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Applications executed on embedded systems require dynamicity and flexibility according to user and environment needs.
Dynamically reconfigurable architecture could satisfy these requirements but needs efficient mechanisms to be managed efficiently.
In this paper, we propose a dedicated application modeling technique that helps to establish a predictive scheduling approach
to manage a dynamically reconfigurable architecture named OLLAE. OLLAF is designed to support an operating system that
deals with complex embedded applications. This model will be used for a predictive scheduling based on an early estimation of
our application dynamicity. A vision system of a mobile robot application has been used to validate the presented model and
scheduling approach. We have demonstrated that with our modeling we can realize an efficient predictive scheduling on a robot

vision application with a mean error of 6.5%.

1. Introduction

Embedded systems are everywhere in our automobiles,
robots, planes, satellites, boats, industrial control systems,
and so forth. An important feature of such systems is to be
reactive, as they continuously react with their environment
at a rate imposed by this later itself. They receive inputs,
process these stimuli, and produce the outputs, known as
reactions. In general, the inputs are not known until they
appear, and the systems must react dynamically to these
stimuli. DRAs (dynamically reconfigurable architectures) are
good candidate to implement an embedded application as
they could be in perfect adequacy with its dynamic behavior.

In this paper, we are interested in the modeling and
scheduling of soft real-time applications that could be
embedded on DRA. Soft real time constraint means that the
application may tolerate lateness in its deadline and could
respond with decreased quality of service (loss of frames
in video, e.g.). One of the particularities of the considered
applications is their uncertainty: we cannot have complete
information on the characteristics of the processing. These
characteristics, latency, functionality, resources need, and so

forth, depend on the environment inputs and are known
as the application is processed (e.g., in computer vision,
object recognition process depends on the number of
objects present in the image or video sequence, lighting
or color, viewing direction, size/shape, etc.). One of the
solutions to minimize the effect of the dynamicity of the
application is to realize a predictive scheduling that takes
into account the characteristics of the application. In order
to realize this predictive scheduling we need to exhibit the
dynamicity of the application. In this paper, we propose
an original dynamic application model that could be used
to do predictive scheduling. We present also a complete
and original predictive scheduling based on our dynamic
applications model.

The remainder of our paper is structured as follows:
Section 2 introduces the context and the problematic.
Section 3 describes the related works on modeling techniques
as well as the scheduling approaches for dynamic systems.
Our new proposed method of dynamic application modeling
is presented in Section4 and compared to other mod-
els. Section 5 outlines the predictive scheduling technique.
Section 6 presents a real case example of a vision system on



a mobile robot and the validation of our model and our
predictive scheduling. The last section concludes the paper
with a summary of achievements.

2. Context and Problem Definition

Today, the growing complexity of soft real-time applications
represents important challenges due to their dynamic behav-
ior and uncertainties which could happen at runtime [1]. To
overcome these problems, designers tend to use DRAs that
are well suited to deal with the dynamism of applications
and allow better compromise between cost, flexibility and
performance [2]. In particular, fine grained dynamically
reconfigurable architectures (FGDRAs), as a kind of DRAs,
can be adapted to any application with a great optimality.
However, this type of architecture makes the applications
design very complex [3], especially with the lack of suitable
and efficient tools. This complexity could be abstracted at
runtime by providing an operating system which abstracts
the lower level of the system [4]. This operating system has
to be able to respond rapidly to events. In the case of soft
real-time application with dynamic behavior, the goal is to
meet some quality of service requirements. This goal can be
achieved by an operating system with a suitable predictive
scheduling approach.

In order to realize an efficient predictive scheduling of
an application, an operating system needs to know the
behavior of this application, in particular the part where the
dynamicity can be efficiently exploited on a DRA.

In this paper, we focus on two major problems to realize
an efficient scheduling on an FGDRA.

(a) The modeling of the application that should exhibit
its dynamical aspects and must allow the expression
of its constraints, in particular real-time constraints.

(b) The run-time performance of the predictive schedul-
ing algorithm.

The different items of a scheduling problem are the tasks,
the constraints, the resources, and the objective function.
Many resolution strategies have been proposed in literature
[5]. These methods usually assume that execution times can
be modeled with deterministic values. They use an off-line
schedule that gives an explicit idea of what should be done.
Unfortunately, in real environments, the probability of a pre-
computed schedule to be executed exactly as planned is low
[6]. This is due to not only variations, but also to a lot of data
that are only previsions or estimations. It is then necessary
to deal with uncertainty or flexibility in the process data.
Hence, a significant on-line reformulation of the problem
and the solving methods are needed in order to facilitate
the incorporation of this uncertainty and imprecision in
scheduling [7].

