A DVB-S2 compliant LDPC decoder integrating the
Horizontal Shuffle Scheduling.

Arthur Segard*, Francois Verdier*, David Declercq* and Pascal Urard!
*ETIS laboratory
University of Cergy-Pontoise
6, avenue du Ponceau - 95014 Cergy France
E-mail: {lastname} @ensea.fr
ST Microelectronics - Crolles France
E-mail: {firstname.lastname} @st.com

Abstract— Low-density parity check codes (LDPC) are a class
of channel decoding codes used in digital communications.
Very high error correcting performances can be reached with
such codes but they require both a great computing effort
and randomly constructed decoding matrices. LDPC codes are
used to perform the channel coding of the satellite television
broadcast standard DVB-S2. This paper proposes a way to design
massively parallel hardware architecture of DVB-S2 compliant
LDPC decoders. It is based on a particular way to schedule all
the algorithm’s calculations. The proposed architecture speeds-up
the decoding process, allowing the algorithm to converge faster
with no significant performance loss. Moreover, a particular data
update mechanism has been developed in order to avoid all data
conflicts inherent to DVB-S2 matrices even for highly parallel
implementations. This paper describes our hardware LDPC
decoder architecture and its processing elements. Estimated
silicon area of this decoder is 11 mm in ST 90 nm technology
and the decoding throughput reaches 591 Mbps @ 300MHz for
rate 1/2 and code size of 64800.

I. INTRODUCTION

Low Density Parity Check codes (LDPC) are a class of
channel decoding codes published in 1962 [1]. They were
forgotten during decades mainly because of the implemen-
tation complexity of the decoder, until recently, when deep-
submicron technologies allowed the implementation of far
more complex algorithms than standard forward error correc-
tion codes: if combined with the Belief Propagation algorithm,
LDPC codes can reach performance near the theoretical Shan-
non limit.

A binary LDPC code can be built with a parity check matrix
H, containing only zeros and ones. This matrix is very sparse
and the ones should be randomly allocated, to ensure the
efficiency of the code. The lack of uniformity of this matrix
is a central problem for the hardware implementation of the
decoder.

Several hardware implementations of LDPC decoders have
been described in the literature. For example [3] is trying
to get the best performance possible out of one particular
matrix. Their model allows a very high degree of parallelism to
obtain very high data throughput, with low power dissipation.
However, this method exhibits a strong lack of flexibility
because important parameters cannot be changed (codeword
size, code rate, etc.). Another way to obtain a parallel decoder

is to give the decoding matrix a regular structure, which allows
the implementation of multiple identical processors [4]. In this
case, the problem consists in finding a method for building
pseudo-random matrices that still have good performance
(as in [5]). The DVB-S2 standard [6] describes partitioned
matrices requiring a highly parallel decoding architecture.
Some architectures were described to work with those specific
matrices ([8], [9], and [10]).

Ways of modifying the decoder exist that can improve its
performance, apart from choosing the good random matrix.
The scheduling of all calculations, for example, is also an
important issue. The scheduling has consequences on the error
correction and on the throughput. In [7], the authors show
how a good choice of scheduling can, theoretically, speed-up
the decoding. There are very few attempts in the literature
of hardware implementation of any other schedule than the
Flooding Schedule (FS). In [10], a parallel implementation of
the shuffled schedule applied on DVB-S2 matrices and high-
lights of some of its consequences concerning data conflicts
are described. These data update conflicts are inherent to the
structure of DVB-S2 matrices and are avoided in [10] both
by defining the right computation order and by reducing the
degree of parallelism thus reducing the expected throughput.

This paper describes our architecture combining a parallel,
DVB-S2 compliant, LDPC decoder and the Horizontal Shuffle
Schedule (HSS). This schedule allows a faster convergence,
compared with the FS allowing then a higher throughput.
Moreover we detail a particular mechanism to avoid all data
conflicts that permits a massively parallel hardware implemen-
tation reaching very high throughput.

The paper is organized as follows: after this introduction,
the second section describes LDPC codes and points out the
scheduling issues. The third section shows how the hardware
could be if the DVB-S2 standard was strictly applied and how
we could improve this architecture. The fourth section shows
the improved architecture and give some performance results
obtained by simulations.

