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Development of first social referencing skills:
Emotional interaction as a way to regulate robot

behavior
Sofiane Boucenna, Philippe Gaussier,Laurence Hafemeister

Abstract—In this work, we study how emotional interac-
tions with a social partner can bootstrap increasingly complex
behaviors such as social referencing. Our idea is that social
referencing as well as facial expression recognition can emerge
from a simple sensory-motor system involving emotional stimuli.
Without knowing that the other is an agent, the robot is able
to learn some complex tasks if the human partner has some
”empathy” or at least ”resonate” with the robot head (low level
emotional resonance). Hence, we advocate the idea that social
referencing can be bootstrapped from a simple sensory-motor
system not dedicated to social interactions.

Index Terms—Human-Robot interaction, emotion, social ref-
erencing, sensory-motor architecture

I. I NTRODUCTION

H OW can a robot or a human learn more and more
complex tasks? This question is becoming central in

robotics and psychology. In this work, we are interesting
in understanding how emotional interactions with a social
partner can bootstrap increasingly complex behaviors.
This study is important both for robotics applications
and development understanding. In particular, we propose
that social referencing, gathering information through
emotional interaction, fulfills this goal. Social referencing is a
developmental process incorporating the ability to recognize,
understand, respond to and alter behavior in response to
the emotional expressions of a social partner. It allows an
infant to seek information from another individual and to
use that information to guide his/her behavior toward an
object or event [43]. Gathering information through emotional
interactions seems to be a fast and efficient way to trigger
learning. This is especially evident in early stages of human
cognitive development, but also in other primates [65]. Social
referencing ability might provide the infant (or a robot)
valuable information concerning the environment and the
outcome of its behavior. In social referencing, a good (or bad)
object or event is identified or signaled with an emotional
message. There is no need for verbal interactions. The
emotional values can be provided by a variety of modalities
of emotional expressions, such as facial expressions, voice,
gestures, etc. We choose to use facial expressions since they
are an excellent way to communicate important information
in ambiguous situations but also because their recognition
can be learned autonomously very quickly [12]. Our idea is
that social referencing as well as facial expression recognition
can emerge from a simple sensory-motor system. All our
work is based on the idea of the perception ambiguity. In this

Fig. 1. Experimental set-up for social referencing. The robot relies upon the
use of its expressive head which is also able to recognize facial expressions.
the robotic arm will reach the positive objects and avert thenegative objects
after emotional interactions with a human partner.

case, the inability at first to differentiate our own body from
the body of other if the actions of the other are correlated
with our own actions. This perception ambiguity associated
to a homeostatic system is sufficient to trigger first facial
expression recognition and next to learn to associate an
emotional value to an arbitrary object. Without knowing first
the existence of others, our robot is able to learn to catch
or avoid object not related to any direct reward. Hence, we
advocate the idea that social referencing can be bootstrapped
from a simple sensory-motor system not dedicated to social
interactions.

In the next section, we will show a developmental approach
of social referencing, where all the robot abilities such asthe
development of facial expressions recognition (section V), the
association of emotional value to an object (section VII) and
finally the control of the arm according to emotional stimuli
(section VIII), are learned through interactions with its envi-
ronment. Moreover, each ability can be learned autonomously
and online, and, the social referencing may emerge once
all these cognitive abilities have been learned. An important
point is that the sensory-motor architecture can resolve these
differents tasks based on a cascade of conditioning networks
(section IV).
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II. RELATED WORK

Many researchers emphasize that the emotions involve
”physiological arousal, expressive behaviors, and conscious
experience” [54] or, are important for survival [20], [22],
[45]. However, there are clearly no agreements on the un-
derlying mechanisms. For instance, James and Lange [38],
[44] consider emotions as direct consequences of physiological
modifications in reaction to the interactions with the envi-
ronment. Cannon-Bard [8], [17] supports that emotion is the
result of a brain processing (centralist theory: physiological
changes are the results of the triggering in the brain of a given
emotional state). There is a wide spectrum of models, mostly
dedicated to address only one aspect of emotions. For in-
stance, if we focus on emotion expression then the opposition
will be between discrete models of emotions (Facial Action
Coding System [26]) versus dimensional/continuous models
of emotions that suppose any emotion may by expresses as
a point in a low dimensional space [66]. Classical models
of emotions consider either the communicational aspect of
emotions (for instance the emotions conveyed by the facial
expressions) or the second order control necessary for survival
purpose when the autonomy of the system is an issue. [32]
show the interdependence of communication and meta-control
aspects of emotion. They propose the idea that emotions must
be understood as a dynamical system linking two controllers:
one devoted to social interactions (i.e. communication aspects)
and another one devoted to the interactions within the physical
world (i.e. metacontrol of a more classical controller).

Starting from the neurobiological substrate of the visceral
brain [60] (with the regulation loop connecting the thalamus,
the hypothalamus, the hippocampus and the cingular cortex),
we would like to understand how basic emotions [62] can
emerge and become complex cognitive processes involving
planning and inhibition of action [20]. From this literature [2],
[3], [15], [21], [34], [59], [58], we know that a lot of structures
are involved even for the ”basic” emotions. Yet, physical
and social interactions are certainly not governed by indepen-
dent controllers and must share some common substructures.
Moreover, we want to investigate how emotions can bootstrap
complex tasks such as the social referencing [43], [65] and
how an agent (robot) can develop this cognitive task.

The development of social referencing skills implies the
recognition of emotional signals (providing a value to a
stimulus), the recognition of stimuli/objects and the ability
to perform some simple actions on these objects. Here, we
will suppose the existence of a very simple reflex pathway
allowing the simulation of pain and pleasure from an adhoc
tactile sensor (e.g. conductive1 objects). This signal allows the
association of objects with positive or negative values andnext
their grasping or the avoidance according to a sensory-motor
controller (see section X). One very difficult part is related
to the facial expression recognition and to a lesser extendsto
object recognition which is generally performed with specific
algorithms.

1measure of the object conductivity:R = 1KΩ for positive objects,R =
0KΩ for negative objects andR > 10KΩ for neutral objects (usual objects)
with no hidden resistor.