Uncertainty in scheduling may arise from many sources

[8]:

(a) the release time of tasks can be variable, even
unexpected;

(b) new unexpected tasks may occur. We named such a
task a hazardous task;
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(c) cancellation or modification of existing tasks;
(d) resources may become unavailable;

(e) tasks assignments: if a task could be done on differ-
ent resources (identical or not), the choice of this
resource can be changed. This flexibility is necessary
if such a resource becomes unusable or less usable
than others;

(f) the ability to change execution mode: this mode
includes the approval or disapproval of preemption,
whenever a task could be resumed or not, the overlap
between tasks, changing the range of a task, changing
the number of resources needed for a task, and so
forth.

In order to describe these features, a new model
description is needed. It should be a little sensitive to data
uncertainties and variations and adaptable to the possible
disturbances.

3. Related Works

3.1. Modeling Methods. In order to efficiently implement
an application, it should be described by a suitable model
showing significant system characteristics of geometry, infor-
mation, and dynamism. The latter is a crucial application
characteristic as it permits to represent how an application
behaves and changes states over time. Moreover, dynamic
modeling can cover different application domains from the
very general to the very specific [9]. Model types have
different presentations, as shown in Figure 1; some are text-
based using symbols while others have associated diagrams.

(a) Graphical models use a diagram technique with
named symbols that represent processes, lines that
connect the symbols and show relationships, in addi-
tion to various other graphical notations representing
constraints (Figures 1(a), 1(b), and 1(d)).

(b) Textual models typically use standardized keywords
accompanied by parameters (Figure 1(c)).

In addition, some models have static form, whereas oth-
ers have natural dynamics during model execution as in
Figure 1(a). The solid circle (a token) moves through the
network and represents the execution behavior of the
application.

In the domain of embedded systems, a large number of
modeling languages have been proposed [10-12], including
extensions to finite state machines, data flow graphs, com-
municating processes, and Petri nets. In this section, we
present main models of computation for real-time applica-
tions reported in the literature.

3.1.1. Finite State Machines. The finite state machine (FSM)
representation is probably the most well-known model
used for describing control systems. However, one of the
disadvantages of FSMs is the exponential growth of the
number of states to be explicitly captured as the system
complexity rises, making the model increasingly difficult to
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FiGure 1: Four types of dynamic system models. (a) Petri net. (b) Finite state machine. (¢) Ordinary differential equation. (d) Functional

block model.

visualize and analyze [13]. For dynamic systems, the FSM
representation is not appropriate because the only way to
model it is to create all the states that represent the dynamic
behavior of the application. It is then unthinkable to use it as
the number of states could be prohibitive.

3.1.2. Data-Flow Graph. A data-flow graph (DFG) is a set of
compute nodes connected by directed links representing the
flow of data. It is very popular for modeling data-dominated
systems. It is represented by a directed graph whose nodes
describe the processing and the arcs show the partial order
followed by the data. However, the conventional model
is inadequate for the systems control unit representation
[14]. It does not provide information about the ordering of
processes for the scheduler. It is therefore inappropriate to
model dynamic applications.

3.1.3. Program Evaluation and Review Technique (PERT).
PERT is a model that was originally introduced in 1958
by the US Navy for its polaris weapon system. Since then,
PERT has spread rapidly throughout almost all industries.
Tasks are represented by arcs with an associated number

presenting their duration. Between arcs, there are circles
marking events of beginning or end of tasks (Figure 2). Each
node (i) contains three characteristics: event’s number (event
number i), an earliest start time (R;) on which an event
can be expected to take place, and a latest finish time (D;)
on which an event can take place without extending the
completion date of the application. The difference between
the latest finish time and the earliest start time is called slack
time. A task, from node A to node B, is considered critical
if the difference between the latest finish time of B and the
earliest start time of A is equal to the execution time of the
task. All critical tasks form the critical path, which is the
path on which no task should be delayed, so that the whole
application would not be delayed.

An interesting feature of PERT model is that it allows
predicting the minimum and maximum duration of the
application based on a known tasks execution time [15].
For each event, PERT indicates earliest time when a task
can start/finish and latest time when a task can start/finish.
The earliest and latest times are considered as random
variables. To estimate them, the scheduler refers to the
schedule of event occurrences that were established at the
beginning of the application. The scheduler would have at
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his disposal a large volume of historical data from which
to make its estimates. Obviously, the more historical data is
available, the more reliable the estimate is. The calculations
of critical paths and slack times were based on these best
estimates. This model seems interesting as it can describe
a dynamic duration of a task, but it cannot model other
dynamic features, for instance, the variable number of tasks
or resources.

