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Abstract In this paper, we show that a robotic system

can learn online to recognize facial expressions without

having a teaching signal associating a facial expression

with a given abstract label (e.g., ’sadness’, ’happiness’).
Moreover, we show that recognizing a face from a non-

face can be accomplished autonomously if we imagine

that learning to recognize a face occurs after learning to
recognize a facial expression, and not the opposite, as it

is classically considered. In these experiments, the robot

is considered as a baby because we want to understand
how the baby can develop some abilities autonomously.

We model, test and analyze cognitive abilities through

robotic experiments. Our starting point was a mathe-

matical model showing that, if the baby uses a sensory
motor architecture for the recognition of a facial expres-

sion, then the parents must imitate the baby’s facial ex-

pression to allow the online learning. Here, a first series
of robotic experiments shows that a simple neural net-

work (N.N.) model can control a robot head and can

learn online to recognize the facial expressions of the
human partner if he/she imitates the robot’s prototyp-

ical facial expressions (the system is not using a model

of the face nor a framing system). A second architecture

using the rhythm of the interaction first allows a robust
learning of the facial expressions without face tracking

and next performs the learning involved in face recog-

nition. Our more striking conclusion is that, for infants,
learning to recognize a face could be more complex than

recognizing a facial expression. Consequently, we em-

phasize the importance of the emotional resonance as a
mechanism to ensure the dynamical coupling between

individuals, allowing the learning of increasingly com-

plex tasks.

ETIS, CNRS UMR 8051, ENSEA, Cergy-Pontoise University
{sofiane.boucenna}@gmail.com

Keywords Human-Robot Interaction · Emotional

Interaction · Imitation · Sensory-motor Architecture

1 Introduction

Human/Robot interactions are a complex issue that
challenges both engineering and cognitive sciences. The

recognition of human emotional states can provide im-

portant information either as a direct stimulus (stop or
continue a given behavior) or as a way to bias human-

machine interactions (avoiding specific topics, attempt-

ing to understand why the human partner is in a neg-

ative mood or, in contrast, detecting the conditions in-
ducing a positive mood in the human partner so that

they can be triggered at the right time). Most of the

proposed architectures use strategies that are specific to
the stimulus to be analyzed. For example, model-based

or offline learning techniques are used first to locate a

face in an image and next to analyze the face to find
emotional signatures. The same scenario is conducted

for other learning tasks, for example, those that involve

gestures, gaze direction, and vocalizations.

We believe robotic behaviors implying rich interac-

tions must be investigated from a developmental per-

spective to avoid the symbol grounding problem1 [22]
and to provide better adaptation capabilities in unfore-

seen situations. Our study focuses on the cross fertil-

ization between developmental psychology and devel-
opmental robotics. A new understanding of how human

cognitive functions develop is sought using a synthetic

approach and robotic devices [3,34].

1 The symbol grounding problem is related to the problem
of how symbols (words) get their meanings (without a human
expert providing the knowledge)
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Our starting point was motivated by the question of

how a ”naive” system can learn to respond correctly to
another person’s expressions during a natural interac-

tion. ”Natural” here means that the interaction should

be as unconstrained as possible, without an explicit re-
ward or ad-hoc detection mechanism or a formatted

teaching technique. The baby-mother interaction pro-

vides a good framework for addressing this question.
A newborn has a set of expressions that are linked

with his/her own internal state, for example crying and

displaying a sad face when he/she needs food or ex-

pressing happiness/pleasure after being fed. Yet, the
link with the expressions of others must be built. How

does the link between his/her own emotions and the ex-

pression of others emerge from non-verbal interactions?
The problem here is to understand how babies learn to

recognize facial expressions without having an explicit

teaching signal that allows the association, for exam-
ple, between the vision of ”happy face” and their own

internal emotional state of happiness [17]. The develop-

ment of social referencing allows to propose a persuasive

scenario [5]. In this context, we suppose the existence
of a very simple reflex pathway allowing the simula-

tion of pain and pleasure from an ad hoc tactile sensor

(e.g. conductive2 objects). This signal allows the asso-
ciation of objects with positive or negative values, but

also, to express the facial expression corresponding to

this value. Consequently, if the robot produces a facial
expression according to a reflex pathway and if a care-

giver is present and imitates the robot’s face, then, the

robot can link this reflex pathway (internal emotional

state) with the vision of a ”happy face”. Psychologi-
cal experiments [41] have shown that humans ”repro-

duce” involuntarily the facial expression of our robot

face. This low-level resonance with the facial expres-
sion of another person could be a bootstrap for robot

learning (”sympathy” and perhaps not ”empathy” for

the robot head) similar to what has been proposed for
humans [48,8]. To fasten the learning, in our protocol,

we ask the caregiver (non-professional actors) to imi-

tate the robot’s face. A minimal robotic set-up is used

to learn the task (Fig. 4), i.e., the robotics head does
not attempt to represent perfectly a human face (no

skin, a minimal number of degrees of freedom), was im-

portant, first, to be sure to avoid problems linked to the
uncanny valley [36] and, next, to test what are the truly

important features for the recognition of a given facial

expression. Our expressive head was developed both as
a tool for man-machine interfaces and for psychological

studies [40] with infants and adults.

2 measure of the object conductivity: R = 1KΩ for positive
objects, R = 0KΩ for negative objects and R > 10KΩ for
neutral objects (usual objects) with no hidden resistor.

In the framework of interactive learning based on

imitation games, we will attempt to show that online
incremental learning is easy and could be used to boot-

strap more and more complex learning, such as learn-

ing the gaze direction or providing a social referenc-
ing for objects and places [6,23]. Our starting point

is that, during natural interactions, the parents pro-

vide unintended social feedback to the baby by allow-
ing a fast online self-supervised learning of more and

more complex social signals. In the next section, we

will summarize first our formal model for the online

learning of facial expression recognition. We show that
a simple sensory-motor architecture based on a classi-

cal conditioning paradigm learns online to recognize fa-

cial expressions if and only if the robot produces facial
expressions and that the caregiver imitates the facial

expression of the robot. Next, the implementation of

this theoretical model without a face detection mod-
ule will be presented. The constraints from the online

learning will be discussed. Using a reinforcement signal

built from the interaction rhythm prediction, we will

show how our robot can use the recognition of facial
expressions to learn to discriminate what a face is.

In conclusion, we will discuss the possibility of using

the presented mechanism as a general bootstrapping
strategy for the autonomous learning of complex tasks

in a social context (see [8]). The problem of the need

to build an ad hoc number of recognition systems to
establish long-term man-machine interactions will then

be replaced by the life-long learning of more and more

complex, interactions avoiding the symbol grounding

problem [22].