In the field of image processing, solutions for the facial
expressions recognition usually use algorithms to frame the
image around the face [69] before performing the expression
recognition. When these techniques involve some learning
or optimization, the problem of autonomous learning is not
addressed. Some methods are based on Principal Components
Analysis (PCA) and use a batch approach for learning (offline
learning). For example, the LLE (Locally Linear Embed-
ding) [48] and [74] perform a dimension reduction on the input
vectors. Neuronal methods have also been developed for facial
expression recognition. In Franco and Treves [27], the network
uses a multi-layer network with a classical supervised learning
rule (again offline learning from a well-labeled database).The
designer must determine the number of neurons that are asso-
ciated with different expressions according to their complexity.
Other methods are based on face models that attempt to match
the face (see, for example, the appearance model [5]). Yu [73]
uses a support vector machine (SVM) to categorize the facial
expressions. Wiskott [71] uses Gabor wavelets to code the
facial features, such as with ’jets’. These features are inserted
into a labeled graph in which the nodes are ’jets’ and the links
are the distances between the features in the image space (i.e.,
the distance between both eyes); the recognition is performed
through graph matching. Other sophisticated models compute
head-pose invariant facial expression recognition from a set
of characteristic facial points [64]. However, all of these
techniques use offline learning and need to access the entire
learning database. They attempt to introduce a substantial
amount of a priori analysis to improve the performances of
the system. Moreover, the databases are usually cleaned before
use: the faces are framed (or only the face is presented in the
image), and human experts label the facial expressions. Hence,
the problem of online and autonomous learning is usually not
a relevant issue.

With respect to interactive robots, our focus on the
online development of interactive behaviors induces specific
constraints that are usually forgotten. Breazeal [14] designed
Kismet, a robot head that can recognize human facial
expressions. Because of an interaction game between the
human and the robot, kismet learns to mimic the human’s
facial expressions. In this study, there is a strong a priori
belief about what is a human face. Important focus points,
such as the eyes, the eye-brows, the nose, and the mouth, are
pre-specified and thus expected. These strong expectations
lead to a lack of autonomy because the robot must have
specific knowledges (what is a human face) to learn the
facial expressions. Breazeal [14] manages a large number
of different sensory inputs and motor outputs, showing
that the diversity of sensory signals and action capabilities
can strongly improve the recognition performances and
the acceptability of the robot as a partner. Other studies
using robot heads, such as Einstein’s robot [72], explore the
process of self-guided learning of realistic facial expression
production by a robotic head (31 degrees of freedom). Facial
motor parameters were learned using feedback from real-time
facial expression recognition from video. These studies are
complementary to our approach because they show that
learning to produce facial expressions can be accomplished
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by using the same approach as the approach that we use for
expression recognition.

More and more robotics studies are interested in using
emotions to regulate the robot behavior [14], [68], [39]. [46]
and [47] shows a social robot with empathic capabilities that
acts as a chess companion for children. The robot is endowed
with empathic capabilities to improve the relationship between
children and the robot. In this model, the robot needs to
model the childs affective states and adapt its affective and
social behavior in response to the affective states of the child.
However, these models have a number of a priori and they
don’t allow acquiring generic models. In these experiments,
the robots have many degree of freedom but their adaptive
behaviors are minimum. From our point of view, these studies
don’t focus on the development of cognitive capabilities; they
are not interested about how the robot can develop skills
autonomously.

Contrary to all these studies, in the following sections, we
will underline the robot’s ability to develop autonomous and
online.

III. M ATERIAL AND METHOD
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Fig. 2. Simplified model for social referencing. This model highlights the
bidirectional interactions. The emergence of the social referencing capability
is possible only through the interaction with a human partner.

Our social referencing experiment (Fig. 1) uses the
following set-up: a robotic head able to recognize and imitate
facial expressions, and, a Katana arm able to interact with
different objects. One camera is turned toward the workspace
where the Katana arm can reach objects. In this experiment,
we used 2 cameras to simplify and to avoid the problem of
alternating attention. As a consequence, the robot (head, arm,
and camera) can interact with the human partner and can
manipulate the objects. In this case, the robot can interactwith
the social environment as well as the physical environment.In
the developed architecture, the robot learns to handle positive
objects and to avoid negative objects as a direct consequence
of emotional interactions with the social partner. This study
shows that the emotional interaction allows changing the
robot emotional state in order to regulate a robot’s behavior
(communication of an emotional state). We will attempt to

highlight a developmental trajectory where the robot learns
skills such as the facial expressions recognition, the face
detection and the control of arm (visuo-motor learning). The
autonomous learning of these abilities allows the emergence
of the social referencing.

For each skill, the visual processing is the same. The visual
attention on potentially interesting regions (or object/face) is
controlled by a reflex mechanism that allows the robot to focus
its gaze. The focus points are the result of a local competition
performed on the convolution between a DOG (difference of
Gaussians) filter and the norm of the gradient of the input
image (we use the same architecture for place and object
recognition [31], [50]). This process allows the system to focus
more on the corners and ends of the lines in the image. The
main advantages of this process over the SIFT (Scale Invariant
Feature Transform) [49] method are its computational speed
and a smaller number of extracted focus points. For each focus
point in the image, a local view centered on the focus point
is extracted: either a log-polar transform or Gabor filters are
applied (Fig. 3) to obtain an input image or a vector more
robust to the rotations and distance variations.

Fig. 3. The robot visual system uses a sequential exploration of the image.
A gradient extraction is performed on the input image (256x192pixels). A
convolution with a Difference of Gaussian (DOG) provides the focus points.
At last, the local views are extracted around each focus point. The visual
features are: a) the local log-polar transform increasing the robustness of the
extracted local views to small rotations and scale variations (its radius is 20
pixels). b) Gabor filters are applied to obtain a more robust signature (the
Gabor filters are 60x60); the features extracted for each convolution with a
Gabor filter are the mean and the standard deviation.