3.1.4. Petri Net. Petri net (PN) is a modeling formalism
which combines a well-defined mathematical theory with a
graphical representation of the dynamic behavior of systems
[9]. Petri net is a 5-tuple PN = (P, T, F, W, M) where P is a
finite set of places which represent the status of the system
before or after the execution of a transition. T is a finite
set of transitions which represent tasks. F is a set of arcs
(flow relation). W : F — {1,2,3,...} is a weight function.
M, is the initial marking. However, though Petri net is well
established for the design of static systems, it lacks support
for dynamically modifiable systems [16]. In fact, the PN
structure presents only the static properties of a system while
the dynamic one results from PN execution which requires
the use of tokens or markings (denoted by dots) associated
with places [17]. The conventional model suffers from good
specification of complex systems such as lack of the notion
of time which is an essential factor in embedded applications
and lack of hierarchical composition [18]. Therefore, several
formalisms have independently been proposed in different
contexts in order to overcome the problems cited above,
such as introducing the concepts of hierarchy, time, and
valued tokens. Timed PNs are those with places or transitions
that have time durations in their activities. Stochastic PNs
include the ability to model randomness in a situation
and also allow for time as an element in the PN. Colored
PNs enable the user and designer to witness the changes
in places and transitions through the application of color-
specific tokens, and movement through the system can be
represented through the changes in colors [9].

None of the methodologies mentioned provides suffi-
cient support for systems which include dynamic features.
Dynamic creation of tasks, for instance, is not supported.
In [18], authors proposed an extension of high-level Petri
net model [19] in order to capture dynamically modifiable
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embedded systems. They coupled that model with graph
transformation techniques and used a double push-out
approach which consists of the replacement of a Petri net by
another Petri net after firing of transitions. This approach
allows modeling dynamic tasks creation but not variable
execution time nor variable number of needed resources. As
we can see there is no model to exhibit dynamic features of
an application. Next section will present related works about
scheduling under uncertainty.

3.2. Scheduling under Uncertainty. In literature, most of
the works have been focused on finding optimal or near-
optimal predictive schedules for simple scheduling models
with respect to various criteria assuming that all problem
characteristics are deterministic. However, many embedded
systems operate in dynamic environments, frequently subject
to various real-time events and several sorts of perturbations,
such as random task releases, resources failure, task can-
cellation, and execution time changes. Therefore, dynamic
scheduling is of great importance for the successful imple-
mentation of real-world scheduling applications. In general,
there are two main approaches dealing with uncertainty
in a scheduling environment according to phases in which
uncertainties are taken into account [8].

(a) Proactive scheduling approach aims at building a
robust baseline schedule, that is, protected as much as
possible against disruptions during schedule execu-
tion. It takes into account uncertainties only in design
phase (offline). Hence, it constructs predictive sched-
ule based on statistical and estimated values for all
parameters, thus implicitly assuming that this sched-
ule will be executed exactly as planned. However, this
could become infeasible during the execution due to
the dynamic environment, where unexpected events
continually occur. Moreover, overestimations may
lead to a schedulability test failure and overutilization
of resources. Therefore, in this case, a reactive
approach may be more appropriate [8].

(b) Instead of anticipating future uncertainties, reactive
scheduling takes decisions in real time when some
unexpected events occur. A reference deterministic
scheduling, determined offline, is sometimes used
and reoptimized. In general, reactive methods may
be more appropriate for high degrees of uncertainty,
or when information about the uncertainty is not
available.

A combination of the advantages of both precedent
approaches is called proactive-reactive scheduling. This
hybrid method implies a combination of a proactive strategy
for generating a protected baseline schedule with a reactive
strategy to resolve the schedule infeasibilities caused by the
disturbances that occur during schedule execution. Hence,
this scheduling/rescheduling method permits to take into
account uncertainties all over the execution process and
ensures better performance [20, 21]. For rescheduling, the
literature provided two main strategies: schedule repair and
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complete rescheduling. The first strategy is most used as it
takes less time and preserves the system stability [22].

