
AN3397
Rev 0, 02/2007

Freescale Semiconductor
Application Note
Implementing Positioning Algorithms Using
Accelerometers
by: Kurt Seifert and Oscar Camacho

OVERVIEW
This document describes and implements a positioning

algorithm using the MMA7260QT 3-Axis accelerometer and a
9S08QG8 low cost 8-bit microcontroller unit (MCU).

In today�s advanced electronic market, there are many
multifunctional products continuously adding features and
intelligence. Tracking and gaming are just a few of the markets
that can benefit from obtaining positioning information. One
option for obtaining this information is through the use of
inertial sensors. The signal obtained from these sensors does
require processing as there is no direct conversion between
acceleration and position.

In order to obtain position a double integral must be applied
to the signal. This document describes an easy algorithm to
implement a double integration of the signal obtained from the
sensor using a low end 8-bit microcontroller. In order to obtain
a double integration a simple integration must be made twice.
This allows velocity information to be obtained as well.

The algorithm shown in the following pages applies to any
sensing axis; therefore, one, two or three dimensional
positioning can be determined. When implementing
positioning in 3 axes, extra processing is required to null the
earth�s gravity effect. The implementation below includes an
example for a 2-axis system (i.e. mouse).

POTENTIAL APPLICATIONS
Potential applications for this kind of algorithm are personal

navigation, car navigation, back-up GPS, anti-theft devices,
map tracking, 3-D gaming, PC mouse, plus many others. The
products in these categories can benefit from implementing
positioning algorithms.

The algorithm described in this document is useful in
situations where displacement precision is not extremely
critical. Other considerations and implications specific to the
application should be considered when adapting this example.
With minor modifications and adaptations in the final
application this algorithm can achieve higher precision.

BACK UP THEORY AND ALGORITHM
The best approach in understanding this algorithm is with a

review of mathematical integration.
The acceleration is the rate of change of the velocity of an

object. At the same time, the velocity is the rate of change of
the position of that same object. In other words, the velocity is
the derivative of the position and the acceleration is the
derivative of the velocity, thus:

The integration is the opposite of the derivative. If the
acceleration of an object is known, we can obtain the
position data if a double integration is applied
(assuming initial conditions are zero):

One way to understand this formula is to define the integral
as the area below the curve, where the integration is the sum
of very small areas whose width is almost zero. In other words,
the sum of the integration represents the magnitude of a
physical variable.

Figure 1. Sampled Accelerometer�s Signal

Where:

a dv
dt
------= and v ds

dt
------= a∴

d ds()

dt2
---------------=

v a() t andd∫ s v()∫ dt a() td∫⎝ ⎠
⎛ ⎞ td∫∴==

x()� xd
a

b

∫ xi()�
i 1=

n

∑ ∆x
n ∞→
lim=

∆x b a�
n

------------=
© Freescale Semiconductor, Inc., 2007. All rights reserved.

With the previous concept about �areas below the
curve� a deduction can be made: Sampling a signal gets
us instant values of its magnitude, so small areas can
be created between two samples. In order to create a
coherent value, sampling time must always be the
same. Sampling time represents the base of this area
while the sampled value represents its height. In order
to eliminate multiplications with fractions (microseconds
or milliseconds) involving floating points in the
calculation we assume the time is a unit.

Now we know each sample represents an area
whose base width is equal to 1. The next deduction
could then be that the value of the integral is reduced to
be the sum of samples. This assumption is correct if the
sampling time tends to be zero. In a real situation an
error is generated as shown in Figure 1. This error
keeps accumulating for the time the process is active.

Figure 2. Errors Generated During Integration

These errors are formally known as sampling losses. In
order to reduce this error we then make a further
assumption. The resulting area can be seen as the
combination of two smaller areas:

Figure 3. Errors of Integration Are Reduced with a First
Order Approximation (Trapezoidal Method)

The first area is the value of the previous sample (a
square). The second area is a triangle, formed between the
previous sample (sample n-1) and the actual sample (sample
n) divided by two.

With this approach, we now have a first order
approximation (interpolation) of the signal.

Formula 1

Now the error is much lower than in the previous
approximation.

Yet data must not be too accurate in order to obtain a �real
world� interpretation. Even though acceleration can be
positive or negative, samples are always positive (based on
the output characteristics of the MMA7260QT); therefore, an
offset adjustment must be done. In other words, a reference is
needed. This function is defined as the calibration routine.

Calibration is performed on the accelerometer when there
is a no movement condition. The output or offset obtained is
considered the zero point reference. Values lower than the
reference represent negative values (deceleration) while
greater values represent positive values (acceleration).