2 Related work

Many solutions have been proposed for the problem of
face localization and facial expression recognition. The

emphasis in these studies has been on the quality and

performance of the algorithms. These two topics have

always been linked. The general process of facial expres-
sion recognition follows several steps. The first step con-

cerns face registration (face detection and landmarks

localization). Many authors, such as Viola&Jones [50],
Littlewort [32] or Rowley [45], have developed models

for robust face detection. They use some a priori anal-

ysis of the face (e.g., eyes, mouth, and nose) and/or
involved offline and supervised learning. The second

concerns the image coding and classification (facial ex-

pressions recognition). Solutions for the recognition of

facial expressions usually use these algorithms to frame
the image around the face before performing the ex-

pression recognition. An overview of facial expression

recognition can be found in [55]. Some methods are
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based on Principal Components Analysis (PCA) and

use a batch approach. For example, the LLE (Locally
Linear Embedding) [31] performs a dimension reduction

on the input vectors. Neuronal methods have also been

developed for facial expression recognition. In Franco
and Treves [12], the network uses a multi-layer network

with a classical supervised learning rule (again an offline

learning from a well-labeled database). The designer
must determine the number of neurons that are associ-

ated with different expressions according to their com-

plexity. Other methods are based on face models that

attempt to match the face (see, for example, the ap-
pearance model [1]). Yu [54] uses a support vector ma-

chine (SVM) to categorize the facial expressions. Oth-

ers studies as [47] propose to combine different types
of features to recognize the facial expressions and ac-

tion units, and, the recognition is performed through

a multi-kernel SVM. Wiskott [52] uses Gabor wavelets
to code the facial features, such as with ’jets’. These

features are inserted into a labeled graph in which the

nodes are ’jets’ and the links are the distances between

the features in the image space (i.e., the distance be-
tween both eyes); the recognition is performed through

graph matching. Moreover, many studies focus on con-

tinous emotions [21,42] (assigning an intensity level of
recognition) and the recognition of action units [47].

All of these techniques use offline learning and need
to access the entire learning database. They attempt to

introduce a substantial amount of a priori analysis to

improve the performance of the system. Moreover, the

databases are usually cleaned before use: the faces are
framed (or only the face is presented in the image), and

human experts label the facial expressions. Hence, the

problem of online and autonomous learning is usually
not a relevant issue.

With respect to interactive robots, our focus on the
online development of interactive behaviors induces spe-

cific constraints that are usually forgotten. Breazeal [7]

designed KISMET, a robot head that can recognize hu-

man facial expressions. Because of an interaction game
between the human and the robot, KISMET learns to

mimic the human’s facial expressions. In this study,

there is a strong a priori belief about what is a hu-
man face. Important focus points, such as the eyes, the

eye-brows, the nose, and the mouth, are pre-specified

and thus expected. These strong expectations lead to a
lack of autonomy because the robot must have certain

specific knowledge (what is a human face) to learn the

facial expressions. [7] manages a large number of dif-

ferent sensory inputs and motor outputs, showing that
the diversity of sensory signals and action capabilities

can strongly improve the recognition performances and

the acceptability of the robot as a partner. An other

study [30] shows how people’s social response toward

a humanoid robot can change when we vary the num-
ber of the active degrees of freedom in the robot’s head

and face area. The study of Lee [30] is interesting be-

cause it questions about the design and the accept-
ability of the robot. Other studies using robot heads,

such as Einstein’s robot [53], explore the process of self-

guided learning of realistic facial expression production
by a robotic head (31 degrees of freedom). Facial motor

parameters were learned using feedback from real-time

facial expression recognition from video. These studies

are complementary to our approach because they show
that learning to produce facial expressions can be ac-

complished by using the same approach as the approach

that we use for expression recognition.

3 Theoritical model for Online learning of facial

expression recognition: an interactive model

The theoretical model considers a single system that

is composed of the two agents interacting in a neutral

environment (Fig. 1).

Agent 1

Agent 2

Signal S1

Signal S2

Emotion E1

Emotion E2

Facial expression (FE1)

Facial expression (FE2)

Vision (V1)

Vision (V2)

Fig. 1 The bidirectional dynamical system studied. Both of
the agents face each other. Agent 1 will be considered to be
a newborn and agent 2 will be considered to be an adult
mimicking the newborn facial expressions. Both of the agents
are driven by internal signals that can induce the feeling of
specific emotions.

One agent is assumed to be an adult with perfect

emotion recognition and reproduction capabilities. The

second agent is considered to be a newborn without
any previous learning of the social role of emotions.

Formally, the ’baby’ agent is described as a conditioning

system (Fig. 2).

We assume that both agents receive a visual signal
Vi with i ∈ {1, 2}. Vi can be learned and recognized in

the V Fi group, V Fi being the result of, for example, un-

supervised pattern matching strategy, such as a winner

takes all (WTA)[46] or an adaptative resonance theory
(ART) network[20] or a Kohonen map[28] or a real time

kmeans algorithm. Hence, the vision of a face display-

ing a particular expression should trigger the activation
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Fig. 2 Schematic representation of an agent that can dis-
play and recognize facial expressions. Arrows with one stroke
represent ”one-to-one” reflex connections. Arrows with labels
and 2 parallel strokes represent ”one-to-all” modifiable con-
nections. V: visual stimulus, VF: local view recognition (vi-
sual features), IS: internal state, ISP: ”emotional” state (in-
ternal state prediction), FE: facial expression (motor com-
mand). The synaptic weights: A corresponds to links one to
all modifiable (pathway learned) and I corresponds to links
one to one non-modifiable (reflex pathway)

of the corresponding node in V Fi:

V Fi = c(Ai1.Vi) (1)

where c is a competitive mechanism. Ai1 represents

the weights of the neurons in the recognition group of
agent i, allowing for direct pattern matching. When a

new local view is learned (Visual Feature: VF), V Fi =

(0, 0, ..., 1, 0, 0, ..., 0), with a single 1 for the new winner.
ISi is the internal state, which represents the physio-

logical inputs that are related to emotions, including

fear and anger. The recognition of a specific internal

state will be called an emotional state ISPi (internal
state prediction). We assume also that ISPi depends

on the visual recognition V Fi (visual features) of the

visual signal Vi. Last, the agents can produce a facial
expression FEi. If one agent acts as an adult, then it

must have the ability to recognize the facial expres-

sion of someone else’s face (sympathy or empathy3).
At least, one connection between the visual features

and the group representing its emotional state must

exist. To display an emotional state, we must also as-

sume that there is a connection between the internal
signals and the triggering of the facial expression. For

sake of homogeneity, we will assume that the internal

signals activate, through unconditional links I (reflex
pathway), the emotion recognition group, which acti-

vates, through an other reflex pathway I (unconditional

connections), the display of a facial expression (which is
equivalent to a direct activation of FEi by ISi - see [13]

for a formal analysis of this type of property). Hence,

the sum of both flows of information is the following:

ISPi = c (I.ISi +A13.V Fi) (2)

Last, we can also assume that the teaching agent can
display a facial expression without ”feeling” it (just by

3 To be precise, this scenario can involve only low-level reso-
nance and perhaps sympathy because, according to Decety &
Meyer, empathy is ”a sense of similarity in the feelings expe-
rienced by the self and the other, without confusion between
the two individuals” [8].

a mimicking behavior obtained from the recognition of

the other facial expressions). The motor output of the
teacher’s facial expression then depends on both the

facial expression recognition and the will to express a

specific internal state (here, to simplify a discrete emo-
tional state):

FEi = c (I.ISPi +A12.V Fi) (3)

If we suppose both agents use the conditioning ar-

chitecture presented in Fig. 2, then we have shown in [16]
that in the symetric interaction proposed in Fig. 1. The

network becomes equivalent to Fig. 3a only if the sec-

ond agent acts as a mirror.

a) b)

Fig. 3 a) Final simplification of the network, representing
the interaction between the 2 identical emotional agents. b)
The minimal architecture that allows the agent to learn the
”internal state” - ”facial expression” associations.

