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Abstract 
This paper presents an efficient run-time 

Hardware/Software scheduling approach. This 
scheduling heuristic consists in mapping on-line the 
different tasks of a highly dynamic application in such 
a way that the total execution time is minimized.Our 
approach takes advantage of the reconfiguration 
property of the considered architecture to adapt 
processing to the system dynamics. We compare our 
heuristic with another similar approach.  

  We present the results of our scheduling method 
on an image processing application. Our experiments 
include simulation and synthesis results on a Virtex2P 
based platform. This results show a better performance 
against existing methods.  

 
1. Introduction 
 

One of the main steps of the HW/SW codesign of a 
mixed electronic system (Software and Hardware) is 
the scheduling of the application tasks on the 
processing elements (PE) of the platform. The 
scheduling of an application formed by N tasks on M 
target processing units consists in finding the realizable 
partitioning in which the N tasks are launched onto 
their corresponding M units and an ordering on each 
PE for which the total execution time of the application 
meets the real time constraints. This problem of 
multiprocessor scheduling is known to be NP-complete 
[1] that's why we propose a heuristic approach.  
Many applications, in particular in image processing 
(e.g. an intelligent embedded camera), have dependent 
data execution times according to the nature of the 
input to be processed. In this kind of application, the 
implementation is often stressed by real time 
constraints, which demand adaptive computation 
capabilities. In this case, according to the nature of the 
input data, the system must adapt its behaviour to the 
dynamics of the evolution of the data and continue to 

meet the variable needs of required calculation (in 
quantity and/or in type). Examples of applications 
where the processing need changes in quantity (the 
computation load is variable) comes from the 
intelligent image processing where the duration of the 
treatments can depend on the number of the objects in 
the image (motion detection, tracking…) or of the 
number of interest areas (contours detection, 
labelling…).  
We can quote also the use in run-time of different 
filters according to the texture of the processed image 
(here it is the type of processing which is variable). 
Another example of the dynamic applications is video 
encoding where the run-length encoding (RLE) of 
frames depends on the information within frames. 
For these dynamic applications, many implementation 
ways are possible. In this paper we consider an 
intelligent embedded camera for which we propose a 
new design approach compared to classical worst case 
implementations. 
Our method consists in evaluating on-line the 
application context and adapting its implementation 
onto the different targeted processing units by 
launching a run-time partitioning algorithm. The on-
line modification of the partitioning result can also be a 
solution of fault tolerance; by affecting in run time the 
tasks of the fault target unit on others operational 
targets [15]. This induces also to revise the scheduling 
strategy. In that context, the choice of the 
implementation of the scheduler is of major importance 
and depends on the heuristic complexity. Indeed, with 
our method the decisions taken on-line by our 
scheduler can be very time consuming. A software 
implementation of the proposed scheduling strategies 
will then delay the application tasks. For this reason, 
we propose in this work a hardware implementation for 
our scheduling heuristic.With this implementation, the 
scheduler takes only few clock cycles. So we can easily 
call the scheduler at run-time without penalty on the 
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total execution time of the application. The 
implementation of our scheduler allows the system to 
adapt itself to the application context in real-time. We 
have simulated and synthesized our scheduler by 
targeting a FPGA (Xilinx Virtex) platform. We have 
tested the scheduling technique on an image processing 
application implemented onto a heterogeneous target 
architecture composed of two processors coupled with 
a configurable logic (FPGA).  
The remainder of this paper is organized as follows. 
Section 2 presents related works on scheduling 
approaches. Section 3 introduces the framework of our 
scheduling problem. Section 4 presents the proposed 
approach. Section 5 shows the experimental results and 
finally the section 6 concludes this paper. 