The robotic head learns to recognize emotional facial
expressions autonomously [13]. The facial expressions
learning can be learned through an imitation between
the robot and the human partner. First, the robot internal
emotional state triggers one specific expression and the human
mimics the robot face2. The robot can learn to associate its

2in natural condition, [55] showed that the human resonates tothe robot
facial expression. Here, the instruction was to mimic the robot head facial
expressions
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internal emotional state with the human’s facial expression.
The robot associates what it is doing with what it is seeing.
After 2 minutes of real time learning, the robot is able to
recognize the human facial expressions as well as to mimic
them.

After the learning of these capabilities, the eye-arm system
can learn visuo-motor associations to reach several positions
in the workspace [4], [23] and appendix. A dynamic system
is used to smooth the trajectory [28]. This dynamic system
uses a reinforcing signal in order to reach or avoid a position
in the workspace. The signal can be either related to the
reflex pathway (object conductivity associated to positiveor
negative signals) or learned through the association to an
emotional signal; for example, a joy facial expression willbe
associated to a positive signal and an angry facial expression
to a negative signal.

The tested scenario is the following: The robot is in neutral
emotional state, human displays a joy facial expression in the
presence of an object; consequently the robot moves to a joy
state and associates a positive value to the object. On the
contrary if the human displays a negative facial expression
(anger), the value associated to this object becomes negative.
The robot arm can handle or avoid the objects according to
their associated emotional value. In other words, the emotional
value associated to the object becomes the reinforcing signal
that the arm uses so as to move. In this scenario, we attempt to
emphasise the emotional dimension. The emotion is a way to
communicate with the robot. The recognition of the emotional
state regulates the robot internal state and adapts the robot’s
behavior to the environment.

IV. PERAC ARCHITECTURE: AS A BUILDING BLOCK

In this section, we summarize the properties of the generic
sensory-motor architecture (PerAc architecture) used as a
building block in the following section (Fig. 4). PerAc learns
sensory-motor conditionings [30] in order to form a perception
as a dynamical sensory-motor attractor. The low-level pathway
consists in reflex behaviors. The conditioning pathway allows
anticipating reflex behaviors through the learning. This learn-
ing performs associations between the recognition of sensory
information (high-level) and the reflex behavior (low-level).

Y ZY
d

jl

Fig. 4. Sensory-motor architecture based on Neural Networks.

For each focus point in the image, a local view centered
on the focus point is extracted (Fig. 3). The extracted local
view around each focus point is learned and recognized by a
group of neuronsX (visual features) using a k-means variant
that allows online learning and real-time functions [42] called
SAW (Self Adaptive Winner takes all):

Xj = netj ·Hmax(γ,net+σnet)
(netj) (1)

netj = 1−
1

N

N
∑

i=1

|Vij − Ii| (2)

Xj is the activity of neuronj in the groupX. Hθ(x) is the
Heaviside function3. Here, γ is a vigilance parameter (the
threshold of recognition). When the prototype recognition is
belowγ, then a new neuron is recruited (incremental learning).

net is the average of the output, andσnet is the standard
deviation. This model allows the recruitment to adapt to the
dynamics of the input and to reduce the importance of the
choice of the vigilanceγ. Hence, the vigilanceγ can be set
to a low value to maintain only a minimum recruitment rate.
The learning rule allows both one-shot learning and long-term
averaging. The modification of the weights is computed as
follows:

∆Vij = δj
k(aj(t)Ii + ǫ(Ii − Vij)(1−Xj)) (3)

with k = ArgMax(aj), aj(t) = 1 only when a new neuron
is recruited; otherwise,aj(t) = 0. Here, δjk is the Kro-
necker symbol4, andε is the adaptation rate for performing
long-term averaging of the stored prototypes. When a new
neuron is recruited, the weights are modified to match the
input (the termaj(t).Ii). The other part of the learning rule,
ε(Ii − Vij).(1−Xj), averages the already learned prototypes
(if the neuron was previously recruited). The more the inputs
are close to the weights, the less the weights are modified.
Conversely, the less the inputs are close to the weights, the
more they are averaged. The quality of the results depends on
the ε value. If ε is chosen to be too small, then it will have
only a small impact. Conversely, ifε is too large, then the
previously learned prototypes can be unlearned. Because of
this learning rule, the neurons in theX group learn to average
the prototypes of the objects. One neuron can be recruited to
store a new pattern when the none of the neurons is sufficiently
activated. The initial number of neurons has to be large enough
to avoid recruitment failure (lack of neurons to be recruited).

In our network, theY group associates the activity of the
visual featuresX with the proprioceptionY d of the robot (a
simple conditioning mechanism using the Least Mean Square
(LMS) rule [70]):

3Heaviside function:

Hθ(x) =

{

1 if θ < x
0 otherwise

4Kronecker function:

δj
k =

{

1 if j = k
0 otherwise
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During the learning phase:

Yl =
∑

j

Wjl ·Xj ∆Wjl = ǫ1 ·Xj · (Y
d
l − Yl) (4)

After the learning phase:

Yl =
∑

j

Wjl ·Xj + Y d
l (5)

Y corresponds to the sensory-motor association andWjl is
the synaptic weights betweenX andY . Y predictsY d, based
on the input X. Hence,Y d is the target output.Y d is a vector
with real components (continuous values>= 0). Y is also a
vector but a Winner Takes All procedure is used to transform
the analog values into binary values according to theWTA

law.
Z corresponds to a short term memory (accumulation of all

focus points).Z is used to sum and to filter theY activities
on a short period (T < 1). The Zi highest activity triggers
the ith motor action (WTA mechanism). After learning, the
associations betweenX the view recognition andY are strong
enough to bypass the low level reflex activity coming from the
Y d. Each focus point is associated with a motor action (Y )
andZ is accumulation over all the focus points:

Zi(t+ dt) = T · Yi(t) + (1− T ) · Zi(t) (6)

We will show that the robot can develop cognitive abilities
thanks to this architecture. A cascade of this architecture
allows the learning of increasingly complex tasks such as
the social referencing. This sensory-motor architecture will
allow building some complex behaviors such as the facial
expressions recognition (section V), the association of an
emotional value to an object (section VII) or the control of
the robotic arm (section X).