Fig. 3 shows also that if both agents display their in-
ternal emotional states IS1 and IS2, then the learning

is impossible if both agents have independent emotional

states (there is no correlation between IS1 and IS2).
In this case, the learning cannot stabilize. If we assume

that there is no way to control the internal state of the

baby agent, then the only solution is that the second
agent mimics or resonates [41] to the facial expressions

of the baby agent, thus allowing for an explicit corre-

lation (the parent is no more than a mirror - see fig.

3). If this condition is verified, then the system can
learn; agent 1 (baby) can learn to associate the visual

recognition of the ’parent’ facial expressions with its

own internal state (ISP1). The agent can learn how to
connect the felt but unseen movements of self with the

observed but unfelt movements of the other. A surpris-

ing conclusion is that the teacher has to imitate the
learner agent.

4 Set-up experimental

4.1 Material

To test this theorical model, we propose in this paper

to build a robotic head based on the network presented

in fig. 2. Our robot head has 2 eyes which use classical
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a) b) c)

d)

Fig. 4 Examples of robot facial expressions: a) sadness, b)
surprise, c) happiness. d) Example of a typical human / robot
interaction game (here, the human imitates the robot).

PAL cameras4 (a single camera is used here). Two eye-
brows and one mouth were added to provide minimal

facial expression capabilities. A total of 13 servomotors

are used to control the motion of the different mobile
parts of the face. A mini SSC3 servomotor controller

card allows the generation of PWM (pulse width mod-

ulation) signals to move and maintain the servo mo-
tors in a given position. 4 motors control the eyebrows

(bending), 1 motor controls the forehead (to move up

and down) and 5 motors control the mouth (opening

and bending). Finally, 3 motors control the orientation
of the 2 cameras that are located in the robot ”eyes” : 1

motor controls the vertical plane (pan movement) and

2 motors control the horizontal plane (1 servo for each
camera and an independent tilt movement). The low-

level software that controls the robot head can repro-

duce prototypical facial expressions. All servo motors
move in parallel to attend the angular position given

by the controller. This process induces a dynamical and

homogeneous movement in which all of the parts of the

face change to form a given expression (which is pro-
grammed as a list of the final positions for each joint).

Because of the servomotor dynamics, the robot head

can produce a high number of facial expressions. De-
pending on the distance in the joint space between two

specific facial expressions, one change in the facial ex-

pression is achieved in approximately 200 to 400 ms.

Using a real device instead of a virtual face causes

several difficulties but induces a visible ”pleasure” linked

to the physical ”presence” of the robot for the human
partner. The robot head is also very interesting be-

4 The standard PAL camera provides a 720x580 color image
used only for grey levels.

cause the control of the gaze direction (pan/tilt camera)

can be used both as an active vision system and as a
communication tool. In other works, the head has been

placed on a mobile platform, to be used for visual nav-

igation [18] and object manipulation [6] and, of course,
to display the robot’s internal state [23].

4.2 Protocol

In the following, the robot will be considered to be a

baby and the human partner will be considered to be a

parent (the father or mother). At first, the robot knows
almost nothing about the environment. The robot learns

through the interaction with the human partner. The

two fundamental assumptions in this study are: the ex-
istence of low level resonance (the humans mimic the

robot head) and the presence of a reflex pathway con-

necting the internal emotional state to the facial ex-

pression.

To test this model, a neural network architecture
was developed, and the following experimental proto-

col was adopted: First, we ask human partners to sit

in front of the robot head (the distance between the
two partners is around 1 meter) and we ask human to

imitate the robotic head. In the first phase of the inter-

action, the robot produces random facial expressions

(sadness, happy, anger, or surprised) plus the neutral
face for 2s; then, the robot returns to a neutral face for

2s to avoid human misinterpretation of the robot facial

expression (the same procedure is used in psychologi-
cal experiments). The human subject mimics the robot

head. This first phase lasts between 2 and 3 min ac-

cording to the subject’s ”patience”. At the end, the
generator of the random emotional states is stopped.

If the N.N. has learned correctly, then the robot must

mimic the facial expression of the human partner.

The tests are limited to 4 prototypical facial expres-

sions: happiness, sadness, anger and surprise [25,11,10,
44], plus a neutral face (Fig. 4 for the experimental

setup). Each of the four facial expressions has been con-

trolled by FACS experts [10]. The validity of this choice

could be discussed (especially for the surprise and/or
for the choice of the expression names) [26]. However,

for our purpose, we need only a small set of facial ex-

pressions that are easily recognized and that induce a
low level resonance from the human partner.

5 Facial expression recognition and imitation

Our initial approach followed classical algorithms: first,

face localization was performed, which used, for ex-
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Fig. 5 The architecture for facial expression recognition and
imitation. The visual processing allows for the sequential ex-
traction of the local views. The internal state prediction (ISP
group) learns the association between the local views and the
internal state (IS group).

ample, [24] or [50]; then, face framing was performed,

and third, facial expression recognition of the normal-

ized image was performed. In this case, the quality of
the results was highly dependent on the accuracy of

the face framing (the generalization capability of the

N.N. can be affected). Moreover, if we use this ap-

proach, the robot head cannot be truly autonomous be-
cause we were unable to find a way to perform first (or

alone) face/non-face discrimination. An online learn-

ing of face/non-face recognition cannot directly use our
mimicking framework because the human (and our robotic

head) does not have an internal signal to trigger a spe-

cific face/non-face reaction of the human partner, while
it is natural for the human to mimic the facial expres-

sions.

Our solution consists of skipping the framing step

to directly use all of the most activated focus points in
the image, and, we show the least mean square equa-

tion used in our conditioning architecture is sufficient

to discriminate contingent stimuli from background in-

formation (non contingent).

The system performs a sequential exploration of the

focus points in the image (see appendix 9.1) and at-

tempts to condition them to a given facial expression.

The network shown in fig. 5 is directly derived from
the theoretical model presented in the previous section.

The extracted local view around each focus point is

learned and categorized by a group of neurons V F (vi-
sual features) using a k-means variant that allows online

learning and real-time functions [27] called SAW (Self

Adaptive Winner takes all):

V Fj = netj .Hmax(γ,net+σnet)
(netj) (4)

netj = 1−
1

N

N∑

i=1

|Wij − Ii| (5)

V Fj is the activity of neuron j in the group V F . Hθ(x)

is the Heaviside function 5. Here, γ is a vigilance param-
eter (the threshold of recognition). When the prototype

recognition is below γ, then a new neuron is recruited

(incremental learning).

net is the average of the output, and σnet is the
standard deviation. This method allows the recruitment

to adapt to the dynamics of the input and to reduce the

importance of the choice of γ. Hence, γ can be set to

a low value to maintain only a minimum recruitment
rate. The learning rule allows both one-shot learning

and long-term averaging. It allows to learn quickly and

have prototypes averaged, this mechanism is essential
for an online learning. The modification of the weights

is computed as follows:

∆Wij = δj
k · (aj(t)Ii + ǫ(Ii −Wij)(1− V Fj)) (6)

with k = ArgMax(aj), aj(t) = 1 only when a new

neuron is recruited; otherwise, aj(t) = 0. Here, δj
k is

the Kronecker symbol 6, and ε is the adaptation rate

for performing long-term averaging of the stored pro-

totypes. When a new neuron is recruited, the weights
are modified to match the input (the term aj(t)Ii). The

other part of the learning rule, ε(Ii − Wij)(1 − V Fj),

averages the already learned prototypes (if the neuron
was previously recruited). The more the inputs are close

to the weights, the less the weights are modified. Con-

versely, the less the inputs are close to the weights, the

more they are averaged. If ε is chosen to be too small,
then it will have only a small impact. Conversely, if ε

is too large, then the previously learned prototypes can

be unlearned. Because of this learning rule, the neurons
in the V F group learn to average the prototypes of the

facial features (for example, a mean curved lip for a

happy face).