II. LDPC CODES FOR CHANNEL ERROR CORRECTION.
A. LDPC matrix and decoding graph.

Let us take an LDPC code, defined with its parity check
matrix H. A graph G can be deduced from this matrix, to
illustrate the decoding process. Each row of H (and also
each parity equation) corresponds to a checknode in G. Each
column of H (and also each bit of the code word) corresponds
to a bitnode of G. Finally, every one in the matrix H is a
link between a bitnode and a checknode in G. The decoding
algorithm manipulates the probabilities of each bit being O or
1. These probabilities are used in the Log Likelihood Ratio
(LLR) and are computed this way:

P(bit; =1)

Every single LRR; is inserted in the graph through its
corresponding bitnode. Every element of the graph has a fixed
purpose in the decoding:

o The edges propagate messages between bitnodes and
checknodes. The messages at the beginning of the de-
coding are inserted in the graph through the bitnodes to
the checknodes.

o Each checknode computes the probability that its equa-
tion is verified. To do that, it updates all u; messages
going to the bitnodes linked to it.

« Each bitnode computes the probability of the value of the
ith bit. To do that, it updates the v; messages going to
the checknodes linked to it.

To obtain a parallelized decoder, each N x M DVB-S2
matrix is generated from a sub-matrix of size % X %.
From each column of this sub-matrix can be deduced 360
columns of its corresponding DVB-S2 matrix. The N — M
first columns can be obtained this way. The last remaining M
columns constitute the systematic part of the DVB-S2 matrix.

The sub-matrices are described in the DVB-S2 standard, and
allow up to 360 processors to work at the same time during
the decoding, with the FS.

B. Decoding flow

The decoding process is an iterative process. An iteration
is ended when all messages of the graph have been updated
at least once. The whole decoding process ends when a
valid code word is found, or when the maximum number of
iterations has been reached. The final decision on a bit is taken
at the end the decoding process, by computing the sign of the
local a posteriori log density ratio:

dv
S; = LLR; +Zuk (1)

=1

where d, is the degree of the i*" bitnode. If S; is positive
or null, the bit 7 is considered as a 0 (as a 1 otherwise).

The schedule has some effect on the decoder performance.
In the DVB-S2 standard, the easiest way to perform the decod-
ing consists in using the FS. One iteration of the FS, combined

Step 2: second checknode update

VGL
NS \»g\- =t ‘{4)]
S XN e

ul

Step 3: third checknode update

vl&\ v2 ;

Fig. 1. Horizontal Shuffle Schedule

with the Corrected Min-Sum algorithm ([11]), includes the
following steps:

« step one: u; messages updating. For a degree d. checkn-
ode:

u= P KL)

where @ operator is defined as follows:

[vi] @ |vj| = min(|v;], [v;]) — of fset 3)

and

sign(v; ® v;) = sign(v;) x sign(v;) 4)
e step two: messages v; updating. For a degree d, bitnode:

dy
vj=LLRi+ Y w 5)
k=1,k+#j

However, if the FS is convenient, we consider it is not the
most powerful schedule. We propose in this paper to use the
Layered Scheduling or Horizontal Shuffle Scheduling. With
the HSS, the updating process is quite different from the FS
(figure 1). For each checknode:

o first, the u; messages coming out of the checknode are
updated by using equations (2), (3) and (4).

« then, all v; messages coming out of the bitnodes linked
to this checknode are updated with equation (5).

During a FS, in the * iteration, the update of the messages
is based only on messages updated in the (I — 1)** iteration.
During an HSS decoding, the computation can be done on
messages already updated on the Ith iteration, by a different
checknode.

As an example, one can see in figure 1 that the message
vy was already updated two times before being processed by
the third checknode. Globally, the number of updates of the v

address bus

[1]

\ network

Simemory | Si memory J 7777777777 Si memory |l

[1] \

‘ Interconnection network

Processor

DVB-S2

matrix
command

Processor Processor Processor

i 1 ! 1

uj memory | | uj memory uj memory | | uj memory

Fig. 2. parallel organization of processors for HSS

messages during one iteration depends on the bitnode degree.
A v message coming out of a d, degree bitnode is updated
d, — 1 times. It would be updated only once with a Flooding
Schedule. This higher update frequency per iteration allows
the decoder to converge faster.

III. ARCHITECTURE FOR THE DVB-S2 STANDARD.

The channel decoding part of the DVB-S2 standard is based
on partitioned LDPC decoding matrices. This partitioning
allows a parallel implementation, leading to a high throughput
decoding. However, we show in the following that this con-
struction is not well adapted to a parallel implementation of
HSS.