V. ONLINE LEARNING OF FACIAL EXPRESSION

RECOGNITION

Here, the robot must learn to recognize (and to understand)
the caregiver’s facial expressions. We investigate how a robot
can develop the recognition of facial expressions such as the
baby could perform it. In our case, we limit our work to the
recognition of basic facial expressions. The tests are limited to
4 prototypical facial expressions: happiness, sadness, hunger
and surprise [36], [26], [25], [61], plus a neutral face (Fig. 5
for the experimental setup). In other studies, we have shown
that using an imitation procedure with first prototypical facial
expression can be generalized to more analog states (such as
more or less happy and more or less smiling) and next that
secondary emotional state can be recognized [11].

For sake of simplicity, we focus on the online learning
of prototypical facial expression without having a teaching
signal that associates a facial expression with a given ab-
stract label (e.g., ’sadness’, ’happiness’). In a first series of
robotic experiments, we showed that a simple sensory-motor
architecture based on a classical conditioning paradigm could
learn online to recognize facial expressions if and only if we
assume that the robot first produces some facial expressions
according to his/her internal emotional state and that the
parents next imitate the facial expression of their robot, which

a) b) c)

d)

Fig. 5. Examples of robot facial expressions: a) sadness, b) surprise, c)
happiness. d) Example of a typical human / robot interaction game (here, the
human imitates the robot).

helps the robot to associate these expressions with his/her
internal state [13]. In the present study, the robot will be
considered as a baby and the human partner will be considered
as a parent (the father or mother). At first, the robot knows
almost nothing about the environment. Through the interaction
with a human, the robot will learn to recognize different facial
expressions.

Each of the four facial expressions has been controlled
by FACS experts [25]. The validity of this choice could be
discussed (especially for the surprise and/or for the choice of
the expression names) [41]. However, for our purpose, we need
only a small set of facial expressions that are easily recognized
and that induce a resonance from the human partner (allowing
learning while the human partner is mimicking the robot head).
The sensory-motor architecture (Fig. 6 and section IV) learns
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Fig. 6. The global architecture to recognize facial expressions, to imitate
and to recognize face from non-face stimuli. Visual processing allows the
extraction of sequential local views. TheV F group (local view recognition)
learns the local views (each group of neurons. A tensorial product is
performed betweenISP (emotional state: internal state prediction) and a
neuromodulation signal, to select the neuron that must learn.The face/non
face discrimination is learned by a neural network.

the association between the internal state of the robot and the
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visual features. Here,X corresponds to visual features learned
and recognized when the visual system explore a face (face
features).Y d corresponds to internal state of the robot.Y

corresponds to the facial expression associated (internalstate
prediction) to one focus point andZ corresponds to the facial
expression recognized after the sequential exploration ofthe
image (integration of the answers).

Moreover, the following experimental protocol was adopted:
In the first phase of the interaction, the robot produces a
random facial expression (sadness, happy, anger, or surprised)
plus the neutral face for 2s; then, the robot returns to a neutral
face for 2s to avoid human misinterpretation of the robot
facial expression (the same procedure is used in psychological
experiments). The human participant is asked to mimic the
robot head. After this first phase, which lasts between 2 and 3
minutes according to the participant’s ”patience”, the generator
of the random emotional states is stopped. If the N.N. (neural
network) has learned correctly, then the robot is able to mimic
the facial expression of the human partner.

Fig. 7 shows that the interaction with the robot head for a
period of 2 minutes can be sufficient for the robot to learn the
facial expressions, and, then to imitate the human partner.This
incremental learning gains in robustness when the number of
human partners increases (expression of sadness can be quite
different among people with the lack of action of some action
units). These results show the robot capability to recognize the
facial expressions of participants who interacted with therobot
during the learning phase. Note that this result is sufficient
to accomplish the social referencing task because the robot
interacts only with known participants (learned during the
learning phase).

Moreover, Fig. 8 shows the measure of generalization
capabilities which is approximately 38% when 10 subjects
interacted with the robotic head during the learning phase,
and the success rate is approximately 50% when the robotic
head learned with 20 subjects. In our experiment, 20 persons
imitated the robot, and then, we asked to a new person to
perform facial expressions (the success rate is 65% for joy,
73% anger, 47% for surprised, 4% for sadness and 56% for
neutral face).

VI. FACE FROM NON-FACE DISCRIMINATION CAN EMERGE

THROUGH THE EMOTIONAL INTERACTION

Recognizing a face from a non-face can be accomplished
autonomously if we accept that learning to recognize a face
can occur after learning to recognize a facial expression, and
not the opposite, as is classically considered. To perform au-
tonomous learning, we introduced the capability of predicting
the rhythm of the interaction [4] to avoid learning when there
is no human participant in front of the robot or when the
human is not paying attention to the robot (for example, when
the human partner is leaving or talking with someone else).

When a participant displays a facial expression, he/she per-
forms whole face or body motions. If the participant imitates
the robot, then his/her movement peaks have a frequency
that depends on the frequency of changes in the robot facial
expressions (in our case, this frequency is constant because

Fig. 7. The success rate for each facial expression. These results are obtained
during the natural interaction with the robot head. A total of 10 persons
interacted with the robot head. During the learning phase, these humans
imitate the robot, and then the robot imitates them. To perform the statistical
analyses, each image was annotated with the response of the robot head. The
annotated images were analyzed, and the correct correspondence was checked.

Fig. 8. Measure of generalization capabilities averaged over our 5 categories
(4 facial expressions plus the neutral face). This result shows the success rate
(y axes) of the facial expression recognition as a function of the number of
faces (x axes) that the system learned during the learning phase. The success
rate was measured on a database built from images of 10 other participants
(1600 images that were never learned). The generalization improves after
interaction with increasing numbers of people.

the robot facial expression changes after 4s). The interaction
rhythm can be predicted by using a prediction of the timing
between 2 visual peaks (a stable frequency of interaction
of the human partner). A measure of the prediction error
can easily be built from the difference in activity between
the predicted signal and the non-specific signal itself. In our
study, the non-specific signal is the movement produced by
the human. The non-specific signal is related to the presence
or absence of the human partner. If the error is important,
then there is a novelty (the participant is not in the rhythm).
Otherwise, the prediction error is small, which involves a good
interaction between the participant and the robot. Many studies
in psychology underline the importance of synchrony during
the interaction between a mother and a baby. For example,
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babies are extremely sensitive to the interaction rhythm with
their mother [53], [52], [24]. An interruption of the social
interaction involves negative feelings (e.g., agitation,tears).
However, a rhythmic interaction between a baby and his/her
mother involves positive feelings and smiles. These studies
show the importance of the interaction rhythm. In our case, the
rhythm is used as a neuromodulation signal or a label (see [4]
for the application of the same principle to the learning of
an arbitrary set of sensory-motor rules and the details of the
N.N.):

• a rhythmic interaction is equivalent to a positive neuro-
modulation: the robot head and the participant produce a
coherent action at each instant.