Of course, there is no constraint on the selection of

the local views (no framing mechanism). This scenario
means that many distractors can be present (there are

local views in the background or inexpressive parts of

the head). This scenario also means that any of these
distractors can be learned on V F . The figure/ground

discrimination can be learned because the local views

in the background are not statistically correlated with a
given facial expression. In a face-to-face interaction, the

5 Heaviside function:

Hθ(x) =

{

1 if θ < x
0 otherwise

6 Kronecker function:

δj
k =

{

1 if j = k
0 otherwise
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Fig. 6 The global architecture to recognize facial expressions,
to imitate and to recognize face from non-face stimuli. Visual
processing allows the extraction of sequential local views. The
V F group (local view recognition) learns the local views (each
group of neurons, IS, ISP , STM2 and FE, contains 5 neurons
that correspond to the 4 facial expressions plus the neutral
face). A tensorial product is performed between ISP (emo-
tional state: internal state prediction) and a reward signal,
to select the neuron that must learn. Y learns the correlation
between a local view and a facial expression on a specific neu-
ron that is activated depending on whether a reward linked
to the interaction has been obtained or not. The FD group
(Face detection) learns the correlation between the tensorial
product and the reward signal (its activity corresponds to the
recognition of a face).

distractors are present for all of the facial expressions,

and their correlation with an emotional state will tend
to zero. Only the local views on the face (Fig. 6) corre-

lated with a given robot expression will be reinforced.

The use of the Widrow and Hoff rule (derived from a
least mean square (LMS) optimization) will learn cor-

rectly if, during the period that is allowed for the explo-

ration of one image, enough focus points can be found
on the face. In our network, The Internal State Predic-

tion ISP (or ”emotional” state) associates the activity

of the visual features V F with the current internal state

IS of the robot (a simple conditioning mechanism using
the Least Mean Square (LMS) rule [51]):

∆wij = ǫ.V Fi.(ISj − ISPj) (7)

STM2 is Short Term Memory used to sum and filter

over a short period (N iterations), and the emotional
states ISPi(t) associated with each explored local view

are as follows:

STM2,i(t+1) =
1

N
·ISPi(t+1)+

N − 1

N
·STM2,i(t) (8)

Here, i is the index of the neurons; for example, ISPi

corresponds to the ith ”emotional” state (0 < i ≤ 5).

Arbitrarily, a limited amount of time is fixed for the

visual exploration of one image, to obtain a global fre-

quency of approximately 10 Hz (100 ms per image). The
system can analyze up to 10 local views on each image.

This is a small number of views; however, because the

system usually succeeds in taking 3 to 4 relevant points

on the face (e.g., on the mouth, eyebrows), it is suffi-

cient in most cases and it allows real-time interactions
to be maintained.

The control of the robot facial expression is per-

formed via the FE group. The highest activity of the
FEi triggers the i

th facial expression because of a WTA.

To increase the robustness, FE also uses a short-term

memory to give more importance to the present than
to the past. This scenario ensures high performances

when the correct action is selected more than 50% of

the time during the chosen time window. This feature
is important for online interactions, and it allows for a

reduction of the constraints on the intrinsic recognition

quality if the frame rate is sufficiently high.

6 Experimental results during the interaction

This section presents the experimental results obtained

during the interaction with the robot. Before going into

details, we present the 3 different setups and databases
recorded to analyze the different aspects of the systems

and its learning capabilities. They correspond to three

different experimental conditions where the procedures

and the number of participants vary: The first database
is composed of the images of 10 persons interacting with

the robot head (1600 images) during a ”natural” inter-

action. During the learning phase, the partners imitate
the robot, and then the robot imitates them. Each im-

age is annotated with the robot facial expression during

the online learning7, enabling the statistical analyses to
be performed offline. The behavioral performances show

the robot capability to recognize the facial expressions

of participants who interacted with the robot during

the learning phase. This database will be used in the
section 6.2. The second and third setup allow focus-

ing on the robot generalization capabilities to imitate

new persons who were not observed during the learn-
ing phase. The databases are composed of 20 persons

who interacted with the robot head (3200 images). Two

tests have been performed to study: in G1 the capability
of the robot to generalize when the robot learns with

20 human partners (the statistics were obtained with

the twenty-fold cross validation methodology); and in

G2 the success rate of the facial expression recognition
as a function of the number of faces that the system

learned during the learning phase (this database will

be used in the section 6.3).

7 Since the human partner is supposed to be imitating the
robot head, the label of the robot facial expression should be
the correct label of the image. We will see later it is not always
the case because of the human reaction time and because of
some misrecognition from the human partners.
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6.1 Constraint caused by the online learning

The online learning can involve specific problems re-

garding real-time learning because the human reaction

time to the robot facial expressions is not immediate

(Fig. 7). First, [49] has shown the minimal duration for

Fig. 7 Phase shift between the human facial expression and
the robot facial expression during an imitation game (the
human imitating the robot).

a human to differentiate an image with an animal from

another image is about 150 ms. The minimal duration
to recognize a facial expression for a human seems quite

similar to these 150 ms. In our case, we consider the

minimal period T of an interaction loop is the sum of
t1, the delay for the robot to perform a facial expression,

plus t2, the delay for the human to recognize the facial

expression plus t3, the delay for the human subject to
mimic the recognized expression (T = t1 + t2 + t3).

When the robot is only an automata producing arbi-

trary facial expressions, we measured a minimal period

T of approximately 800 ms for expert subjects (a per-
son knowing the robot) and 1.6 s for novice subjects

(a person who never interacted with the robot) to pro-

duce a facial expression matching the robot head ex-
pression. This time lag can greatly disturb the learning

process: the first images available for a given expression

are always associated with the human’s previous facial
expression. To avoid the unlearning of the previous ex-

pression using an LMS algorithm, the presentation time

of each expression must be long enough (in our case 3

seconds) to be sure there are more correct matching
pairs of robot/human expressions than incorrect one

related to the transition between one expression and

the following.

6.2 Behavioral performances

After learning, the associations between the visual fea-

tures V F and the internal state prediction ISP are
strong enough to bypass the low-level reflex activity

that comes from the internal state IS (see section 3).

In this case, the facial expression FE will result from
the temporal integration of the emotional state associ-

ated with the different visual features analyzed by the

system (features will have an emotional value if they are

correlated with the robot facial expression, basically the
expressive features of the human head).