 
2. Related work 
 

The field of study which tries to find an execution 
order for a set of tasks that meets system design 
objectives (e.g. minimize the total application 
execution time) has been widely covered in the 
literature. In [2] the problem of HW/SW scheduling for 
system-on-chip platforms with dynamically 
reconfigurable logic architecture is exhaustively 
studied. Moreover several works deal with scheduling 
algorithm implemented in hardware [3], [4], [5]. 
Scheduling in such systems is based on priorities. 
Therefore, an obvious solution is to implement 
priorities queues. Many hardware architectures for the 
queues have been proposed: binary tree comparators, 
FIFO queues plus a priority encoder, and a systolic 
array priority queue [3]. Nevertheless, all these 
approaches are based on a fixed priority static 
scheduling technique. Moreover most of the hardware 
proposed approaches addresses the implementation of 
only one scheduling algorithm (e.g., Earliest Deadline 
First) [5]. Hence they are inefficient and not 
appropriate for systems where the required scheduling 
behavior alters during runtime. Also, system 
performance for tasks with data dependent execution 
times should be improved by using dynamic schedulers 
instead of static (at compile time) scheduling 
techniques [6], [14]. 

The idea of dynamic partitioning/scheduling is 
based on the dynamic reconfiguration of the target 
architecture. Increasingly FPGA [16, 17] offer very 
attractive reconfiguration capabilities: partial or total, 
static or dynamic. 

The reconfiguration latency of dynamically 
reconfigurable devices represents a major problem that 
must not be neglected. Several references can be found 
addressing temporal partitioning for reconfiguration 

latency minimization [7]. Moreover, configuration 
prefetching techniques are used to minimize 
reconfiguration overhead. A similar technique to 
lighten this overhead is developed in [8] and is 
integrated into an existing scheduling environment. In 
this paper, we focus only on the scheduling strategy 
and we assume that those reconfiguration aspects are 
taken into account in the HW/SW partitioning step (in 
the decision of task implementation). Furthermore we 
addressed this last step in our previous works [10].  

 
3. Problem definition 
3.1. Target architecture 
 
The target architecture is depicted in Figure 1. It is a 
heterogeneous architecture, which contains two 
software processing units: a Master Processor and a 
Slave Processor. The platform also contains a hardware 
processing unit: RCU (Reconfigurable Computing 
Unit) and shared memory resources.  The software 
processing units are Von-Neumann mono-processing 
systems and execute only a single task at a time.  
Each hardware task (implemented on the RCU) 
occupies a tile on the reconfigurable area [9]. The size 
of the tile is the same for all the tasks to facilitate the 
placement and routing of the RCU. We choose for 
example the tile size of the task which uses the 
maximum of resources on the RCU (we designate by 
“resource” here the Logic Element used by the RCU to 
map any task). 
The RCU unit can be reconfigured partially or totally. 
Each hardware task is represented by a partial 
bitstream. All the bitstreams are memorized in the 
contexts memory (the shared memory between the 
processors and the RCU in the figure 1). These 
bitstreams will be loaded in the RCU to reconfigure the 
FPGA according to run-time partitioning results. The 
HW/SW partitioning result can change at run-time 
according to temporal characteristics of tasks. In [10] 
we proposed a HW/SW partitioning approach based on 
HW SW and SW HW tasks migrations. The theory 
of tasks migrations consists in accelerating the task(s) 
which become critical by modifying their 
implementations from software units to hardware units 
and to decelerate the tasks which become noncritical by 
returning them to the software units. 
After each new HW/SW partitioning result, the 
scheduler must provide an evaluation for this solution 
by providing the corresponding total execution time. 
Thus it presents a real time constraint since it will be 
launched at run-time. With this approach of dynamic 
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partitioning/scheduling the target architecture will be 
very flexible. It can self-adapt even with very dynamic 
applications.           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2. Application model 
 