Dynamic scheduling techniques are widely studied in
information and industrial systems and are quite different
depending on the nature of the problem and the type of
disturbance considered: resources failure, the variation of
the tasks duration and the fact that new tasks can occur,
and so forth. The mainly used methods are dispatching
rules, heuristics, metaheuristics, and artificial intelligence
techniques [23]. In [24], authors considered a scheduling
problem where some tasks (called “uncertain tasks”) may
need to be repeated several times to satisfy the design criteria.
They used an optimization methodology based on stochastic
dynamic programming. In [25, 26], scheduling problem with
uncertain resource availabilities was encountered. Authors
used proactive-reactive strategies and metaheuristic algo-
rithm that combines genetic algorithms. Another uncer-
tainty case, which is uncertain tasks duration, had been
studied in [27, 28]. Since their complexity in implementation
and calculation time, metaheuristic techniques are more
easily to be applied offline. On the other hand, when
it is about an online context, priority-based scheduling
(dispatching rules and list scheduling) is more rapid to have
reasonable solutions. However, priority-based scheduling
is inefficient and not appropriate for systems where the
required scheduling behavior changes during runtime [29].
Therefore, it is necessary, in our case, to combine different
techniques together to endow the scheduling approach with
the required flexibility and robustness. For permanent tasks
with deterministic features, priority-based algorithms will be
practical, while for hazardous tasks, the scheduler should
occur to a prediction service based on heuristic techniques.
Taking the case of tasks with uncertain execution time,
the predictive algorithm must take advantage of dynamic
characteristics of the application and attribute, for each
task, a dynamic online estimated value. This will permit
to schedule the different hardware tasks (T;) and allocate
its needed resources of the DRA based on online estimated
values.

There are basically two approaches for execution time
prediction [30].

(a) Static approaches: these methods do not need a code
execution on real hardware or on a simulator but
rather rely on code structure and possible control-
flow paths analysis to compute upper bounds of
execution times [31]. A given code analysis technique
is typically limited to a specific code type or a limited
class of architectures. Thus, these methods are not
very applicable to DRA. In addition, these offline
analysis methods do not take into account changes
in the processed data on each tasks’ activation.
Therefore, online changes in execution time will not
be considered to avoid schedulability test failure, or
too much resources uses.

(b) Measurement-based approaches: these methods exe-
cute the task on the real target hardware or hard-
ware emulator, for some set of inputs. They then
take the measured execution times and derive the

maximal and minimal observed execution times on
their distribution. These methods have complexity
and safety problems [32]. These measurement-based
methods require maintaining a history of execution
time values of all tasks forming the application.
During tasks execution, execution time is measured,
and this measurement is subsequently added to the
set of previous observations in order to improve
the precision. Thus, as the number of observations
increases, the estimates produced by a statistical
algorithm will be improved [33]. These methods have
the advantages that they are able to compensate for
data input parameters (such as the problem size)
and do not need any direct knowledge of the data
characteristics, internal design of the code, or the
considered architecture.

In measurement approaches, generally the execution
time estimation problem is considered as a regression
problem. They use regression algorithms to compute esti-
mates from the set of previous observations. In literature,
there are two classes of regression techniques: paramet-
ric techniques and nonparametric techniques. In general,
parametric techniques require the definition of a form that
describes the execution time (Y) of a task as a function (e.g.,
polynomial regression model) of a parameter X (e.g,, X is the
problem size, or number of objects). A popular parametric
technique for solving this type of problem is the least squares
method. These techniques need offline computation of the
function coefficients. However, for flexible and dynamic
applications, it is difficult to make any assumptions on
the functional form. Parametric techniques are then not
well suited to this problem. Nonparametric techniques are
a better choice. Nonparametric regression techniques (also
called nonparametric estimators or smoothing techniques)
are considered to be data driven, since the estimate depends
only upon the set of previous observations, and not on
any assumptions about Y (X) function. All nonparametric
regression techniques compute Y (X) using a variation of the
equation

Y(X) = %ZW,-(X) o (1)

i=1

where W;(X) is a weighting function. Y (X) is a weighted
average of the execution time values C;, of the n previous
observations. The weight function W;(X) typically assigns
higher weights to observations close to the parameter X, and
lower weights to observations farther away from X. This is
illustrated in Figure 3. A popular nonparametric technique
is k-nearest neighbor (k-NN) algorithm [34].

For nonparametric methods (like k-NN), the main
problem is that, especially in embedded systems, they are
more complex in implementation (need historic observa-
tion, distance calculation).

However, in contrast with a static property of a task, the
estimated parameters are not only dependent on the code to
be executed by the task (and its possible set of parameters)
but also on the system’s state and the environment at the
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time (t) when is executed. This means that the estimated
parameters are probabilistic values, and they may change
over the lifetime of the system. In order to predict those
parameters for the next instance (¢) of a task T, it should be
a good approximation to look at the most recent executions
of instances of T. This is the typical case of some real time
applications such as image and video processing, where tasks
features variations may be correlated with some parameters
like keypoints for edge extracting or interesting points for
particular processing.
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The next section deals with our new modeling method
for dynamic applications. The model will permit to the
scheduler to take into account the dynamic features and so
to help in its predictions.