First, the low part of Fig. 8 shows the neural activ-
ity, and facial expressions recognition during a natural

interaction. The upper part of Fig. 8 shows that the

robot recognizes and imitates correctly the first two fa-

cial expressions of the human partner (happiness and
anger expressions) but makes an error when the human

displays a neutral face (the robot recognizes the hap-

piness expression). Second, we study the labels associ-

Fig. 8 Temporal activity of the neurons associated with the
triggering of the different facial expressions when the robot
imitates the human (after learning).

ated with the different local views after learning. Fig. 9
shows the focus points associated with each facial ex-

pression, i.e., these focus points vote for the recognition

of a given facial expression.

The focus points are usually taken in the areas of the

face where the features are useful to recognize facial ex-

pressions (mouth, eyebrows etc). Moreover, some facial
expressions are characterized by a specific set of focus

points corresponding to local areas on the face relevant

for the recognition of a specific expression. For exam-

ple, the local views corresponding to the corner of the
mouth are used to characterize the ”happiness” while

the local views around the eyebrows can characterize

the ”anger” and ”sadness” or the local views taken at
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the center of the mouth characterize the ”surprised”

expression.

The different results show our low level visual pro-
cessing involving a gradient extraction and a focus on

the maxima of the convolution with a DOG filter are

sufficient in most part of the cases to allow the focus
on the useful areas of the face in order to discriminate

each expression8

Fig. 10 shows that the interaction with the robot

head for a period of 2 min can be sufficient for the

robot to learn the facial expressions and next to imi-
tate the human partner. The Y axis (success rate) cor-

responds to the rate of correct facial expression recog-

nition by the robot. Fig. 10 shows the robot capability

to recognize the facial expressions of participants who
interacted with the robot during the learning phase. In

this experiment (Fig. 10), the success rate of the facial

expressions recognition is computed according to the
number of participants that the robot meets during the

learning phase, i.e. the persons already learned during

the learning phase. For example, if four persons have in-
teracted with the robot during the learning phase, then,

the validation is limited to these four persons. The re-

sults on 10 persons interacting each during 2 min with

the robot show our incremental learning is robust, al-
though the variability of the expressiveness of the dif-

ferent subjects (for example, sadness was expressed in

different ways from one person to another).

6.3 Generalization results

In this subsection, we want to show that the robot is
able to generalize on new persons. 20 persons interacted

with the robot head during the learning phase. During

this period, the 20 caregivers imitated the robot and
the robot analyzed the images, learned the task and

recorded all of the images. The database was created

to perform offline processing and analysis. Each image

was annotated with the response of the robot during the
online learning. The results show that when learning is

over, the robot can imitate new persons who were not

observed during the learning phase. The statistics were
obtained with the twenty-fold cross validation method-

ology by using the database created online.

8 Problems can occur with pale faces and dark airs since
they can induce a lot of focus points with a high value around
the face reducing the probability to select focus points really
on the face. One solution is to increase the number of selected
focus points to be sure to take focus points on the face but
then the exploration time increases and the frame rate is re-
duced. In future works, we plan to use this simple solution as
a bootstrap mechanism for a spatial attentional mechanism
to focus on the face in order next to come back to a fast image
analysis in the selected area.

Fig. 10 The success rate for each facial expression (sadness,
neutral face, happiness, anger, and surprise) when using a log-
polar transform for the local view recognition. These results
are obtained during the natural interaction with the robot
head. A total of 10 persons interacted with the robot head
(32 images by facial expression per person: 32x5x10 images).
During the learning phase (only a 2-minute period), these
humans imitate the robot, and then the robot imitates them.
To perform the statistical analyses, each image was annotated
with the response of the robot head. The annotated images
were analyzed by other human volunteers, and the correct
correspondence was checked.

The Table 1 shows the generalization test of the sys-

tem obtained during a ”natural” interaction with the
robot. These tables show the confusion rate for each

facial expression using three different visual features

extracted around each focus point (log-rho-theta im-
age, signature of Gabor filters or the fusion between

both features). The success rates with the log-polar lo-

cal views are 62% for happiness, 52% for anger, and

only 27% for sadness. Using the Gabor filters, the suc-
cess rate is 70% for happiness, 80% for anger and 4%

for sadness. These results show the good generalization

capability of Gabor filters that have to be combined
to the log-polar views to avoid overgeneralization. The

Table 1c) underlines that the average recognition rate

is better with the fusion between both visual features
except for the sadness expression. A possible explana-

tion for the sadness result is that people have difficulty

displaying sadness without a real social context. Each

partner imitating the robot displays sadness in a differ-
ent way (see Fig. 11). To investigate this hypothesis, we

asked 7 non-expert humans to annotate our database

(Table 2). The results show the confusion rate for each
facial expression. We observe that the non-expert hu-

mans also have difficulty in recognizing some of the fa-

cial expressions, especially sadness.

The detailed analysis of the Table 1 corresponding

to confusion rate for each facial expression, shows that
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Fig. 9 Study of the labels associated with the different local views after learning. The displayed focus points correspond to
the facial expressions that were associated with happiness, surprise, sadness and anger.

Fig. 11 Several examples of the sadness expression show that
sadness is expressed differently from one person to another.

the robot confuses the sadness with the anger. We ob-

served the images of sadness and anger and we under-

lined that the eyebrows are furrowed for these two facial
expressions. Table 1 show also that the robot confuses

the surprised with the neutral face. Analyzing the image

database, we note that these two expressions are very
similar for some human partners. In these two cases, it

is difficult for the robot to discriminate robustly these

expressions.

Moreover, the success rate of the facial expressions
recognition is a function of the number of faces that the

robot learns during the learning phase. To test further

the generalization capabilities of the N.N. during an

number of different faces during learning phase
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Fig. 12 Measure of generalization capabilities averaged over
our 4 facial expressions plus the neutral face. This figure
shows the success rate (y axes) of the facial expression recog-
nition as a function of the number of faces (x axes) that
the system learned during the learning phase. The measure
was performed on a database of 10 unlearned subjects (1600
images that were never learned). The generalization perfor-
mance improves after interacting with an increasing number
of people.

incremental learning, the N.N. performances has been

measured on 10 other people (10 unlearned subjects).
The success rate improves after interacting with an in-

creasing number of people (Fig. 12). The success rate

is approximately 38% when 10 subjects interacted with
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Table 1 Generalization test of the system obtained during
a ”natural” interaction with the robot: After 20 persons in-
teracted with the robot head (during the learning phase), the
robot had to imitate new persons who were not observed dur-
ing the learning phase. These tables show the success rate and
the confusion rate for each facial expression (sadness, happi-
ness, anger, surprise and neutral face). a) shows the confusion
rate when using the log-rho-theta features, and b)shows the
confusion rate when using the Gabor filter features, and c)
shows the confusion rate when using the fusion between both
features. These statistics were obtained with the twenty-fold
cross validation methodology.

the robotic head during the learning phase (Fig. 12),

and the table 1 shows that the success rate is approx-

imately 50% when the robotic head learned with 20
subjects. Nevertheless, the results show that the N.N.

can generalize to people who were not present during

the learning phase.

In this section, we have shown that the robot head

can learn and recognize autonomously facial expressions

if, during the learning phase, the robot head performs
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Table 2 Performance of 7 non-expert subjects when at-
tempting to annotate our database of other human subjects
imitating the robot head (forced response choice). This table
shows the confusion rate and the standard deviation for each
facial expression. The non-expert subjects have difficulty in
recognizing the facial expression produced by human part-
ners.

facial expressions and if the human partners mimic them.