The accelerometer output varies from 0V to Vdd and it is
typically interpreted by an analog to digital comparator (A/D).
The zero value is near Vdd/2. The calibration value obtained
will be affected by the board�s orientation and the static
acceleration (earth�s gravity) component in each of the axis. If
the module is perfectly parallel to the earth�s surface, the
calibration value should be very close to Vdd/2.

The following figure shows the result of the calibration
routine:

Figure 4. Acceleration Signal After Calibration

From the sampled signal minus the zero reference we
obtain true sampled acceleration.

A1 represents a positive acceleration. A2 represents a
negative acceleration.

If we considered this data as sampled data, the signal
should be similar to the figure below.

Figure 5. Acceleration Sampled Signal After Calibration

By applying the integration formula, Formula 1, we get a
proportional approximation of the velocity. In order to obtain
position the integration must be performed again. Applying the
same formula and procedure to this obtained velocity data, we
now get a proportional approximation of the instantaneous
position (see Figure 6).

Area error

Area 2

Area 1

Sample n
Sample n-1

Arean Samplen
Samplen Samplen 1��

2
-- T×+=

minusSampled Signal equalsZero Reference Real Sampled
Acceleration

Threshold
Value

A1

A2
AN3397

Sensors
2 Freescale Semiconductor

Figure 6. Proportional Approximation of the Instantaneous Position

SOFTWARE DESIGN CONSIDERATIONS
The following steps and recommendations should be

considered when implementing this kind of algorithm in a �real
world� implementation.

� The signal is not noise free so it must be digitally
filtered. The filter used in this algorithm is a moving
average; the value to be processed is the result of
averaging a certain amount of samples.

� Even with the previous filtering some data can be
erroneous due to the �mechanical� noise, so another
filter must be implemented. Depending on the number
of samples filtered, a window of �real acceleration� can
be selected (typically ± 2 sample steps for an average
of 16 samples).

� A �no movement� state is critical to obtain correct data.
A calibration routine is needed at the beginning of the
application. This calibration value must be as accurate
as possible.

� The real value of the acceleration is the sample minus
the calibration value; it can be either positive or
negative. This must never be ignored when declaring
variables (signed).

� A faster sampling frequency implies more accurate
results due the fact that error is reduced; yet more
memory, timing, and hardware considerations are
needed.

� The time between samples MUST always be the
same. Errors can be generated if this time is not equal.

� A linear approximation between samples
(interpolation) is recommended for more accurate
results.

A) Real accelerometer data B) Result of the first
Integration velocity

C) Result of the second
Integration velocity

Acceleration Velocity Position
AN3397

Sensors
Freescale Semiconductor 3

CODE EXPLANATION

Calibration Routine:
This calibration routine removes the acceleration offset component in the sensor output due to the earth�s gravity (static ac-

celeration).
The calibration routine averages samples when the accelerometer is in a no movement condition. The more samples that are

taken, the more accurate the calibration results will be.

void Calibrate(void)
{
 unsigned int count1;
 count1 = 0;

 do{
 ADC_GetAllAxis();
 sstatex = sstatex + Sample_X; // Accumulate Samples
 sstatey = sstatey + Sample_Y;
 count1++;
 }while(count1!=0x0400); // 1024 times

 sstatex=sstatex>>10; // division between 1024
 sstatey=sstatey>>10;
}

Filtering:
Low pass filtering of the signal is a very good way to remove noise (both mechanical and electrical) from the accelerometer.

Reducing the noise is critical for a positioning application in order to reduce major errors when integrating the signal.
A simple way for low pass filtering a sampled signal is to perform a rolling average. Filtering is simply then reduced to obtain

the average of a set of samples. It is important to obtain the average of a balanced amount of samples. Taking too many samples
to do this process can result in a loss of data, yet taking too few can result in an inaccurate value.

do{

accelerationx[1]=accelerationx[1] + Sample_X; //filtering routine for noise attenuation
accelerationy[1]=accelerationy[1] + Sample_Y; //64 samples are averaged. The resulting
count2++; // average represents the acceleration of
 // an instant.
}while (count2!=0x40); // 64 sums of the acceleration sample

accelerationx[1]= accelerationx[1]>>6; // division by 64
accelerationy[1]= accelerationy[1]>>6;

Mechanical Filtering Window:
When a no movement condition is present, minor errors in acceleration could be interpreted as a constant velocity due to the

fact that samples not equal to zero are being summed; the ideal case for a no movement condition is all the samples to be zero.
That constant velocity indicates a continuous movement condition and therefore an unstable position.