4. Dynamic Application Modeling

4.1. Proposed Method. As we mentioned in Section 3, to
realize a predictive scheduling, we must exhibit the dynamic
characteristics of an application. We consider three cases of
dynamicity in applications.

(a) The number of tasks is not fixed. It may change from
iteration to another.

(b) The tasks execution time may change too.

(¢) The number of needed resources for tasks execution
is variable. In addition, the number of available
resources may decrease after a failure occurs.

For these cases, the goal is to develop a robust scheduling
method, that is, little sensible to data uncertainties and
variations between theory and practice. To represent all those
constraints in the same model, we have developed a graphical
model. In this model, the graph is composed of two forms
of nodes. We make use of the example shown in Figure 4 in
order to illustrate the different definitions corresponding to
our model. The first type of nodes refers to permanent tasks
which are known in advance and which are always executed
during the whole lifecycle execution of the application. This
is the case of the set {T1,T2,T3,T4,T5,T6,T7,T8}. The
second type, corresponding to the set {79,T10,T11}, is
for hazardous tasks which may be executed in some period
but not in others. Each task of the proposed model is
characterized by the following four parameters:

(a) T; for the task’s number,

(b) C; for the execution time, and C;* for random
execution time,

(¢) D; for the deadline,

(d) (A) is the number of needed resources. It may be
multiplied by a variable resource factor (n) that
represents n hazardous tasks,

(e) plain arc between two nodes represents the prece-
dence between two tasks,

(f) dashed arc between two nodes represents the prece-
dence between several nodes indicated by n. If n = 0,
then the initial node has no successor.

In our model, to represent tasks with variable execution
time, we have been inspired by PERT model presented in
Section 3.1. We replace the earliest start time (R;) in PERT
by the execution time (C;) as it would be changed over
execution. We kept the deadline D; as it will be useful to
calculate the makespan (i.e., the length of the schedule). In
the example of Figure 4, tasks with variable execution time
are {T'1,T7,T8}. This will be noticed by the use of asterisk.

To represent the uncertainty of the number of tasks
instances, for example in Figure 4, task T'11 will be executed
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m times, we introduce a valued arc by the number of
instances. In order to show that in some cases the task will
not be executed (there is no need for that processing), we
present the task with circled node (e.g., 79, T10, and T'11).
Hence, the number of instances is defined as integer, and if
the number m = 0, then task T'11 will not occur. The number
m will depend on the previous executions and the actual
input data to be processed. Thus, m will be recalculated, after
each period, based on its previous values.

To be executed, hardware tasks need resources like certain
amount of silicon area. This feature is indicated in the
labels over each tasks node. For permanent tasks (e.g., T'1
in Figure 4), the label contains one parameter, that is, A; =
20 indicating the volume of needed resources for T'1. For
hazardous tasks, and to execute multiple instances of its
processes, the volume of resources will be multiplied by the
number of instances. For T9, the volume of needed resources
is n X Ag of the whole hardware architecture.

The arcs represent the dependencies between tasks. For
permanent tasks, arcs are represented with solid lines, while
uncertain dependencies are represented by dashed lines.

4.2. Comparison of Models. Compared with other mod-
els (Section 3.1), our proposed technique presents several
advantages. For uncertain number of occurring tasks, the
data flow graph (DFG model) does not contain information
about the number of instances. During execution of the
application, every task represented by the nodes of DFG is
executed once in each iteration [35]. Only when all nodes
have finished their executions, a new iteration can start. So
to model this, we need to represent n nodes of the same task,
which increases the size of the model (see Figure 5(b)). In our
model, information about uncertain number of instances of
a same task to be executed is noted by the circle form of
the task and the number above its arc. For PN model, (see
Figure 5(a)), arcs could be labeled with their weights where
a k-weighted arc can be interpreted as the set of k parallel
arcs [36]. But, from its definition (Section 3.1), weights are
positive integers, so PN cannot present a fictive arc with
nonfiring transition representing a task that may not be
executed in some iterations. In Figure 5(a), if 79 and T'10
are not executed, then n should be null, which is impossible
from PN definition. In addition, to fire T8, all input places
should have at least one token, which will be not possible if
T10 or T'11 was not executed (fired).