The different results show that our architecture can rec-
ognize, with some success, the facial expressions with-

out any exterior supervision or any face detection (or

even a precise model of the face). The different results

also show that the integration of both log-polar trans-
form and Gabor filters as visual features provides more

robust results. The model only learns to associate the

recognition of local views with the robot’s own facial
expression through the human mimicking behavior.

However, the robot could learn non-pertinent asso-

ciations if there is not a human partner. As a result,
the learning is still not completely autonomous. Learn-

ing should not be turned on and off by the researches

according to the presence or absence of the human part-

ner. In the next section, we will focus on solving this
issue by adding a mechanism for modulating the learn-

ing and allowing a face/non-face discrimination.

7 Face/non-face recognition from facial

expression recognition

To perform autonomous learning, we introduced the ca-

pability of predicting the rhythm of the interaction [2]

to avoid learning when there is no human subject in
front of the robot or when the human is not paying

attention of the robot (for example, when the human

partner is leaving or talking with someone else). Many
studies in psychology underline the importance of syn-

chrony during the interaction between a mother and a

baby. For example, babies are extremely sensitive to the

interaction rhythm with their mother [39,38,9]. A so-
cial interaction rupture involves negative feelings (e.g.,

agitation, tears). However, a rhythmic interaction be-

tween a baby and his/her mother involves positive feel-
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ings and smiles. These studies show the importance of

the interaction rhythm. In our case, the rhythm will be
used as a reward signal (see [2] for the application of

the same principle to the learning of an arbitrary set of

sensory-motor rules):

– A rhythmic interaction is equivalent to a positive

reward: The robot head and the subject produce a

coherent action at each instant.
– Conversely, an interaction rupture is interpreted as

a negative reward.

When a subject displays a facial expression, he/she per-

forms whole face or body motions. If the subject imi-

tates the robot, then his/her movement peaks have a

frequency that depends on the frequency of changes in
the robot face (in our case, this frequency is constant

because the robot facial expression changes every 4s).

The interaction rhythm can be predicted either by us-
ing a prediction of the timing between 2 visual peaks (a

stable frequency of interaction of the human partner) or

using the prediction of the delay between the triggering
of the robot facial expression and the motions perceived

by its CCD cameras (a reaction of the human partner

to the robot expression). A measure of the prediction

error can easily be built from the difference in activity
between the predicted signal and the non-specific sig-

nals. These non-specific signals (motions) are related

to the presence or absence of a human partner. If the
error is important, then there is a novelty (the subject

is not in the rhythm). Otherwise, the prediction error

is small, which involves a good interaction between the
subject and the robot (Fig. 13b)).

We consider a second network working in parallel
with the facial expression recognition. This network

learns to predict the rhythm of the interaction, allow-

ing detection if an interacting agent (a human) faces the
robot head. Hence, this network can also provide an in-

ternal supervision signal for the face/non-face discrim-

ination (without a need for an external supervision).

The production and recognition of facial expressions
can be a bootstrap for the online learning of face/non-

face discrimination. The details of the neural network

used for the rhythm prediction were presented in [2,4].
The Neural Network uses three groups of neurons, with

each group having a different functionality. A Deriva-

tion Group (DG) receives the input signal. A Temporal
Group (TG) is composed of a battery of neurons (15

neurons) with different temporal activities and is trig-

gered from the DG. Last, the Prediction Group (PG)

learns the conditioning between DG (the present) and
TG (the past) information. This model (Fig. 13 a) is

grounded in the following rule: a PG neuron can learn

and can also predict the delay between two events from

DG. The equations are provided in the appendix 9.3

and in [15,2] for more details.

Fig. 13 a) The model for the prediction of the interaction
rhythm between the subject and the robot. b) The activity
of neuron PG for the rhythm prediction and the activity of
neuron DG for the event, when the robot performs the facial
expressions and the human imitates the robot head. c) The
activity of neuron PG for the rhythm prediction and the ac-
tivity of neuron DG for the event, when the robot performs
facial expressions and the human does not imitate the robot
head.

The interaction rhythm provides an interesting re-

inforcement signal to learn to recognize an interacting

partner, which is a human, and, more specifically, to
learn to recognize his/her face at a short interaction

distance (the robot sees the human face and not the

other parts of his/her body).

The reward group is composed of 2 binary neurons.
The first one being activated when an interaction is

predicted while the second is activated when there is

no interaction. A tensorial product between the inter-
nal state prediction and the reward group (X group

of neurons) allows building an unconditional stimulus

for detecting both the correlations with the human fa-
cial expression and a predicted rhythmic activity in Y

group (Fig. 14). A simple conditioning mechanism us-

ing the LMS rule is used to associate the activity of the

neurons in the recognition of the local views V F (vi-
sual features) with the current X activity; the group Y

learns this conditioning (if Xi,j is activated, then Yi,j

must learn). After learning, the associations between
V F activity and Y activity are sufficiently strong to by-

pass the low-level activity that comes from Xi,j . Next,

a STM3 (5*2 neurons) is used to accumulate the focus
points of an image:

STM3,(i,j)(t+ 1) =
1

N
Y(i,j)(t+ 1) + STM3,(i,j)(t) (9)
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Fig. 14 A tensorial product is performed between the re-
ward signal (2 neurons) and ISP (5 neurons). This tensorial
product corresponds to the X group of neurons (a matrix
of 10 neurons: 5 lines and 2 columns). The group Y learns
the conditioning between V F and X (a simple conditioning
mechanism using the LMS rule).

where (i, j) is the index of the neurons (0 < i ≤ 5 and
0 < j ≤ 2), and N is the number of focus points.

After learning, the STM3 matrix tends to activate

the first column of neurons when there is a face more

than the second column, which is more activated when
there is no face. Next, a simple group of 2 neurons (FD

Face Detection) using classical conditioning [51] is used

to predict the reward (rhythmic or non rhythmic ac-
tivity) from the visual recognition of the local views.

If only humans provide synchronization activities with

the robot then, in our setup, the reward prediction is
equivalent to detecting a face from other stimuli. The

group of neurons FD (2 neurons) can recognize the face

after learning.

Here, the question is to evaluate the capability of the
robot to discriminate a face from a non-face. To validate

our model, the following experimental protocol is used:

during the learning phase, the database is composed
of: first, 4 persons who interacted correctly with the

robot (640 images). Second, the robot produces facial

expressions but nobody is in front of the robot (there is
no human subject in front of the robot). In this latter

case, the robot can see objects or the wall (without a

human partner) or a human paying no attention to the

robot (600 images are collected). During this period,
the robot learns to discriminate a face from a non-face.

When learning is finished, the robot had to discriminate

a face from a non-face who was not observed during the

learning phase. A database has been created to perform

a complete offline analysis.

In our experiment, the success rate corresponds to

the performance of the face/non-face discrimination.
The preliminary results linked to this online learning

of the face are highly positive. When the face detection

is learned and tested using the same subject, the sys-

tem success rate with that subject tends toward 100%.
However, when the face detection is learned with a sin-

gle subject and is tested over 4 other subjects, the sys-

tem success rate ranges between 29% (for people with
beards) and 90% for more ”similar” subjects. It is im-

portant to consider that the learning was performed

during a period of only 2 minutes (in real-time) with
a single subject. This scenario shows the generaliza-

tion capabilities of our visual system when focusing

the robot’s attention on particular visual features and

the good generalization properties of the DOG filters.
Fig. 15 shows the success rate depending on a function

of the number of participants that the robot learns dur-

ing the learning phase. When, the face discrimination is
learned on 4 subjects and the tests are performed on 20

other different subjects, the system success rate tends

toward 95% for face detection and 99% for non-face.
This figure shows that the performances improve when

increasing numbers of interacting partners.