• conversely, an interruption of the interaction is interpreted
as a negative neuromodulation.

We consider this second network for the face/non face
discrimination that functions in parallel with facial expression
recognition. This network learns to predict the rhythm of
the interaction, allowing detection if an interacting agent (a
human) faces the robot head. The interaction rhythm provides
the reinforcement signal to learn to recognize an interacting
partner, which is a human, and, more specifically, to learn
to recognize his/her face at a short interaction distance (the
robot sees the human face and not the other parts of his/her
body).

The results linked to this online learning of the face are
highly positive. When the face detection is learned and tested
using the same participant, the system success rate with that
participant tends toward 100%. However, when the face detec-
tion is learned with a single participant and is tested on 4 other
participants, the system success rate ranges between 29% (for
people with beards) and 90% for more ”similar” participants.
It is important to consider that the learning was performed
during a period of only 2 minutes (in real-time: frame rate
10 Hz) with a single participant. This scenario shows the
generalization capabilities of our visual system when focusing
the robot’s attention on particular visual features. Now, when
face detection is learned on 4 participants and the tests are
performed on 21 different participants, the system success
rate tends toward 95% for face detection (see Fig. 9). The
performances improve after the interactions with an increasing
number of people.

At this development stage, the robot head is able to recog-
nize and understand the emotional facial expressions and to
discriminate the face from a non-face. In the following section,
we will show how the robot can assign an emotional signal to
an arbitrary object.

VII. A SSOCIATING AN EMOTIONAL VALUE TO AN OBJECT

This section shows how the facial expressions recognition
and the face detection are integrated in order to associate the
emotional value to an object using always the same PerAc
building block. When the human partner interacts with the
robot, the robot uses the human’s expressiveness to regulate
its behavior.

In our scenario, the robot must consider the output of its
facial recognition system only when the human was interacting

Fig. 9. Face/Non-face recognition and generalization. This result shows that
the success rate of face recognition is a function of the number of faces that the
system learned on during the learning phase. The results areobtained with
21 people (3360 images). After interacting with only 4 people, the system
generalizes to 21 people.

with the robot. Because the robot head performs facial expres-
sions with a known rhythm, it is easy for the N.N. to attempt to
predict the visual signal according to its own rhythm. When
predictions match the robot action rhythm, this means that
one human is interacting with the robot. This solution avoids
propagating the emotional recognition when the human doesn’t
interact with the robot.

As soon as the recognition of human facial expressions has
been learned, the human partner can interact with the robotic
head to associate an emotional value to an object (positive or
negative). The N.N. processes (see Fig. 10 and 16) in the same
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Fig. 10. This sensory-motor architecture shows how the facial expressions
recognition and the face detection are integrated in order to associate the
emotional value to an object.

way signals from the robot’s internal state and information
correlated with this internal state. An internal state can trigger
a robot facial expression and a human facial expression can
trigger also the robot facial expression (Refer to (5)). Note
that in real life condition the reflex associations should rarely
be activated since they are only related to low level signals
(internal levels, tactile signals). During the learning ofthe
facial expressions recognition, we bypass natural interactions
by a fast and random activation of the different states to
obtain enough feedback from the human partners. In case
of conflict, between the internal state (IS) and the facial
expression recognition (FE), the reflex links connectingIS to
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the control ofFE (throughISP ) are higher than the learned
links coming from the recognition of visual features (V F ) to
ISP . The internal state remains dominant. This means that if
the robot touches an object inducing some pain (because of
a ”tactile” hardwired feedback), the pain signal will win on
any previous positive association regarding this object (through
social referencing for instance). Recognized visual stimuli
(V F ) will either be conditioned to internal state prediction
(ISP ) or to the object state prediction (OSP ) (theISP being
”priority” on OSP because of the reflex link fromISP to
OSP ). In recent works, we have generalized this association
capability adding a feedback loop fromOSP to ISP to build
second order conditioning and to allow the robot learning
complex chains of conditioning [1] but this is out of the scope
of the present paper. In our experiment, the internal state is
absent (the internal state neurons have all null values), the
recognized facial expression induces an internal state which
is associated with the object (a simple conditioning chain:
Fig. 16). Classical conditioning is used to perform the associ-

Fig. 11. Visual attention. The system focuses on some relevant features of
the image. A saliency map is performed in order to focus an interesting area
in the image. Visual primitives are calculated independently(Gabor filters,
color detector), a fusion of these primitives is performed in order to find the
area that the robot must analyze.

ation between the emotional value transmitted by the human
and some local views of the image. An attentional process is
also introduced to avoid that the robot spends too much time
looking its own arm (see [35], [18] for more information). The
robot focuses on colored patches and textures (Fig. 11 and 12).
We use a very simple spatial competition between different
maps (colors, textures). When focusing on an object, the robot
extracts some focus points and associates the recognition of
the local view surrounding each focus point with the emotional
value recognized by the robot. Starting again from our generic
architecture (see section IV and the Fig. 4),X corresponds
to visual features (object features),Y d corresponds to the
recognized facial expression.Y corresponds to the object
emotional value for one focus point andZ corresponds to the
global object emotional value after the sequential exploration
of one image. According to our sensory-motor architecture,
the proprioceptive signal is considered as a training signal for
the Y layer. This training signal corresponds to the internal
state prediction (facial expression recognized by the robot).
Consequently, the sensory-motor architecture associatesthe
internal state prediction with the visual perception (object). To
associate an emotional value to an object, the training signal
is provided by the facial expression of the human.