A. Applying the HSS

The particular way of building DVB-S2 matrices leads
naturally to the use of the flooding schedule, as shown in [8]
or [9]. To obtain an HSS compliant architecture, we decided
to adapt the decoder structure to the S; sums (equation (1))
as in [10]. To perform a checknode update with equations (2)
and (3), when the v; messages are needed, the S; sums will
be used this way:

d,
vj = LLR; + Z up = S; — u; 6)
k=1,k#j
During the [*" iteration, each checknode update will be
performed as follows:

e The S; sum of all bitnodes connected to the checknode

are read.
« Each vj. message is computed with equation (6). The
ul._l, stored in the processor, are initialized with zero

J
values at the beginning of the decoding.

o The u! messages are computed (equation (2), (3) and (4)).

o The updated S; are obtained by adding all ug with their
corresponding vg-. The processor keeps the ué messages
for doing the subtraction during the next iteration.

o Each updated S; sum is written back in memory.

In the proposed architecture (figure 2), the processor per-
forms both bitnode and checknode updating at the same time.
This is a real advantage to obtain a high throughput. The
memories S; are initialized with the LLR; obtained from
the communication channel, and the u; memories are set to

zero. A state machine generates the S; memories addresses,
selecting the S; for bitnode/checknode update. A 360 x 360
barrel shifter allows the processors to catch the data from any
memory.

However, this structure also creates a few memory access
conflicts, whitch occur when a given S; is read by two different
processors, processing two different checknodes at the same
time.

B. Managing the memory access conflicts

Because of the way the DVB-S2 matrices are partitioned,
all processors, at any clock cycle of the decoding, request a
different S;, avoiding direct memory access conflict. During an
iteration, because of the HSS, an S; sum is read, updated and
written back in memory d, times. A conflict occurs when a S;
is read by a first processor, and then read again by a second
processor before it has been updated and written back by the
first processor. In this case, the first updated S; is written back
too late to be taken into account by the second processor. This,
mandatory data to keep the decoder stability is lost.

This situation concerns all DVB-S2 matrices. It occurs
particularly when two (or more) checknodes connected to the
same bitnode are processed at the same time. It means that
these processors have to update the same S; in a parallel way.
The solution used in [10] when such event occurs consists in
suspending the memory read cycles until the updated values
are written back. Unfortunately, we have determined that these
no-operation cycles would become more frequent as the level
of parallelism increases. For example, with the r=1/2 DVB-
S2 matrix, such a case happens 720 times in a 40 processors
architecture and 2880 times in a 360 processors architecture.

To solve this problem, we have implemented in our archi-
tecture the following strategy:

At the begining of the [iteration:

S; = LLR; +ul™" + b +ul™? (7)

e S; is read by two processors
o S; is updated by the first processor as S} = LLR; +u! +
-1 -1

Uy — + Ug

o S, is updated by the second processor as S? = LLR; +
ull_1 +ub + ul3_1

o both S} and S? are writen in two different memory
adresses

When a third processor needs S; to update ug, in a subse-
quent checknode processing:

o Si. S} and S? are read by the processor
« an updated .S; is computed:

gupdated — g1 L 62 _ G, — LLR;+ul +ul+ul™ (8)

o S, is updated again as S; = LLR; + u} + ub + u} and
writen back in memory in its regular memory address.
This two steps update process can be used when more than
two processors access the same sum. The only change would
be in equation (8):

k=m
Slypdated — Z Sf — (m —]_) X SZ (9)
k=1

with m being the number of processors.

C. Memory occupation

As illustrated in figure 2, this architecture has two types of
memories. The u; memories are local to each processor. The
number of different values to store in these local memories is
equal to the number of one in the DVB-S2 matrix.

We can notice that equation (3) is similar to a sort operator
producing only two different absolute values. The first one
corresponds to the first minimum among all the incoming |v;].
The second one is the second minimum. Moreover, only one
output is associated to the second minimum whatever is the
degree d. of the checknode. However, all of the produced
values can have different signs. As a consequence, the amount
of local memory can be drastically reduced by reserving only
the space needed for storing d. signs (d,. bits), two absolute
values and an index to identify the output associated with the
second minimum.

Let us suppose that all checknodes have a degree of 8, and
that the messages are coded with six signed bits. For each
checknode in the graph, only two absolute values coded with
five bits and eight bits will be stored for the signs. The index
number adds three more bits. We can see that only 21 bits
are necessary for each checknode, instead of 48. This new
architecture will exhibit a 56% reduction on the u; messages
memory. In our architecture, it appears that 2 Mbit of RAM
are necessary to decode any matrix in the DVB-S2 standard.