Fig. 15 Face/Non-face generalization. This result shows that
the success rate of face recognition is a function of the num-
ber of faces that the system learned on during the learning
phase. The results are obtained with 20 people (3200 images).
After interacting with only 4 people, the system generalizes
correctly to 20 people.
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8 Discussion & Conclusions

As we have seen in the state of the art (section 2),

the usual techniques for facial expression recognition
use offline learning and need to access the entire learn-

ing database. The aim of these models is to improve

the performance of the system. The problem of online
and autonomous learning is usually not tackled. For

long-term interactions, these methods cannot adapt to

facial expressions that were not present in the learning

database: for example, the sadness expression in fig. 11.
The expression of sadness shown in fig. 11 was different

from the way that previous people interacting with the

robot had expressed sadness. Hence, even if the main
reason for designing our N.N. architecture was at first

to try developing a realistic model of a baby learning,

we obtain a N.N. architecture that could be used when
the databases cannot be made statistically complete.

Moreover, we obtained a counter-intuitive result: the

development of a fine capability to discriminate faces

(and more generally partners or agents) from other ob-
jects might not precede the capability of recognizing

the facial expressions. At the opposite, our model sug-

gests the pre-eminence of emotional resonance and the
recognition of emotional features to enable subsequent

face/non-face discriminations.

In our model, facial expressions can be learned with-

out an ad hoc algorithm to locate and frame the face.

The only constraint is that the human face will be near

enough the robot head to guaranty that on each image
enough focus points are taken on the human face. This

procedure could be improved by using visual movement

detection to focus more on the moving part of the face
but it fits well with the short interaction between baby

and parents that could sustain such a learning during

baby development. Our theoretical model has allowed
us to show that to learn online to recognize facial ex-

pressions, the learner must produce facial expressions

first and be mimicked by his/her caregiver (which is the

opposite of using imitation as a way of learning; here,
the imitator is the teacher). With the real robot, once

the learning period is complete (after 2 minutes), the

robot can interact in real time with the human partner
(at up to 10 images/second with quad-core Intel CPU).

The learning can be fully autonomous thanks to the im-

itation game between the robot and the caregiver pro-
viding both a self supervision signal and a face/non face

signal through rhythmic prediction capabilities. With-

out the caregiver’s emotional resonance, the learning

would not be able to work. The emotional resonance
is the keystone of the model. The face discrimination

is learned autonomously during the emotional interac-

tion. It appears to be a byproduct of the emotional

interaction and not the first step of an emotional sys-

tem, as is the case usually in an artificial vision system
for facial expression recognition. The emotional inter-

action is a bootstrap for learning to recognize a human

face. Without this bootstrap, we could not find a way
to autonomously learn face/non-face discrimination.

An important idea used in this paper was to intro-
duce the prediction of the interaction rhythm as a way

to build an intrinsic reinforcement signal that allows

modulating the learning rate to avoid learning when

there is no partner. Actually, this system is a detec-
tor of the interaction based on the temporal dimension

of the interaction. The system predicting the timing

(here the rhythm) of the interaction is very useful to
detect the engagement of agents who interact in front

of the robot. In our case as the interacting agent is

a Human, it was easy to derive a neural network for
face/non-face discrimination. If the human partner is

near the robot head, then face/non-face discrimination

can be learned. For longer human-robot distances, one

can imagine that the present approach could be general-
ized to human/thing discrimination. Finally, the model

described here is more than a simple of face/non face

discriminator. It is a generic model capable to detect
a caregiver interacting with the robot or more gener-

ally a partner or an agent similar in some sense to the

robot (providing perhaps the premise for agentivity de-
tection).

In our architecture, the correct learning is a con-

sequence of the interaction with the human partner.
Hence, the quality or specificity of the interaction is

crucial for the performance level. First, online learn-

ing can encounter problems because the human reac-
tion time can be long. This delay perturbs the learning

phase because, when the robot changes its facial ex-

pression, the first acquired images correspond to the
previous facial expression of the human partner, and

the robot will attempt to associate them with its new

facial expression. To obtain statistically correct results,

the display of the expression must be long enough to
counter the transitory state (more images from the well-

paired situation than from the transitory state). This

phase difference between what the robot and the hu-
man partner do, is a recurrent problem in all of the

interaction experiments that can be solved thanks to

the detection of the statistical contingency (in our case
using a LMS). Another difficulty arises from the di-

versity of the human expressions. In particular, some

humans seem less expressive and, therefore, the robot

has difficulty when categorizing their facial expressions;
however, when we ask other human subjects to label the

images obtained by the robot, their performances are

the same as our system. The compared performances
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between the robot and the humans show that humans

also have great difficulty in recognizing out of context
facial expressions performed by non expert subject as

opposed to actors for instance (Table. 1 and Table. 2).

We underline the difficulty for both humans and our
robots to recognize a facial expression such as sadness.

This difficulty is certainly linked to a lack of context.

Because the imitation game is intrinsically meaningless,
there is no signal allowing us to distinguish between

sadness or anger or surprise, for example. However, our

results show that the robot head recognizes better the

happiness and anger facial expressions than the others.
These two facial expressions are essential for the devel-

opment of the robot. For example, these two expressions

are sufficient to bootstrap complex capabilities such as
the social referencing [6]. In future studies, using fa-

cial expressions in meaningful interactions (involving

objects, goals) will certainly provide contextual infor-
mation that will help to solve these problems. More-

over, in this paper, the main limitation (and a priori)

was that the robot can learn and recognize only 5 ba-

sic facial expressions. An ongoing work focuses on how
the robot can produce an infinity of facial expressions

by using the same experimental paradigm. In this case,

the robot head can perform expressions mixed such as
smile and frown using more elementary motor primitive

such as opening more or less the mouth (a basic expres-

sion being an analog mixture of motor primitives).

Fig. 16 the thalamo-cortico-amygdala pathway and the
thalamo-amygdala pathway in the mammalian brain.

Our results also show that working with the gradi-

ent image and the extraction of local views centered on
focus points obtained from the convolution of the gra-

dient image with a DOG filter constitute a sufficiently

low level visual processing for facial expression recogni-

tion, even if these treatments do not allow us to always
find the corner of the lips, eyes and eyebrows, which

are necessary for model-based methods that are classi-

cally used to recognize facial expressions [7,52,1]. The

global performances of our architecture could certainly

be improved using face-related masks, such as Haar fil-
ters, but it was not the purpose of the present work.

The focalization strategy corresponds to a sequential

and time-consuming analysis of the image. It could be
observed as a simple implementation of the thalamo-

cortico-amygdala pathway in the mammalian brain [29].