The considered applications are data flow oriented 
applications such as image processing, audio 
processing or video processing etc. To model this kind 
of applications we consider a DFG: Data Flow Graph 
(an example is depicted in figure 2) which is a directed 
acyclic graph where nodes are processing functions and 
edges describe communication between tasks (data 
dependencies between tasks). The size of the DFG 
depends on the functional partitioning of the 
application and then on the number of tasks and edges. 
We can notice that the structure of the DFG has a great 
effect on the execution time of the scheduling 
operations. A low granularity DFG makes the system 
easy to be predictable because tasks execution time 
does not vary considerably, thus limiting timing 
constraints violation. On the other hand, for a very low 
granularity DFG, the number of tasks in a DFG of great 
size explodes, and the communications between tasks 
become unmanageable.   
Each node of the DFG represents a specific task in the 
application. For each task there can be up to three 
different implementations: Hardware implementations 
(HW) placed in the FPGA, Software implementations 
running on the master processor (MS), and another 
Software implementations running on the slave 
processor (SL).  
Each node of the figure 2 is annotated with two 
informations: one about the implementation (MS or SL 
or HW) and the other is the execution time of the task. 
 Similarly each edge is annotated with the 
communication time between two nodes (two tasks).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A task of the DFG is characterized by the following 
parameters: Texe (Execution time), Impl 
(Implementation on the RCU or on the master 
processor or on the slave processor), Nbpred (number 
of predecessor tasks) and the Nbsucc (number of 
successor tasks). All the tasks of a DFG are thus 
modeled identically and the only real time constraint is 
on the total execution time. At each scheduler 
invocation, this total execution time corresponds to the 
longest path in the mapped task graph. It then depends 
both on the application partitioning and on the chosen 
total order on processors. 

 
4. Proposed approach 
 
The applications are periodicals. In one period, all the 
tasks of the DFG must be executed. In the image 
processing the period is the execution time needed to 
process one image. The scheduling occurs only at the 
end of the execution of all tasks. Hence the result of 
partitioning/scheduling will be applied on the next 
period (next image). Our run-time scheduling policy is 
dynamic since the execution order of application tasks 
is decided at run-time. For the tasks implemented on 
the RCU, the only condition for launching their 
execution is the satisfaction of all data dependencies. A 
task may begin execution only after all its incoming 
edges have been executed. For the tasks implemented 
on the software processors, the conditions for 
launching are (1) the satisfaction of all data 
dependencies and (2) the discharge of the software 
unit. Hereby the task can have four different states: 
waiting, running, ready and stopped. The task is in the 
waiting state when it waits the end of execution of one 
or several predecessors. When a processing unit has 
finished the execution of a task, new tasks may become 

Figure 2: An Example of DFG 
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ready for execution if all their dependencies have been 
completed. The task can be stopped in the case of 
preemption or after finishing its execution. The states 
of the processing units in our target architecture are: 
execution state, reconfiguration state or idle state. In 
the following, we will explain the principle of our 
approach as well as a hardware implementation of the 
proposed HW/SW scheduler.    
 
4.1. Description of the scheduling algorithm 
 
As explained on the figure 3, the basic idea of our 
heuristic of scheduling is to take decision of tasks 
priorities according to three criteria. The first criterion 
is the ASAP (As Soon As Possible) time. The task 
which has the shortest ASAP date will be launched 
first. The second criterion is the urgency time: the task 
which has the maximum of urgency will have priority 
to be launched before the others. This new criterion is 
based on the nature of the successors of the task. The 
urgency criterion is employed only if there is equality 
of the first criterion for at least two tasks. If there is 
still equality of this second criterion we compare the 
last criterion which is execution time of the tasks.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We choose the task which has the upper execution time 
to launch first. We use these criteria to choose between 
two or several software tasks (on the Master or on the 
Slave) for running.    
The urgency criterion   
The urgency criterion is based on the implementation 
of tasks and the implementations of theirs successors. 
A task is considered as urgent when it is implemented 
on the software unit (Master or slave) and has one or 
more successor tasks implemented on other units 
(hardware unit or software unit).  The figure 4 shows 
three examples of DFG. In figure 4 (a), task 3 is 
implemented on the Slave processor and it is followed 
by task 4 which is implemented on the RCU. Thus the 