The tests were performed with 10 objects (5 positive objects
and 5 negative objects). We put on the workspace the different

Fig. 12. Visual processing with or without pre-attentionalmechanism.

Fig. 13. The 10 objects use during the social referencing experiment.

objects one after another (Fig. 13). Each object is put few
seconds in the robot workspace (Fig. 12) and each object
is learned as the result of the emotional interaction with the
robotic head. During the learning phase, the objects position is
fixed (the object doesn’t move) and the human partner sends an
emotional signal to the robot: a positive signal when the object
can give pleasure and a negative signal when the object is
dangerous. The recognition of emotional value is 87% for the
negative objects and 98% for the positive objects. The success
rate difference between the positive and negative objects is
only related to the variability of the objects complexity. The
success rate shows the robustness of the model despite some
variations such as the distance and the object position in the
image (the objects are put at different locations).

Hence, the robot is now able to use the emotional facial
expression of the human partner in order to assign an emo-
tional value to an object. As a result of the interaction withthe
partner, the robot recognizes and ”understands” the human’s
expression in the aim of disambiguating some new situations.
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VIII. E MOTIONAL INTERACTION REGULATES THE

ROBOT’ S BEHAVIOR

At this stage of the development, the robot has some capa-
bilities such as the facial expressions recognition, to associate
an emotional value to an object and to control his multi-DoF
robotic arm (see section X). In this section, we show how the
robot can integrate all these capacities to regulate its behavior.
In our experimental set-up, the emotional interaction with
the human partner can bias the object approach. The objects
and the human facial expressions can provide a reinforcing
signal allowing the robot’s adaptation. Here,A is an emotional
reinforcement signal according to the robot emotional state.
In others words, the robotic arm can reach or avoid an object
according to the parameterA:

A =

{

1 if the emotional value is positive
−1 if the emotional value is negative

(7)

In this experiment, one object is put in the robot workspace.
If the object is associated to pleasure and/or a smile from the
human then the robot reaches the object. On the contrary, if
the object is dangerous and/or is associated to a negative ex-
pression from human partner, then, the robot avoids the object.
Fig. 14 shows the important dynamics induced by the social

Fig. 14. These curves show: a) the emotional value transmits tothe object
thanks to the interaction with the human’s partner (beforeT1 human transmits
a positive value afterT1 the human transmits a negative value) b)the speeds
of each arm’s motor (6 degrees of freedom) c) the distance to the object d)
the robotic arm trajectories from different starting points: the arm is able to
reach the object associated with the happy facial expression and avoid the
object when it is associated with the angry facial expression.

referencing architecture. Fig. 14a shows the object’s emotional
value associated with the facial expressions of the human part-
ner. BeforeT1, the partner displays a happy facial expression
in presence of the object, the human associates a positive
emotional value to this object. We can see (Fig. 14b,14c) the
more the distance between the gripper and the object decreases
the more the speed of the arm’s motors decreases in order to
tend to 0 when the object is reached. AfterT1, the human
partner displays an angry face (transmitting a negative value),
the object value is modified (negative emotional value). We can
see that the emotional value is now negative although, due to
noise, the positive emotional value is still high. This shows

the learning robustness to the noise. Now, the arm avoids the
object as if the object appears to be “dangerous” to the robot.

To provide more quantitative results on the robotic arm
capability to catch the objects having a positive emotional
value. We performed the following experiment: the objects
are put at different positions to show that the robot can catch
and recognize the objects in the whole workspace. Fig. 15
shows that the robot is able to reach the positive object (92%
success rate) and to catch it (with successful prehension: 82%
success rate). The robot fails only when the object can’t be
reached (environment area not surrounded by attractors). In
the case the object is negative, the robot avoids the different
objects all time (100% success rate). These results highlight
the robot’s capability to adapt its behavior according to the
emotional signal (emotional value associates to object).

reach catch

object 1 90% 90%
object 2 90% 80%
object 3 100% 80%
object 4 90% 80%
object 5 90% 80%
average 92% 82%

Fig. 15. Success rate when the robot attempts to catch objectsin the
environment. The 5 positive objects are put one after the others in the
workspace. Each object is put at 10 different positions in the workspace
allowing obtaining quantitative results for the prehension of positive objects.

At this level, the robot can reach an object if the self-
generated reinforcing signalA is positive (the emotional value
is positive) and avoid an object ifA is negative (the emotional
value is negative). The human emotional expression is able to
communicate an emotional value to an object (for instance a
dangerous object or an interested object) and moreover can
modulate the robot behavior.

IX. CONCLUSION

In our study, the social referencing is seen as a cascade of
sensory-motor architecture (Fig. 16). We showed that the robot
can learn different behaviors (or tasks) through the interaction
with the environment (Fig. 17): facial expressions recognition
(B1), face/non face discrimination (B2), the association of
an emotional value to an object (B4) or the control of the
robotic arm (B3). Each ability can be learned automously
and online therefore the social referencing may emerge once
all these cognitive abilities will be learned. However, some
abilities such as the association of an emotion to an object are
inefficient while the facial expressions recognition has been
not learned. Consequently, some skills must be learned first
so that others can be learned correctly. In our experiment,
two different cameras are used: one looking in the direction
of the human and another one looking in the direction of
the object. Therefore, it was possible to learn the visuo-
motor control of the arm in parallel with the learning of
the facial expression recognition (Fig. 17a). In practice,the
facial expression recognition and the face/non face recognition
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VF: Visual Features
IS: Internal State
FE: Facial Expression

ISP: Internal State Prediction

Visual attention

associate an emotional 

value to an objectVF

OSP OEV
arm

proprioception

visuo/attractor

      learning

    object 

    localisation

     (where)

attractors

yuragi controler

Arm reaches or avoids an object

non modifiable link

modifiable link

modulation link

algorithmic link

rhythm of interaction

discrimination 

face/non face

error of rhythm face or non face

IS ISP FE

facial expression 

recognition

A

A: self generated reinforcement signal

OSP: Object State Prediction
OEV: "Object" Emotional Value

θ θ
.