Even with the previous filtering some data can be erroneous, so a �window� of discrimination between �valid data� and �invalid
data� for the no movement condition must be implemented.

if ((accelerationx[1] <=3)&&(accelerationx[1] >= -3)) //Discrimination window applied to
{accelerationx[1] = 0;} // the X axis acceleration variable
AN3397

Sensors
4 Freescale Semiconductor

Figure 7. Software Discrimination Window To Reduce Mechanical Noise Effects

Positioning:

Double integration is the process needed to obtain the
position using the acceleration data. The integration step must
be performed once to obtain velocity and then repeated to
obtain position.

As previously shown:

//first integration
velocityx[1] = velocityx[0] + accelerationx[0] + ((accelerationx[1] - accelerationx[0])>>1)

//second integration
positionX[1] = positionX[0] + velocityx[0] + ((velocityx[1] - velocityx[0])>>1);

Data Transfer:
This function is used for debugging and display purposes;

the 32 bits result is split and conditioned in this function.

if (positionX[1]>=0) { //This line compares the sign of the X direction data
 direction= (direction | 0x10); // if its positive the most significant byte
 posx_seg[0]= positionX[1] & 0x000000FF; // is set to 1 else it is set to 8
 posx_seg[1]= (positionX[1]>>8) & 0x000000FF; // the data is also managed in the

 // subsequent lines in order to be sent.
 posx_seg[2]= (positionX[1]>>16) & 0x000000FF;// The 32 bit variable must be split into
 posx_seg[3]= (positionX[1]>>24) & 0x000000FF;// 4 different 8 bit variables in order to
 // be sent via the 8 bit SCI frame
 }
else {
 direction=(direction | 0x80);
 positionXbkp=positionX[1]-1;
 positionXbkp=positionXbkp^0xFFFFFFFF;
 posx_seg[0]= positionXbkp & 0x000000FF;
 posx_seg[1]= (positionXbkp>>8) & 0x000000FF;
 posx_seg[2]= (positionXbkp>>16) & 0x000000FF;
 posx_seg[3]= (positionXbkp>>24) & 0x000000FF;
 }

Arean Samplen
Samplen Samplen 1��

2
-- T×+=
AN3397

Sensors
Freescale Semiconductor 5

�Movement End� Check
Based on the concept that an integral represents the area

below the curve, velocity is the result of the area below the
acceleration curve.

If we look at the typical movement of an object from point A
to point B in a single axis, a typical acceleration would result
as shown in the figure below:

Figure 8. Typical Accelerometer Output Signal As The Result of Dragging an Object in a Single Axis

Looking at graph above, there is an initial acceleration or
deceleration until a maximum velocity is reached. Then that
acceleration �flips� the opposite way until it reaches zero
again. At this point a stable displacement and a new position
are reached.

In a real world scenario where the area below the positive
side of the curve is not the same as the area above the

negative side, the integration result would never reach a zero
velocity and therefore would be a sloped positioning (never
stable).

Because of this, it is crucial to �force� the velocity down to
zero. This is achieved by constantly reading the acceleration
and comparing it with zero. If this condition exists during a
certain number of samples, velocity is simply returned to zero.

if (accelerationx[1]==0) // we count the number of acceleration samples that equals cero
 { countx++;}
else { countx =0;}
 if (countx>=25) // if this number exceeds 25, we can assume that velocity is cero
 {
 velocityx[1]=0;
 velocityx[0]=0;
 }

Acceleration

-60

-40

-20

0

20

40

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
AN3397

Sensors
6 Freescale Semiconductor

Figure 9. Flow Diagram

SOURCE CODE
#include <hidef.h>
#include "derivative.h"
#include "adc.h"
#include "buzzer.h"
#include "SCItx.h"

#pragma DATA_SEG MY_ZEROPAGE
unsigned char near Sample_X;
unsigned char near Sample_Y;
unsigned char near Sample_Z;
unsigned char near Sensor_Data[8];
unsigned char near countx,county ;
signed int near accelerationx[2], accelerationy[2];
signed long near velocityx[2], velocityy[2];
signed long near positionX[2];
signed long near positionY[2];
signed long near positionZ[2];
unsigned char near direction;
unsigned long near sstatex,sstatey;

#pragma DATA_SEG DEFAULT

void init(void);
void Calibrate(void);
void data_transfer(void);

Begin

Take Sample
From ADC

Velocity = Previous Velocity +
Current Acceleration

Show position

Acceleration =
Sample � calibration

value

ADC Init

Position = Previous Position +
Current Velocity

Average
Xout@0g

Save X Offset

Calibrate
?