In previous studies [14], we tested simpler and faster
architectures using the whole image. The use of prim-

itives based on Gabor filters allows us recognizing a

facial expression after parallel processing. However, the

learning is more time consuming because the extrac-
tion of the pertinent components in the Gabor vector

are not easy due to the presence of more background

information (as compared to the use of several local
views). Such a processing scenario could correspond to

the short thalamo-amygdala pathway [43,29], which is

implied in rapid emotional reactions. Our works allow
to propose a model composed of two parallel networks:

(1) as low neural network corresponding to the thalamo-

cortico-amygdala network [14]; and (2) a fast neural

network corresponding to the thalamo-amygdala net-
work (see Fig. 16). In future studies, we will attempt

to verify the idea that the slow neural network could

be learned first and used as a way to control the learn-
ing of the fast neural network, allowing at the end both

a quick recognition of the facial expressions and their

precise labeling.

In conclusion, this paper has shown that an emo-

tional interaction can be used as a way of structur-
ing learning (the emotional interaction is a bootstrap

for the face/non-face discrimination, which cannot be

learned easily in an autonomous way, as opposed to the
facial expressions). Ongoing studies indicate that this

approach can be generalized to the learning of more

complex tasks that involve object manipulation. An

emotional interaction can bootstrap the social referenc-
ing of objects and then allow the robot to avoid negative

objects and to grasp positive objects (the whole learn-

ing process is based on a chain of simple emotional con-
ditioning learned autonomously without any predefined

signal). Hence, we can suggest that the baby/parents

system is an autopoietic social system [37] in which
the emotional signal and the adult emotional resonance

are important elements for maintaining the interaction

and for allowing the learning of more and more com-

plex skills. Future studies using our robotic head will
attempt to test this hypothesis in more dynamical sit-

uations involving human/robot and robot/robot inter-

actions.
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Downloads

Video:
http://www.etis.ensea.fr/˜neurocyber/Videos/emotion head/ ex-

pressionFaciale.mp4
http://www.etis.ensea.fr/˜neurocyber/Videos/emotion head/ so-

cial referencing.wmv
Database:

For interested researchers, The database is available on demand
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dans les échanges vocaux et gestuels entre la mère et son
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9 Appendix

9.1 Visual processing

The visual attention is controlled by a reflex mechanism that allows
the robot to focus its gaze on potentially interesting regions. The
focus points are the result of a local competition performed on the
convolution between a DOG (difference of Gaussians) filter and the
norm of the gradient of the input image (we use the same architec-
ture for place and object recognition [19,35]). This process allows
the system to focus more on the corners and ends of the lines in
the image (e.g., eyebrows, corners of the lips). The main advantages
of this process over the SIFT (Scale Invariant Feature Transform)
[33] method are its computational speed and a smaller number of
extracted focus points. The intensity of the focus points is directly
linked to their level of interest. Through a recurrent inhibition of the
already selected points, a sequence of exploration is defined (a scan
path). A short-term memory allows maintaining the inhibition of the
already explored points. This memory is reset after each new image
acquisition9.

To reduce the computational load (and to simplify the recogni-
tion), the image is sub-sampled from 720x580 to 256x192 pixels. For
each focus point in the image, a local view centered on the focus point
is extracted: either a log-polar transform or Gabor filters are applied
(Fig. 18) to obtain an input image or a vector that is more robust
to the rotations and distance variations. In our case, the log-polar
transform has a radius of 20 pixels and projects to a 32x32 input im-
age. The Gabor filtering is used to extract the mean and the standard
deviation for the convolution of the 24 Gabor filters (see appendix).
Hence, the input vector obtained from the Gabor filter has only 48
components. It is a smaller vector than the result of the log-polar,
which transform induces an a priori better generalization but also has
a lower discrimination capability.

9.2 Gabor filters

A Gabor filter has the following equation:

G(x, y) =
1

2πσ
exp(−

x2 + y2

2σ2
) cos(2πf(x cos(θ) + y sin(θ))) (10)

f =
1

σγ
(11)

9 The weak point of this technique is that the DOG size
must fit the resolution of the objects to analyze. With a
standard PAL camera, this constraint is clearly not a prob-
lem because there is not much choice if the size of the face
must be large enough to allow a correct recognition (for an
HD camera, a multi-scale approach would be necessary). For
more general applications, a multi-scale decomposition could
be performed (for example using 3 scales).
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Fig. 17 Visual processing: This visual system is based on a
sequential exploration of the image focus points. A gradient
extraction is performed on the input image (256x192 pixels).
A convolution with a Difference Of Gaussian (DOG) provides
the focus points. Last, the local views are extracted around
each focus point.

Fig. 18 Visual features: a) The local log-polar transform in-
creases the robustness of the extracted local views to small
rotations and scale variations (a log-polar transform centered
on the focus point is performed to obtain an image that is
more robust to small rotations and distance variations. Its
radius is 20 pixels). b) Gabor filters are applied to obtain a
signature that is more robust than a log-polar transform (the
Gabor filters are 60x60); the features extracted for each con-
volution with a Gabor filter are the mean and the standard
deviation.
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Fig. 19 A Gabor filter with these parameters σ = 8, γ = 3,
and θ = π/3.

9.3 Model for the rhythm prediction

The Neural Network uses three groups of neurons. The Derivation
Group (DG) receives the input signal, and the Temporal Group (TG)

Fig. 20 Gabor filters for different frequencies and orienta-
tions.

Fig. 21 Result of the convolution with 24 Gabor filters (dif-
ferent frequencies and orientations)

is a battery of neurons (15 neurons) with different temporal activi-
ties. The Prediction Group (PG) learns the conditioning between DG
(the present) and TG (the past) information. In this model (Fig. 13,
a PG neuron learns and also predicts the delay between two events
from DG. A DG activation sets to zero the TG neurons because of
the links between DG and TG. The neuronal activity (DG) involves
instantaneous modifications in the weights between PG and TG. Af-
ter each reset (set to zero) by DG, the TG neurons have the following
activity:

Act
TG
l (t) =

1

m
· exp−

(t − m)2

2 · σ
(12)

l corresponds to the cell subscript, m is a time constant, σ is the
standard deviation, and t is the time. The TG activity presents an
activity trace DG (of the past). PG receives the PG and TG links,
and the TG information corresponds to the elapsed time since the
last event, whereas the DG information corresponds to the instant
of the appearance of a new event. PG sums the TG and DG inputs
with the following equation:

Pot
PG

=
∑

l

W
tg(l)
pg · Act

TG
l + W

dg
pg · Act

DG
(13)

ActTG
l is the l cells activity of TG, W tg(l)

pg are the weight values

between TG and PG, ActDG is the DG neuron activity and Wpg is
the weight value between DG and PG. The PG activation is triggered
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by the maximal value detection of its potential (the maximal value
is equal to the potential’s derivative when it is equal to zero):

Act
PG

= fPG

(

Pot
PG

)

(14)

fPG (x (t)) =

{

1 if
dx(t)
dt

< 0 and
dx(t−1)

dt
> 0

0 else
(15)

Finally, only the WTG
PG are learned, and we perform a one-shot learn-

ing process. The learning rule is the following:

W
TG(l)
PG

=







ActTG
l

∑

l

(

ActTG
l

)2 if ActTG 6= 0

inchange else

(16)

Thereby, the PG is activated if and only if the TG cells’ activity sum
is equal to that of learning.

Sofiane Boucenna is postdoctorant at Pierre et Marie Curie
University in the Institut des Systémes Intelligents et de Robotique
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