Petri net does not provide any timing information, that
is, mandatory for determining minimum application com-
pletion time, latest starting time for an activity which will
not delay the system, and so on. The only important aspect
of time is the partial ordering of transitions. For example,
it presents variable tasks duration with a set of consequent
transitions for each task which will complicate the model (see
Figure 6). The addition of timing information might provide
a powerful new feature for Petri nets but may be difficult to
implement in a manner consistent with the basic philosophy
of Petri nets research [37]. For resource representation,
PN represents this feature by an added place with a fixed
number of tokens. To begin execution, a task removes a token

from the resource place and puts it back in the end of its
execution. However, this model is inadequate in our case
since the number of available resources may change over the
execution.

Therefore, the use of conventional modeling methods is
not effective for dynamic applications. With PN and DFG
models (Figure 5), there is no distinction between perma-
nent tasks and hazardous ones (that may not be executed),
nor an explicit notion of time (as variable execution time
of some tasks). PERT technique enables to present tasks
temporal features in order to identify the minimum time
needed to complete the total project. However, it lacks
functional properties in estimation and does not assume
resources constraints (considered as unlimited) [15].

The main advantage of our method is the possibility to
represent several dynamic features of real-time applications
with the minimum of nodes and thus in a simple formalism.
We can bring out three main characteristics of this model:

(a) the distinction between the static execution and the
dynamic execution;

(b) the tasks whose execution time is variable (presented
by the asterisk);

(¢) the volume, for each task, of needed resources for its
execution. In each iteration, and depending on the
available resources, schedule is able to decide which
ready tasks could be executed on the device.

5. Predictive Scheduling

5.1. OLLAF Architecture. Our goal is an efficient man-
agement of dynamically reconfigurable architectures; more
precisely, as case study, we target the OLLAF architecture.
OLLAF, as presented in [4], is an original FGDRA specifically
designed to enhance the efficiency of OS (operating system)
services necessary to manage such architecture. In particular,
OLLAF can efficiency support the context switching service
of an OS. From the global view (Figure 7), OLLAF has a
reconfigurable logic core organized in columns. Each column
can be reconfigured separately and offer the same set of
services. A task uses an integer number of columns and
can be moved from one column to another without any
change on the configuration data [4]. Each column provides
a hardware configuration manager (HCM) and a local cache
memory (LCM). The reconfigurable logic core uses a double
memory plan. With this topology, the context of a task can be
shifted in while the previous task is still running and shifted
out while the next one is already running. The effective task
switching context overhead is then taken down to one clock
cycle. To obtain such a rapid context switching service, the
configurations of the tasks have to be placed in advance in
the LCM of the corresponding columns. In the first version
of OLLAF, those memories can store 3 configurations and 3
task contexts.

In OLLAF as an OS is purely a control process it is
implemented on a microprocessor denoted by (HW Sup
+ HW RTK + CCR) in Figure 7. The OS must manage
the context switching and then needs to take into account
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FiGURE 6: PN model for variable tasks duration.

a prefetch task configuration on the LCM of the columns
where it might most probably be placed. It is a conditional
process because OLLAF is targeted to execute dynamic
application. In [4], authors showed some case studies which
demonstrate that the OLLAF architecture can perform a
greater efficiency than the one performed using a traditional
commercial FPGA. Our goal is then to make a dynamic and
predictable scheduling to better manage a dynamic real-time
application executed on such architecture. To realize this, we
propose to use as the input of the scheduler an application

) Application communication media 2
[ I I |
Reconfigurable HW sup
logic core E
- HW RTK
+
CCR
CM | C CM | C CM | C CM | c
M M M M
CM U CM U CM |5 L CM U
T T T T T

Control bus

FiGUre 7: Global view of OLLAF architecture.

represented by our dynamic graph modeling described in
Section 4.

5.2. Scheduling Flow. We can represent our scheduler flow
as in Figure 8. It takes as inputs on one hand a dynamic
graph modeling of an application and on the other hand a
description of a DRA, here a model of OLLAF FGDRA as we
focus on it. For validate purpose of our scheduling, OLLAF
is modeled as a set of columns. Based on these descriptions,
our scheduler makes an online dynamic scheduling based
on prediction process. The parts which are outlined with
dashed lines, visible in Figure 8, present the prediction
process which will make online decisions based on precedent
observations of variable parameters and taking into account
the application constraints.
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F1GURE 8: Scheduling flow on OLLAF architecture.