attractor position

VF

pain
pleausure

tactile

information

Fig. 16. Global architecture for the social referencing model. Social referencing emerges from the sensory-motor interactions between facial expression
recognition, objects emotional value and visuo-motor learning for the arm control. A simple sensory-motor architecture isable to learn and recognize the
facial expressions, and then to discriminate between face/non face stimuli (face detection). Using a simple chain of conditioning, the robot learns the emotional
value of an object as a result of the interactions with the human (face discrimination). The robot focuses on an object usinga visual attention processes (Gabor
filters, color). After a visuo-motor learning, the robot arm reaches or avoids some objects in the workspace thanks to the self-generated reinforcement signal
A (emotional value coming from the facial expression recognition).A is built as the result of the facial expression recognition (with A1 neuron corresponding
to happy facial expression, theA2 neuron corresponding to angry facial expression)

t

t

t

t

0

0

0

0

B1

B2

B3

B4

improvement always possible

B4 inefficient

a)

t

t

t

t

0

0

0

0

B1

B2

B3

B4

b)

Fig. 17. The different behaviors learned by the robot. a) with 2 cameras (our
experimental set-up), the robot learns the different behaviors (or tasks) through
the interaction with the environment. B1: the learning of facial expressions.
B2: learning of face/non face discrimination. B3: learning of visuo-motor
coordination. B4: Emotional interaction regulates the robot’s behavior. The
gray shows that the learning can always be improved. Learningof these
cognitive skills. b) with 1 camera, the development could be closer to the
baby development with the need to alternate between the social and physical
interactions.

were performed first. Next, the arm control was learned and
finally the social referencing was learned. Starting to the baby
development, the learning should be continuous and alternate
(Fig. 17b). If the two cameras are replaced by a single camera

or if the cameras have to look in the same global direction
(as for human gaze) then there is a need to add a mechanism
to alternate the attention between two directions. A simple
oscillatory mechanism could be sufficient to control the visual
attention. However, for the learning of the arm control, it
would be better to perform this task until some progress has
been made in this learning. Hence it is clear that some complex
self-evaluation need to be added [67], [57], [6]. In [40], we
propose a possible solution but it has not been tested for our
problem.

To our knowledge, our architecture is the first one that learns
a coupling between emotion (facial expression recognition)
and sensory-motor skills. We developed a real self-supervised
developmental sequence contrary to others authors [14], [68].
Yet, we don’t solve the question of joint attention which is an
important issue. Joint attention may also be reached using a
learning protocol similar to Nagai [56] (developmental model
for the joint attention).

We think our sensory-motor approach can provide new
interesting insights about how humans can develop social
capabilities from sensorimotor dynamics. For example, stud-
ies [9] show that humans use the theory of mind (to assign
mental states to the self and to others [63]) for complex
social interactions. For example, the false-belief task isbecame
the test for crediting a child with a theory of mind [9].
One consequence of this definition is an emphasis upon
representational mental states and knowledge rather than upon
emotions, intentions, perceptions. In contrast to currentde-
velopmental theory which considers the social interactions as
a complex cognitive process [9], our works suggest 1) the
primacy of emotion in learning, 2) the effectiveness of using
a simple conditioning for the learning of facial expressions
through an imitation game with the human partner 3) the
efficiency of a simple system of pairing internal emotional
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state with object-directed behavior. New neuropsychological
studies related to the mirror system in emotions [37], the
neural basis of intersubjectivity (e.g. [29]) as well as our
study highlight the important role played by emotion in the
emergence of social referencing. Social cognition, including
social referencing, may have stronger emotional foundation
and less need for complex cognition than previously thought
(e.g. [7]). Our works show that the robot can develop social
interactions without a theory of mind, and, we argue that the
theory of mind can emerge from social interactions. Therefore,
the theory of mind should be considered as a developmental
processes [19].

To improve the functioning of our architecture, there may be
a need to modulate the internal emotional state as a function
of intensity of emotional expressions and to modulate the
behavior to the object in accordance, e.g. an intense angry
expression might involve withdrawing, and an intense happy
expression might involve picking up more quickly. Ongoing
work suggests it might be possible by using a population
coding at the different stages of the architecture.

The facial expressions are an excellent way to bootstrap
complex sensory-motor learning. The relationship betweenthe
robot and the partner is dramatically changed thanks to an
emotional communication. It allows the robot to learning and
manipulating an object. The dynamical interactions between
the robot and the human participant allows to simplify learn-
ing, for example, the robot can learn autonomously and online
the facial expressions if the human partner mimics the robot
(resonate to the robot facial expression). Consequently, we
show that the dynamics of interaction and simple rules (PerAc
architecture) are sufficient to have an autonomous robot. This
work suggests the robot/partner system is an autopoietic social
system [51] in which the emotional signal and empathy are
important elements of the network to maintain the interaction
and to allow the learning of more and more complex skills for
instance the social referencing.
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X. A PPENDIX: V ISUO-MOTOR LEARNING AND CONTROL

OF A MULTI -DOF ROBOTIC ARM

A. Introduction

In this section, we show how the robot can learn to control
its arm through a visuo-motor learning (babbling phase).

Robots have the ability to learn a task as a result of
a demonstration provided by a human teacher [10]. This
demonstration can be done through passive manipulation.
Dynamic Motion Primitives [33] is a framework for learning
to perform demonstrated tasks. In [16], the learning system
uses a statistical model based on Gaussian Mixture that is
adapted to fit the data from training demonstrations using
passive manipulation. These systems have proved to be
efficient for performing different tasks. Even if the learning
by demonstration is very interesting, this technique is difficult
to use in our experiment, because we want to develop an
autonomous control of a multi-DoF robotic arm without
human physical interaction during the learning.

