time. (3) The minimum schedule computation time
depends on the DFG structure.

The longest sequential sequence of tasks when all tasks
are on the hardware (each task takes one clock cycle).
In our case (Figure 6) this sequence is formed by 10
tasks, so the minimum schedule computation time is
equal to 10 clock cycles.

5.1. Comparison results

Throughout our experiments, we compared the result of
our scheduler with the one given by the HCP algorithm
(Heterogeneous Critical Path) developed by Madsen
[12]. This algorithm represents an approach of
scheduling on a heterogeneous multiprocessor
architecture. It starts with the calculation of priorities
for each task associated with a processor. A task is
chosen depending on the length of its critical path
(CPL). The task which has the largest minimum CPL
will have the highest priority. We compared with this
method because it is shown better than several other
approaches (MD, MCP, PC ...) [13]. Our scheduling
method provides consistent results significantly better
than HCP method. For example the HCP method
returns a total execution time of the DFG shown in
figure 6 equal to 69ms whereas our method returns
only 58ms for the same DFG.

5.2. Synthesis Results
We have synthesized our scheduler architecture with a
FPGA target platform (Virtex2P, device XC2VP100)
[11] for the RCU of figure 1. The table below (figure
8) shows the device utilization summary. We noticed
that for this complex DFG, our scheduler use only 12%
of the device slices which is reasonable.

ID
12

ID
11

ID
10

ID
1

ID
6

ID
7

ID
2

ID
3

ID
4

ID
5

ID
9

ID
8

ID
13

ID
14

ID
15

ID
16

ID
17

ID
18

ID
19

ID
20

Averaging

Subtraction

Threshold

Ero/Dilat

Opening

Dilatation

Labeling

Covering
(Envelope)

Motion test

Updating
Background

Virtual
Task

Virtual
Task

Virtual
Task

Virtual
Task

Virtual
Task

Virtual
Task

Virtual
Task

Virtual
Task

Virtual
Task

Virtual
Task

Figure 6 : DFG application

SW

SW

SW

SW

SW

SW

SW

HW

HW

HW

HW

HW

HW

HW

HW

SW

HW

SL

SL

8

2

3

6

4

7

9

2

5

1

8

6

3

4

9

5

1

6

2

2
SL

Schedule computation time

0

5

10

15

20

25

1 4 7 10 13 16 19

Number of Software tasks

co
m

p
u

ti
n

g
 t

im
e

(c
lo

ck

cy
cl

es
)

Figure 7: Variation of scheduling computation
time according to tasks implementations

117

Logic
Utilization

Used Available Utilization

Number of
Slices

5351 44096 12%

Number of
Slice Flip
Flops

813 88192 0%

Number of 4
input LUTs

10074 88192 11%

Number of
bonded IOBs

673 1164 57%

6. Conclusions

In this paper, we presented a complete runtime
hardware-software scheduling approach. Results of our
experiments show the efficiency of the adaptation of
the scheduling to a dynamic change of the partitioning
that can be due to a new mode of a dynamic application
or to fault detection. As developed in this paper, a
dynamic HW/SW Scheduling approach has many
advantages over static traditional approaches. In
addition to that, the efficiency of our hardware
implementation gives to our scheduler a minimal
overhead in on line execution context. Our future
works consist in integrating our scheduling approach
among the services of an RTOS for dynamically
reconfigurable systems.

7. References

[1] Michael Garey and David Johnson: Computers and
Intractability - A Guide to the Theory of NP-completeness;
Freeman, 1979.

[2] J. Noguera and R. M. Badia. Dynamic runtime hw/sw
scheduling techniques for reconfigurable architectures. In
CODES ’02: Proceedings of the tenth international
symposium on Hardware/software codesign, pages 205–210,
New York,NY, USA, 2002. ACM Press.

[3] S. Moon, J. Rexford and K. Shin, “Scalable hardware
priority queue architectures for high-speed packet switches,”
IEEE Transactions on Computer, vol. 49, no.11, pp.1215 –
1227, November 2000.

[4] D. Picker and R. Fellman, “A VLSI priority packet queue
with inheritance and overwrite,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 3 no. 2, pp.
245–253, June 1995.

[5] B. Kim and K. Shin, “Scalable hardware earliest
deadline-first scheduler for ATM switching networks,”

Proceedings of the Real-time Systems Symposium, pp. 210-
218, December 1997.

[6] S. Fekete, J. van der Veen, J. Angermeier, D. Göhringer,
M. Majer and J. Teich. Scheduling and communication-
aware mapping of HW-SW modules for dynamically and
partially reconfigurable SoC architectures.
In Proceedings of the Dynamically Reconfigurable Systems
Workshop (DRS 2007), Zürich, Switzerland, March 15,
2007.

[7] K. Puma, D. Bhatia, "Temporal Partitioning and
Scheduling Data Flow Graphs for Re-configurable
Computers", IEEE Trans. on Computers, vol 48, No. 6. June
1999.

[8] J. Resano and D. Mozos. Specific scheduling support to
minimize the reconfiguration overhead of dynamically
reconfigurable hardware. In DAC ’04: Proceedings of the
41st annual conference on Design automation, pages 119–
124, New York, NY, USA, 2004. ACM Press.

[9] J-Y. Mignolet, V. Nollet, P.Coene, D.Verkest,
S.Vernalde, R. Lauwereins “Infrastructure for Design and
management of Relocatable Tasks in a Heterogeneous
Reconfigurable System-on-chip”. In Proc. of the DATE 2003
Conference. Messe Munich, Germany
March 3-7, 2003.

[10] Fakhreddine Ghaffari, Michel Auguin, Mohamed Abid,
and Maher Ben Jemaa, " Dynamic and On-Line Design
Space Exploration for Reconfigurable Architectures", P.
Stenstr¨om (Ed.): Transactions on HiPEAC I, LNCS 4050,
pp. 179–193, 2007. c_Springer-Verlag Berlin Heidelberg
2007

[11] Virtex II Pro, Xilinx Corp., http://www.xilinx.com.

[12] P. Bjorn Jorgensen, J. Madsen, "Critical path driven
cosynthesis for heterogeneous target architectures" 5th Inter.
Workshop on Hardware/Software Codesign
(Codes/CASHE'97) March 24-26, 1997.

[13] YU-Kwong Kwok and Ishfaq Ahmad "Static Scheduling
for allocating Directed Task Graphs to Multiprocessors"
ACM Computing Surveys, vol, 31, No. 4, Decembre 1999.

[14] B. Miramond and J-M. Delosme. Design Space
Exploration for Dynamically Reconfigurable Architectures.
DATE 2005, 366-371, 2005.

[15] Christian Haubelt, Dirk Koch, Jürgen Teich: Basic OS
Support for Distributed Reconfigurable Hardware. SAMOS
2004: 30-38.

[16] Altera Corp., http://www.altera.com.

[17] Xilinx Corp., http://www.xilinx.com.

Figure 8: Device utilization summary after synthesis

118