With our model the scheduler is able to distinct between
two parts of the application: one containing all the perma-
nent tasks and other containing hazardous tasks, as well as,
in permanent tasks, those that have a variable execution time.
Permanent tasks will be scheduled respecting their prece-
dence constraints (topological order). Their configuration
data will be prefetched, as much as possible, on the columns
making a maximum use of the whole of the architecture.
This ensures minimizing the number of configuration data
transfers and tasks relocation, and thus the time of saving
and restoring process. The principle of our scheduler is to
realize an initial scheduling where all dynamic features are
not taken into account (all dynamic parameters are equal to
zero). Then an execution is done and dynamic parameters
are updated. Based on these new parameters, a rescheduling
is done that takes into account dynamic features. The
update of dynamic parameters is computed with a prediction
technique. We use a least laxity first (LLF) policy [38] because
it permits a dynamic priority assumption depending on the
laxity which varies according to the execution time. If there
is equality between some tasks, task which has maximum
execution time will have priority to be launched before the
others.

The scheduler will proceed the rescheduling with a min-
imum effect on performance. This reschedule must rely on

rapid algorithms based on a simple scheduling technique,
so that it can perform online execution with no overhead.
From the ready list, LLF algorithm determines the tasks that
can be executed on the reconfigurable device. Tasks with the
higher priorities will be placed first until the area of device is
fully occupied. If there are not enough hardware resources
available, the last recently used (LRU) strategy is used to
select which tasks’ configuration data will be removed.
During runtime, effective values of dynamic parameters
are measured and stored. These values are used to update
dynamic parameters with an approximation function. Such
function can be, for a parameter, a mean of all its measured
values, or a maximum value of all the measured values of
a more complex function. In next section, we present four
used functions for predicting dynamic parameter values in a
robotic application.

6. Experimental Results

6.1. Robotic Application Benchmark. As an illustration of the
modeling approach outlined in previous section, consider an
image-processing application of a visual system embedded
in a mobile robot. This application illustrates the modeling
of systems using our proposed model. In this application,
robot learns its environment to identify keypoints in the
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F1GUrE 9: Global architecture of the robotic application.

landscape [39]. The keypoints correspond to the image
filtered by difference of Gaussians (DoGs). This application is
dynamic in the sense that the number of keypoints depends
on the visual scene and is not known a priori. In addition,
there are three application modes corresponding to the
behavior of the robot, and each mode executes different
processing under different rates (Figure 9).

(a) Fast mode (Scale 3): the robot moves around for
a coarse description of the landscape but at a high
frame rate. Thus, only the lower scales are processed.
It is the reason why in this first mode the maximum
number of extracted keypoints is fixed to N = 10,
and the number of frames processed per second (fps)
to 20.

(b) Intermediate mode (Scales 2 and 3): the robot moves
slowly, for example, when the passage is blocked
(obstacle avoidance, door passage) and needs more
precision on its environment. In this mode, the
middle scale and the lower scale are processed. In this
mode, N is fixed to 30 and the system works at a rate
of 5 fps.

(c) High-detail mode (Scales 1, 2, and 3): the robot is
stopped in a recognition phase (object tracking,
new place exploration). All scales are fully processed
and full information on the visual environment is
provided. The number of processes depends on the
number of keypoints in the video frames. For this
mode, N = 120, and the rate of the system is fixed

to 1 fps.

As a consequence, application tasks could be divided in
three groups:

(i) intensive data-flow computation tasks that execute in
a constant time,

(ii) tasks whose execution number is correlated with the
number of interest points,

(iii) tasks with unpredictable execution time (depending
on the images features).

Figure 10 shows our proposed model for the robotic vision
application. We can notice the presence of permanent branch
(squared nodes) which represents permanent tasks that will
be executed in all cases or modes (e.g., T'1, T14, T'19) and
hazardous tasks that may occur during execution. Table 1
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TasLE 1: Identification of the robotic application tasks.
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F1Gurg 10: Dynamic model for the robotic vision application.

indicates tasks functions and classifies them to permanent
and hazardous. Tasks with unpredictable execution time
are indicated by the asterisk (e.g., T9, T11, T20). Another
dynamic feature of tasks whose execution number depends
on the number of keypoints is indicated by the use of re-
source factor n (e.g., T9, T'10, T30).

For the prediction techniques of uncertain tasks features,
we have studied the task of keypoints search. The provided

measured execution times on representative samples are
presented in Figure 11. As we can see, the values distribution
is random especially in the first scale. The elapsed time of
keypoints search in an image depends on the number of
keypoints that this image contains. The execution time is
correlated with the number of keypoints found; this number
is also random as shown in Figure 12. Figure 12 shows the
number of keypoints found in the corresponding image over
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a sequence of more than 5000 images. It corresponds to the
search task T'18 of scale 1, and it has almost the same look
as other search tasks {720,7T9,T11,T27,T29} of different
scales.