urgency of task 3 is the execution time of its successor 
(Urg (3) = 13). In the example (b) it is the task 2 which 
is followed by the task 4 implemented on a different 
unit (on the Master processor). In the last example (c) 
both task 2 and 3 are urgent but the task 2 is more 
urgent than 3 since its successor has an execution time 
upper than the execution time of the successor of task 
3. When a task has several successors with different 
implementations, the urgency is the maximum of 
execution times of the successors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In general case, when the direct successor of the task A 
has the same implementation as A and has a successor 
with a different implementation, then this last 
feedbacks the urgency to task A. We show the 
scheduling result for the case (a) when we respect the 
urgency criterion in the figure 4 (d) and for the other 
case in figure 4(e). We can notice for all the examples 
of DFG in figure 4 that the urgency criterion makes a 
best choice to obtain a minimum total execution time. 
The third criterion (the execution time) is an arbitrary 
choice and has very rarely impact on the total execution 
time. This scheduling strategy needs an on-line 
computation of several criterions for all software tasks 
in the DFG. A software implementation of this strategy 
is thus incompatible with real time constraints. We 
describe in the following an optimized hardware 
implementation of our scheduler.   
 

Figure 4: Case examples of urgency computing
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4.2. Hardware Scheduler architecture  
In this section, we describe the architecture of our 
scheduler. This architecture is shown in figure 5 for a 
DFG example of three tasks. It is divided in four main 
parts: (1) the DFG_IP_Sched, (2) The DFG_Update, 
(3) The MS_Manager and (4) the Slave_Manager.  
 
 
 
 
 
 
 
 
 
 
 
 
The basic idea of this hardware architecture is to 
maximize the parallelism of processing tasks. So, at the 
most, we can schedule all the tasks of the DFG in 
parallel for infinite resources architecture. We associate 
to the application DFG a modified graph with the same 
structure composed of the IP nodes (each IP represents 
a task). Therefore in the best case we could schedule all 
the tasks in the DFG in only one clock cycle (if all 
tasks can be executed in parallel). To parallelize also 
the management of the software execution times, we 
associate for each software unit a hardware module 
(Master Task Manager and the Slave Task Manager) 
which manage the order of the tasks executions and 
compute the processor time for each one. In the 
following paragraphs, we will detail each part of this 
architecture. 
 
The DFG_IP_Sched block  
In this architecture there are N components (N is the 
number of tasks in the application).  
For each task we associate an IP component which 
computes the intrinsic characteristics of this task 
(urgency, ASAP, Ready state…). It also computes the 
total execution time for the entire graph.   
If the task is implemented on the RCU it will be 
launched as soon as all its predecessors will be done. 
For the software tasks (on the master or on the slave) 
the scheduling will take one clock cycle per task. Thus 
the computing time of the hardware scheduler only 
depends on the result of the HW/SW partitioning.  
 
The DFG_Update block 
When a DFG is scheduled the result modifies the DFG 
into a new structure. The DFG_Update block  
generates new edges (dependences between tasks) after 

scheduling in objective to give a total order of 
execution on each computing unit.  
We represent dependences between tasks in the DFG 
by a matrix where the rows represent the successors 
and the columns represent the predecessors.   
After scheduling, the resulting matrix is the update of 
the original one. It contains more dependences than this 
later. This is the role of the DFG_Update block.  
 