In this paper, the autonomous control of a multi-DoF robotic
arm requires the learning of a visuo-motor map [4]. During the
”babbling phase”, the robot arm produces random movements,
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Fig. 18. Model of the arm controller (see [23]). The sensorimotor map can learn to associate visual stimulus and proprioceptive information of the arm.
A competition between visuo-motor neurons enable to associate current proprioception with the most activated visual input neuron. Thus, neurons on this
layer can activate one or several attractors (constructed from visuo-motor neurons) in the motor space. If the current position of the arm is different of the
generated attractor, a non-null motor command is read out by Fukuyori’s adapted dynamical equations and given to the roboticarm. In the social referencing
experiment, this model is used to catch or to avoid objects according to the emotional interaction.

and, the visuo-motor controller can learn the correspondence
between the attractors in the joint space and the visual position
of the arm end-effector. After this learning, the robot arm
can reach several positions in the workspace. One visual
position corresponds to one or several motor configurations
(e.g. attractors). These attractors pull the arm in an attraction
basin (the target position). Recently, [28] has proposed a solu-
tion (Yuragi/fluctuation method) for arm control in the motor
space. This model is based on the use of a limited number of
attractors allowing the arm to converge reliably toward oneof
these motor configurations. The robot modulates the strength
of the nearest attractors in the joint space allowing creating
a virtual attractor in the joint space. Yuragi equation allows
with a fitness signal to control the end-effector displacement
so as to minimize the fitness function. The exploration allows
avoiding possible local minima by creating new states when
necessary and by playing with the visual associations.

Taking inspiration from this model, our working hypothesis
is that proprioceptive configurations associated with the visual
positions of the arm end effector can be used as attractors
to achieve the visuo-motor control. The dynamical equations
of the Yuragi controller allow smoothening the trajectory.
The interest of this controller is the capability to controlthe
exploration/exploitation dilemma according to a reinforcement
signal. If the fitness signal increases, the strength of the
attractors is increased and the noise is decreased (exploitation)
and vice versa if the fitness signal decreases and the random
exploration increases (see [23] for more details). In our case,
the ”happy face” activation is associated to a positive fitness
signal for the ”Yuragi” controller while the ”anger face” is
related to a negative fitness signal.

B. Yuragi Controler

Following Langevin equation (Refer to (8)) used to de-
scribe Brownian movements, [28] proposed that using random
configurations expressed in the joint space of the arm (x is
the current proprioception) combined with a noise parameter
is enough to move a robotic arm toward any position by

controlling the speeḋx .

τxẋ = f(x) ∗A+ ǫ (8)

f(x) =

na
∑

i=1

Ni

(Xi − x)

||Xi − x||
(9)

Ni =
gi(x)

∑na

j=1 gj(x)
(10)

gi(x) = exp{−β||Xi − x||2} (11)

With na the number of selected attractors,Xi (i=1, ... , na)
a vector reprensenting the center of the i-th attractor and the
function Ni a normalized Gaussian. The behavior of this
system is such that the arm approaches to the nearest attractor.

Where x and f(x) are the state (arm proprioception) and the
dynamics of the attractor selection model,τx = 0.1 is time
constant andǫ represents noise.A is the reinforcing signal
which indicates the fitness of the state x to the environment
and controls the behavior of the attractor selection model.
That is to say,f(x) ∗A becomes dominant when the activity
is large, and the state transition approaches deterministic
behavior (converge towards the goal). On the other hand, the
noiseǫ becomes dominant when the activity is small and the
state transition becomes more probabilistic. ModulatingA of
the commandẋ or the noise levelǫ enables to switch from
converging toward one of the selected motor configurations
(Fig. 19.a) to exploring randomly the working space by
“jumping” from an attraction basin to another (Fig. 19.b) and
vice versa.

C. Results

After verifying the convergence of the arm to a learned
position, we tested the convergence to a visual position spotted
between four learned attractors. If the arm/target distance is
lower than 3 pixels then the movement is stopped, the target
is considered as reached. Fig. 20 shows the results when
the robot has to reach a not learned position. The ”virtual”
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a) b)

Fig. 19. Simulation of 3 DoF arm proprioception using (Refer to (8)). a:
The trajectory converges to the nearest attractors. Simulation parameters are
following: number of iterations=1000; beta (Gaussian parameter)=20; noise
level ǫmax=0; Number of attractors = 8; shading parameter=0.01; A=1.b:
When the ratio of A to noise level decreases, noise has a stronger effect on
the speed command and allows an exploration of the motor space with jumps
from an attractor to another. Simulation parameters are following: number of
iteration=about 5000 ; beta (Gaussian parameter)=20 ; noiselevel ǫmax=1 ;
A=1; shading parameter=0.01.

a) b)

c) d)

Fig. 20. Trajectory of the robot arm end effector in visual space. Experiments
are made of several trials. For each trial the arm is initialized at a different
position. The black circles correspond to the learned attractors and the black
cross is the visual target to be reached. The stars are the starting positions for
each trial. a) Reaching a learned attractor, 2 attractors activated. b) Reaching
a not previously learned position, 4 attractors activated.We also record the
distance between the arm end effector and the target in the visual space
(number of pixels). c) Reaching a learned position, 2 trials.d) Reaching a not
previously learned position, 6 trials. The light gray line shows the threshold
under which the target is reached.

attractors are built as a linear combination of the real attractors.
The results show the robot’s capability to reach target in the
robotic arm workspace. Fig. 20a) and Fig. 20b) show the
trajectories of the robot arm towards a target. The arm is
able to reach the target whatever the starting positions. The
robotic arm succeeds in reaching a visual stimulus at arbitrary
places. These results show that the cooperation of the sensory-
motor map and the Yuragi method (Refer to (8)) offers an
interesting basis for the control of a robotic arm with a self-
learning of the associations between visual and motor spaces.
This architecture (Fig. 18) has some interesting properties:

• the learning of a few attractors is sufficient to reach any
position; the robotic arm reaches the target with high

precision. The accuracy can be improved by recruiting
a new attractor close to the target.

• the architecture can merge attractors in order to make
a ”virtual attractor”. For example, the Fig. 20b) shows
4 attractors activated to reach a not previously learned
position.

• the trajectories of the robotic arm are curvilinear which
involve smooth movements of the robotic arm (Fig. 20c
and Fig. 20d).

At this point, the robot can reach a neutral object in its
workspace as the result of the cooperation of sensorimotor
map and the Yuragi method.
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