6.2. Prediction Results. We have compared several techniques
to predict the execution time of the search keypoints task.
Comparison is based on error estimation defined as follows:

E

B z Real execution time (t;) — Estimated execution time (t;)
- Real execution time (t;)

X 100,
(2)

where ¢; is a runtime instant and i = {0,...,n}.

We will focus on the prediction function corresponding
to the search 1 task of scale 1 as it presents very random
distributions (Figure 11). We have tested four methods based
on statistical measurements obtained by on-line monitoring
(Figure 13):
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(1) first method (a) uses the mean value of the three last
real execution times;

(2) Second method (b) uses the mean of the three last
values multiplied by different weights. Weights are
determined experimentally on the basis of tested data
to minimize estimation error. As in nonparametric
regression techniques, the higher weights are assigned
to the values closed to the actual parameter and lower
weights to those more distant;

(3) the third method (c) takes the maximum of the last
three real values;

(4) the fourth method (d) takes the last value increased
by 5%.

We notice that all methods lead, in the twenty tested
images, to an overestimation of the execution time. As we
can see, for the first method after some periods the predicted
values become almost constant. In the case of second
method, there is a delayed correspondence between the real
execution graph and the predicted one. The third methods
realize more pessimistic prediction and do overestimations.
And finally, the fourth method is closer than the second one
with more pessimistic prediction. As seen from Figure 14,
the higher error rate is for the first (a) and the third (c)
methods. For the fourth method (d), and even with a 1%
increase of the last measure value, the error is still greater
than that of the second method (b). Hence, the least obtained
error percentage is the one related to the method using
weighted average of last values (Figure 13(b)). The mean
error between estimated and simulated results is about 0.4%
for low- and medium-frequency scales and about 2.45% for
high-frequency scale. Those results show that the technique
based on a weighted average of the execution time values
works with an accuracy of almost 98%. Even for keypoints
number estimation (Figure 12), the mean estimation error
of the same technique is 0.406% for the whole 5000 images.
However, a null error rate does not guarantee a good quality
of service (QoS). As we can see from the shape of the graphs
of Figure 13, some methods (like first one (a)) present a great
overestimation leading to overuse of resources, while others
have relative great underestimation leading to a decreasing
QoS. With keypoints number estimation (Figure 12), we
have calculated estimation error of over 1000 successive
images for the second method (b) and third one (c). The
first technique, based on weighted average prediction, gives
less overestimation than the second one (so less useless
resources allocation), but it has an almost null mean error
leading to a considerable underestimated values which has
a great impact on the quality of service than second one.
Indeed, the second technique presents more advantage with
a relative acceptable mean overestimation of 6.5%, and less
than 21% of the whole predicted values were underestimated.
The purpose is that prediction be almost near real values
and guarantees better compromise between requested QoS
and efficient resources management. For this visual system
application, and particularly for the two first modes of its
process, the latter estimation can assist the prediction engine
for better scheduling analysis of real-time tasks and so better
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exploitation of the DRA like OLLAF. More investigations
will be performed for the high-detail mode where all the
treatments are realized on high frequencies.

7. Conclusion

In this work, we have proposed a new model to represent
application with dynamic features. This model overcomes

standard model like dataflow graph or Petri network, where
it is not possible to represent dynamic characteristics of an
application in a static fashion. We have demonstrated that
this model is suitable to the aim of performing predictive
scheduling on reconfigurable hardware, in particular on
OLLAF FGDRA. The proposed model authorizes a scheduler
to take into account uncertain characteristics of hardware
tasks, the available resources in the target device, and the
quality of service of the application. This model enables
to present three considered types of dynamicity, which are
uncertain tasks execution time, hazardous tasks that may
occur, and variable resources needs. We have presented the
scheduling method with the use of a prediction method
enabling better adaptation of the architecture to the en-
vironment variations. As a validation purpose, we have
used a case of an image-processing application of a visual
system embedded in a mobile robot. Such application shows
dynamically variable characteristics that are uncertain. We
have demonstrated that with our modeling we can realize an
efficient predictive scheduling on a robot vision application
with a mean error of 6.5%.

Future works will consist in integrating our scheduling
approach among the services of an RTOS taking into account
the new possibilities offered by OLLAE. We also plan to
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employ preemptive scheduling policies by using the mech-
anisms of migration and reallocation of tasks configuration
and context data proposed by OLLAF.
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