The MS_Manager block  
The objective of this module is to schedule the 
software tasks according to the algorithm given above. 
The input signal represents the ASAP times of all the 
tasks. The tasks which have the two criteria (ASAP and 
urgency) will be represented by a Tasks_Ready signal. 
A Task_Scheduled signal determines the only software 
task which will be scheduled. With this signal, it is 
possible to choose the good value of signal TEXE_SW 
and to give the new value of the SW_Total_Time 
signal thereafter. A single clock cycle is necessary to 
schedule a single software task. By analogy the 
Slave_Manager block has the same role as the 
SW_Manager block. From scheduling point of view 
there is no difference between the two processors 
  
5. Experimental results 
 
With the idea to cover a wide range of applications, we 
have tested our approach on a complex DFG which 
contains different classical structures (Fork, join, 
sequential). This DFG is depicted in Figure 6. It 
contains twenty tasks. Each task can be implemented 
on the Software computation unit (Master or Slave 
processor) or on the Reconfigurable RCU. The original 
DFG is the model of an image processing application: 
motion detection on a fixed image background. This 
application is composed of 10 sequential tasks (from 
ID 1 to ID 10). We added 10 others virtual tasks to 
obtain a complex DFG containing the different possible 
parallel structures. This type of parallel program 
paradigm (Fork, join …) arises in many application 
areas. All the execution times are in milliseconds (ms). 
In order to test the presented scheduling approach, we 
have performed a large number of experiments. Several 
scenarios of HW/SW partitioning results are analyzed.  
From figure 7, it may be concluded that when the result 
of partitioning changes at runtime, then the 
computation time needed for our scheduler to schedule 
all the DFG tasks is widely dependent on this 
modification of tasks implementations. So: 
(1) There is a great impact of the partitioning result 
and the DFG structure on the scheduler computation 
time.  (2) The longest sequential sequence of tasks 

Figure 5: The scheduler architecture for a DFG of 
three tasks 
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corresponds to the case where all tasks are on the 
Software (each task takes one clock cycle). This case 
corresponds to the maximum of schedule computation 
time. (3) The minimum schedule computation time 
depends on the DFG structure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The longest sequential sequence of tasks when all tasks 
are on the hardware (each task takes one clock cycle). 
In our case (Figure 6) this sequence is formed by 10 
tasks, so the minimum schedule computation time is 
equal to 10 clock cycles.    
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
5.1. Comparison results 
 
Throughout our experiments, we compared the result of 
our scheduler with the one given by the HCP algorithm 
(Heterogeneous Critical Path) developed by Madsen 
[12]. This algorithm represents an approach of 
scheduling on a heterogeneous multiprocessor 
architecture. It starts with the calculation of priorities 
for each task associated with a processor. A task is 
chosen depending on the length of its critical path 
(CPL). The task which has the largest minimum CPL 
will have the highest priority. We compared with this 
method because it is shown better than several other 
approaches (MD, MCP, PC ...) [13]. Our scheduling 
method provides consistent results significantly better 
than HCP method. For example the HCP method 
returns a total execution time of the DFG shown in 
figure 6 equal to 69ms whereas our method returns 
only 58ms for the same DFG.  
 
5.2. Synthesis Results 
We have synthesized our scheduler architecture with a 
FPGA target platform (Virtex2P, device XC2VP100) 
[11] for the RCU of figure 1. The table below (figure 
8) shows the device utilization summary. We noticed 
that for this complex DFG, our scheduler use only 12% 
of the device slices which is reasonable.  
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Logic 
Utilization 

Used Available Utilization 

Number of 
Slices 

5351 44096 12% 

Number of 
Slice Flip 
Flops 

813 88192 0% 

Number of 4 
input LUTs 

10074 88192 11% 

Number of 
bonded IOBs 

673 1164 57% 

 
 
 
6. Conclusions 
 
In this paper, we presented a complete runtime 
hardware-software scheduling approach. Results of our 
experiments show the efficiency of the adaptation of 
the scheduling to a dynamic change of the partitioning 
that can be due to a new mode of a dynamic application 
or to fault detection. As developed in this paper, a 
dynamic HW/SW Scheduling approach has many 
advantages over static traditional approaches. In 
addition to that, the efficiency of our hardware 
implementation gives to our scheduler a minimal 
overhead in on line execution context. Our future 
works consist in integrating our scheduling approach 
among the services of an RTOS for dynamically 
reconfigurable systems. 
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