IV. SIMULATION RESULTS

Our decoder was simulated with 6 bits data buses and a
360 x 360 barrel shifter. Only 25 iterations are sufficient to
reach the same error correcting performance as in [8] using
the r=1/2 matrix (figure 3). For this code rate the throughput
is 394 Mbit/s at 200MHz and 591 Mbit/s at 300MHz. To
obtain the standard’s 135Mbit/s throughput, a 69MHz clock
is enough, which could help to lower the power consumption.
Table I shows the maximum throughput corresponding to each
simulated matrix.

An estimation of silicon area in 90nm ST technology has
been also done, and predicts that 11 mm? is necessary to
implement our decoder. Compared with [8] (15.8 mm?) fewer
area is necessary, mainly due to a more simple processor and
advances in the memory implementation technology. We need
more area than [10] (4.1 mm?) because of the high difference
between the levels of parallelism (360 instead of 40).

V. CONCLUSION

We have described in this article a new architecture to
decode DVB-S2 LDPC codes, using the Horizontal Shuffle
Schedule. Combined with the MinSum algorithm, it allows a
great reduction of the amount of memory necessary to run
properly. The proposed architecture has a very simple struc-
ture, allowing a drastic simplification of the implementation.

(1]
[2]

(3]

[4]

[5]

(6]

[7]
[8]

[9]

[10]

[11]

DVB-S2 matrix N=64800 r=1/2
bypassed BCH, 6bits buses, 360 processors

HSS 101t.
—+—HSS 20 it.
L[| —A—HSS 251t
—&— HSS 30 it.
—6—HSS 401t.
°L| —#&— HSS 50 it.
g S 50 it. ST Micro ISSCCO5: -

0.9

i
0.95 1

Es/NO (dB)

Fig. 3. Performance comparison between HSS and FS

RATE SN

@ 200 MHz (Mbit/s) 363 | 402 | 394 | 465 | 246

@ 300 MHz (Mbit/s) 544 1 604 | 591 | 697 | 369
TABLE I

MAXIMUM DECODER THROUGHPUT (64800 BITS CODEWORD)

REFERENCES

R.G. Gallager. Low Density Parity-Check Codes. M.LT. Press, Cam-
bridge, 1963.

D.J.C. MacKay and R.M. Neal. Near Shannon Limit Performance of
Low Density Parity-Check Codes. IEEE Electronnics Letters, vol. 32,
no. 18, pp. 1645-1655, August 1996.

A.J. Blanksby and C.J. Howland A 690-mW 1Gb/s 1024-b, rate-1/2 low-
density parity-check code decoder. IEEE J. Solid-State Circuits, vol. 37,
no. 3, pp. 404-412, March 2002.

E. Boutillon and J Catsura and FR. Kschischang Decoder-first code
design. Symp. on Turbo Codes and Related Topics, pp. 459-462,
Septembre 2000.

Dale E. Hocevar LDPC code construction with flexible hardware
implementation. 1CC ’03. IEEE International Conference on Comm-
munication, vol. 4, pp. 2708-2712, May 2003.

ETSI EN 302 307 Digital Video Broadcasting (DVB); Second
generation framing structure, channel coding and modulation sys-
tems for Broadcasting, Interactive Services, News Gathering and
other broadband satellite applications http://www.dvb.org/documents/
/en302307.v1.1.1.draft.pdf

J. Zhang and M. Fossorier Shuffled Belief Propagation Decoding IEEE
Trans.Commun., vol. 53, pp. 209-213, Feb. 2005.

P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebars, E.
Lantreibecq and B. Gupta A 135Mb/s DVB-S2 Compliant Codec Based
on 64800b LDPC and BCH Codes ISSCC 2005, february 2005, San
Francisco, CA, USA.

Frank Kienle, Torben Brack and Norbert WehnM. Abramowitz. A syn-
thesizable IP Core for DVB-S2 LDPC Code Decoding. Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition
(DATEO0S), vol. 3, pp. 100-105, May 2005

John Dielissen, Andries Hekstra and Vincent Berg Low cost LDPC
decoder for DVB-S2 Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition (DATE06), pp. 130-135, March
2006

Jinghu Chen and Marc P. C. Fossorier
Improved BP-Based Decoding Algorithms of LDPC Codes
Communications Letters, vol. 6, pp. 208-210, no. 5, may 2002

Density Evolution for Two
IEEE