N

Y

Average
Yout@0g

Save Y Offset
AN3397

Sensors
Freescale Semiconductor 7

void concatenate_data(void);
void movement_end_check(void);
void position(void);

void main (void)
{
 init();
 get_threshold();
 do
 {
 position();
 }while(1);
}

/***
 The purpose of the calibration routine is to obtain the value of the reference threshold.
 It consists on a 1024 samples average in no-movement condition.
**/

void Calibrate(void)
{
 unsigned int count1;
 count1 = 0;

 do{
 ADC_GetAllAxis();
 sstatex = sstatex + Sample_X; // Accumulate Samples
 sstatey = sstatey + Sample_Y;
 count1++;
 }while(count1!=0x0400); // 1024 times

 sstatex=sstatex>>10; // division between 1024
 sstatey=sstatey>>10;
}

/***/

/**
This function obtains magnitude and direction
In this particular protocol direction and magnitude are sent in separate variables.
Management can be done in many other different ways.
***/

void data_transfer(void)
{

 signed long positionXbkp;
 signed long positionYbkp;
 unsigned int delay;
 unsigned char posx_seg[4], posy_seg[4];

 if (positionX[1]>=0) { //This line compares the sign of the X direction data
 direction= (direction | 0x10); //if its positive the most significant byte
 posx_seg[0]= positionX[1] & 0x000000FF; // is set to 1 else it is set to 8
 posx_seg[1]= (positionX[1]>>8) & 0x000000FF; // the data is also managed in the
 // subsequent lines in order to
 posx_seg[2]= (positionX[1]>>16) & 0x000000FF; // be sent. The 32 bit variable must be
 posx_seg[3]= (positionX[1]>>24) & 0x000000FF; // split into 4 different 8 bit
 // variables in order to be sent via
 // the 8 bit SCI frame
AN3397

Sensors
8 Freescale Semiconductor

 }

 else {direction=(direction | 0x80);
 positionXbkp=positionX[1]-1;
 positionXbkp=positionXbkp^0xFFFFFFFF;
 posx_seg[0]= positionXbkp & 0x000000FF;
 posx_seg[1]= (positionXbkp>>8) & 0x000000FF;
 posx_seg[2]= (positionXbkp>>16) & 0x000000FF;
 posx_seg[3]= (positionXbkp>>24) & 0x000000FF;
 }

 if (positionY[1]>=0) { // Same management than in the previous case
 direction= (direction | 0x08); // but with the Y data.
 posy_seg[0]= positionY[1] & 0x000000FF;
 posy_seg[1]= (positionY[1]>>8) & 0x000000FF;
 posy_seg[2]= (positionY[1]>>16) & 0x000000FF;
 posy_seg[3]= (positionY[1]>>24) & 0x000000FF;
 }

 else {direction= (direction | 0x01);
 positionYbkp=positionY[1]-1;
 positionYbkp=positionYbkp^0xFFFFFFFF;
 posy_seg[0]= positionYbkp & 0x000000FF;
 posy_seg[1]= (positionYbkp>>8) & 0x000000FF;
 posy_seg[2]= (positionYbkp>>16) & 0x000000FF;
 posy_seg[3]= (positionYbkp>>24) & 0x000000FF;
 }

 delay = 0x0100;

 Sensor_Data[0] = 0x03;
 Sensor_Data[1] = direction;
 Sensor_Data[2] = posx_seg[3];
 Sensor_Data[3] = posy_seg[3];
 Sensor_Data[4] = 0x01;
 Sensor_Data[5] = 0x01;
 Sensor_Data[6] = END_OF_FRAME;

 while (--delay);

 SCITxMsg(Sensor_Data); // Data transferring function
 while (SCIC2 & 0x08);
}

/***/

/**
This function returns data format to its original state. When obtaining the magnitude and
direction of the position, an inverse two's complement is made. This function makes the two's
complement in order to return the data to it original state.
It is important to notice that the sensibility adjustment is greatly impacted here, the amount
of "ones" inserted in the mask must be equivalent to the "ones" lost in the shifting made in
the previous function upon the sensibility modification.
 **/

void data_reintegration(void)
{

 if (direction >=10)
AN3397

Sensors
Freescale Semiconductor 9

 {positionX[1]= positionX[1]|0xFFFFC000;} // 18 "ones" inserted. Same size as the
 //amount of shifts

 direction = direction & 0x01;
 if (direction ==1)

 {positionY[1]= positionY[1]|0xFFFFC000;}
}

/**
This function allows movement end detection. If a certain number of acceleration samples are
equal to zero we can assume movement has stopped. Accumulated Error generated in the velocity
calculations is eliminated by resetting the velocity variables. This stops position increment
and greatly eliminates position error.
**/

void movement_end_check(void)
{

 if (accelerationx[1]==0) //we count the number of acceleration samples that equals cero
 { countx++;}
 else { countx =0;}

 if (countx>=25) //if this number exceeds 25, we can assume that velocity is cero
 {
 velocityx[1]=0;
 velocityx[0]=0;
 }

 if (accelerationy[1]==0) //we do the same for the Y axis
 { county++;}
 else { county =0;}

 if (county>=25)
 {
 velocityy[1]=0;
 velocityy[0]=0;
 }
}

/***/

/**
This function transforms acceleration to a proportional position by integrating the
acceleration data twice. It also adjusts sensibility by multiplying the "positionX" and
"positionY" variables.
This integration algorithm carries error, which is compensated in the "movenemt_end_check"
subroutine. Faster sampling frequency implies less error but requires more memory. Keep in
mind that the same process is applied to the X and Y axis.
***/

void position(void)
{

unsigned char count2 ;
count2=0;

 do{

 ADC_GetAllAxis();
 accelerationx[1]=accelerationx[1] + Sample_X; //filtering routine for noise attenuation
 accelerationy[1]=accelerationy[1] + Sample_Y; //64 samples are averaged. The resulting
AN3397

Sensors
10 Freescale Semiconductor

 //average represents the acceleration of
 //an instant
 count2++;

 }while (count2!=0x40); // 64 sums of the acceleration sample

 accelerationx[1]= accelerationx[1]>>6; // division by 64
 accelerationy[1]= accelerationy[1]>>6;

 accelerationx[1] = accelerationx[1] - (int)sstatex; //eliminating zero reference
 //offset of the acceleration data
 accelerationy[1] = accelerationy[1] - (int)sstatey; // to obtain positive and negative
 //acceleration

 if ((accelerationx[1] <=3)&&(accelerationx[1] >= -3)) //Discrimination window applied
 {accelerationx[1] = 0;} // to the X axis acceleration
 //variable

 if ((accelerationy[1] <=3)&&(accelerationy[1] >= -3))
 {accelerationy[1] = 0;}

 //first X integration:
velocityx[1]= velocityx[0]+ accelerationx[0]+ ((accelerationx[1] -accelerationx[0])>>1);

 //second X integration:
positionX[1]= positionX[0] + velocityx[0] + ((velocityx[1] - velocityx[0])>>1);

 //first Y integration:
velocityy[1] = velocityy[0] + accelerationy[0] + ((accelerationy[1] -accelerationy[0])>>1);

 //second Y integration:
positionY[1] = positionY[0] + velocityy[0] + ((velocityy[1] - velocityy[0])>>1);

 accelerationx[0] = accelerationx[1]; //The current acceleration value must be sent
//to the previous acceleration
 accelerationy[0] = accelerationy[1]; //variable in order to introduce the new
//acceleration value.

 velocityx[0] = velocityx[1]; //Same done for the velocity variable
 velocityy[0] = velocityy[1];

 positionX[1] = positionX[1]<<18; //The idea behind this shifting (multiplication)
 //is a sensibility adjustment.
 positionY[1] = positionY[1]<<18; //Some applications require adjustments to a
 //particular situation
 //i.e. mouse application
 data_transfer();

 positionX[1] = positionX[1]>>18; //once the variables are sent them must return to
 positionY[1] = positionY[1]>>18; //their original state

 movement_end_check();

 positionX[0] = positionX[1]; //actual position data must be sent to the
 positionY[0] = positionY[1]; //previous position

 direction = 0; // data variable to direction variable reset
}
/***/
AN3397

Sensors
Freescale Semiconductor 11

SCHEMATIC

CONCLUSIONS
 This application note provides the basic concepts for

implementing a positioning algorithm using accelerometers.
This specific algorithm is useful in situations where

displacement precision is not extremely critical. Other
considerations and implications specific to the application
should be considered when implementing this example
application.

This integration algorithm is suitable for low end embedded
applications because of its simplicity and small amount of
instructions. It also does not involve any floating point
calculations.

REFERENCES
Refer to the following documents for product information

MC9S08QG8 Technical Data Sheet

MMA7260Q Technical Data Sheet
AN3397

Sensors
12 Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. �Typical� parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including �Typicals�, must be validated for each customer application by
customer�s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale� and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

AN3397
Rev. 0
02/2007

	Overview
	Potential applications
	Back up Theory and Algorithm
	Software Design Considerations
	Code Explanation
	Calibration Routine:
	Filtering:
	Mechanical Filtering Window:
	Positioning:
	Data Transfer:
	“Movement End” Check

	Source Code
	Schematic
	Conclusions
	References

